A remark on the cosine of linear operators

By PETER HESS in Chicago (Illinois, U.S.A.)

1. In their recent note [2], K. Gustafson and B. Zwahlen proved that an unbounded linear operator T acting in a pre-Hilbert space has cosine zero. It is our purpose to show that this statement can be extended to the case of unbounded linear mappings T from a complex (real) normed vector space X into a normed vector space Y, provided there is given a sesquilinear form $Q: X \times Y \rightarrow \mathbf{C}(\mathbf{R})$ such that

$$
\begin{equation*}
|Q(x, y)| \leqq\|x\|\|y\| \tag{1}
\end{equation*}
$$

for all $x \in X, y \in Y$. The cosine of a mapping T from X to Y with respect to Q is then defined by

$$
\cos _{Q}(T)=\inf \frac{|Q(x, T x)|}{\|x\|\|T x\|},
$$

where the infimum is taken over all x in the domain $D(T)$, with $x \neq 0, T x \neq 0$.
Theorem. If to the linear operator $T: D(T) \subset X \rightarrow Y$ there exists a sesquilinear form Q such that $\cos _{Q}(T)>0$, then T is bounded.

The proof of the theorem is devided into two parts. We first introduce the concept of quasi-boundedness, which is due to F. E. Browder and the writer, and which turned out to be extremely useful in the study of nonlinear mappings of monotone type [1]. The mapping T is said to be quasi-bounded with respect to the form Q, if from the boundedness of the sequence $\left\{x_{n}\right\} \subset D(T)$ together with the boundedness of the sequence $\left\{Q\left(x_{n}, T x_{n}\right)\right\}$ it follows that $\left\{T x_{n}\right\}$ remains bounded. We prove that for an operator T which is homogeneous of some positive degree k (i.e. $D(T)$ a cone and $T(\mu x)=\mu^{k} T(x)$ for $\mu>0, x \in D(T)$), quasi-boundedness implies boundedness. This observation allows us to give a proof of the theorem which seems to be more transparent even in the particular situation discussed in [2].

A closing example shows that the existence of a form Q with $\cos _{Q}(T)>0$ is not necessary for the boundedness of a linear mapping T.
2. We shall preface the proof of the theorem with the following

Lemma. Let the mapping $T: D(T) \subset X \rightarrow Y$ be homogeneous of degree $k>0$, and suppose there exists a sesquilinear form Q such that T is quasi-bounded with respect to Q. Then T maps bounded sets in X onto bounded sets in Y.

Proof. For $\lambda>0$, let

$$
f(\lambda)=\sup \{\|T u\|: u \in D(T),\|u\| \leqq 1,|Q(u, T u)| \leqq \lambda\} .
$$

Because of the quasi-boundedness of T, f is a well-defined increasing function. We observe that for $\lambda \geqq 1$,

$$
f(\lambda) \equiv \lambda^{\frac{k}{1+k}} f(1)
$$

Hence

$$
f(\lambda) \leqq \lambda^{\frac{k}{1+k}} f(1)+f(1), \quad \lambda>0
$$

For $x \in D(T)$ with $\|x\| \leqq 1$ we set $\lambda=|Q(x, T x)|$ and get

$$
\|T x\| \leqq f(|Q(x, T x)|) \leqq\|T x\|^{\frac{k}{1+k}} f(1)+f(1)
$$

This estimate implies the boundedness of T, q.e.d.
Proof of the Theorem. In virtue of the lemma, it suffices to prove that T is quasi-bounded with respect to Q.

Assume that $\left\{x_{n}\right\} \subset D(T)$ is a sequence with $\left\|x_{n}\right\| \leqq c,\left|Q\left(x_{n}, T x_{n}\right)\right| \leqq c$, but $\left\|T x_{n}\right\| \rightarrow \infty$. Since $\left\|x_{n}\right\|\left\|T x_{n}\right\| \cos _{Q}(T) \leqq\left|Q\left(x_{n}, T x_{n}\right)\right| \leqq c$, we infer that $\left.{ }^{1}\right) x_{n} \rightarrow 0$. We construct a bounded sequence $\left\{u_{n}\right\} \subset D(T)$ such that $Q\left(u_{n}, T x_{n}\right)=0$ and $\left\{T u_{n}\right\}$ is bounded. For this purpose, let a and b be linearly independent vectors of $D(T)$ with $\|a\|=\|b\|=1,{ }^{2}$) and for each n set $u_{n}=\alpha_{n} a+\beta_{n} b$, where α_{n} and β_{n} are solutions of the equations $\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}=1, \alpha_{n} Q\left(a, T x_{n}\right)+\beta_{n} Q\left(b, T x_{n}\right)=0$. The function $g:[\alpha, \beta] \rightarrow g(\alpha, \beta)=\|\alpha a+\beta b\|$ is continuous, hence it admits its supremum and infimum on the (compact) unit sphere $|\alpha|^{2}+|\beta|^{2}=1$. Because of the linear independence of a and b, the infimum is positive. Consequently there exists $\gamma>0$ such that $\gamma^{-1} \leqq\left\|u_{n}\right\| \leqq \gamma$ for all n. In addition, $\left\|T u_{n}\right\| \leqq\|T a\|+\|T b\|$. Setting $w_{n}=$ $=x_{n}+u_{n} \in D(T)$, we obtain

$$
\frac{\left|Q\left(w_{n}, T w_{n}\right)\right|}{\left\|w_{n}\right\|\left\|T w_{n}\right\|} \leqq \frac{\left|Q\left(x_{n}, T x_{n}\right)\right|+\left|Q\left(u_{n}, T x_{n}\right)\right|+\left|Q\left(x_{n}, T u_{n}\right)\right|+\left|Q\left(u_{n}, T u_{n}\right)\right|}{\| \| u_{n}\|-\| x_{n}\| \| \cdot\left\|T x_{n}\right\|-\left\|T u_{n}\right\| \mid}
$$

where the right hand side converges to 0 as $n \rightarrow \infty$, since the numerator remains

[^0]bounded and the denominator tends to $+\infty$. We are thus led to a contradiction to the assumption $\cos _{Q}(T)>0$, q.e.d.

That $\cos _{Q}(T)>0$ for some form Q is not necessary for the boundedness of the linear mapping T, is shown by the following

Examiple. Let T be a bounded linear operator from X to Y, and suppose there exists a sequence $\left\{x_{n}\right\} \subset D(T)$ with $\left\|x_{n}\right\|=1, x_{n}-0, T x_{n} \neq 0$, such that the linear span of $\left\{T x_{n}\right\}$ has finite dimension. Then $\cos _{Q}(T)=0$ for each form Q.

References

[1] F. E. Browder and P. Hess, Nonlinear operators of monotone type in Banach spaces, J. Furctional Analysis (to appear).
[2] K. Gustafson and B. Zwahlen, On the cosine of unbounded operators, Acta Sci. Math., 30 (1969), 33-34.

[^0]: ${ }^{1}$) We use the symbols " \rightarrow " and " \rightarrow " to denote strong and weak convergence, respectively.
 ${ }^{2}$) If $D(T)$ is one dimensional, the theorem is trivial.

