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1. Introduction. The purpose of this note is to set forth a definitive version of 
a theorem concerning operators on Hilbert space, and to discuss some consequences 
of that theorem that seem not to have been noticed before now. The theorem asserts 
that, unless an operator is, in a sense, nearly invertible, then it is "very small" on 
an infinite dimensional subspace. This fact has already been noted several times 
in the literature in one form or another (see, for example, [15, § 1 . 2 ] ; the main 
special case is valid even on Banach spaces [9, III. 1. 9]; for a version of the theorem 
valid in an infinite factor see [6], and the only thing in § 2 that can claim to be new 
is the manner in which we construe the notion of "very small". The results recounted 
in §§ 3—5 have greater claim to novelty. 

Throughout this paper all Hilbert spaces will be complex, separable, and, unless 
the contrary possibility is explicitly stated, infinite dimensional. Furthermore, oper-
ators are always bounded, linear transformations from one Hilbert space into another. 
If .W is a Hilbert space, then the algebra of all operators T f rom yif into Jtjf will 
be denoted by ü ? ( J f ) . We shall have occasion to refer to various ideáls of operators, 
and we take this opportunity to remind the reader of the basic facts concerning the 
ideal structure of i f ( M f ) . (By ideal we shall always mean two-sided ideal. Recall 
that is assumed to be infinite dimensional; otherwise is simple.) 

In the first place, every ideal 3 in satisfies the condition 

g c 3 c f f , 
where g denotes the ideal of operators of finite rank and d the ideal of all compact 
operators. From this it is immediately apparent that (£ is the only proper norm-closed 
ideal in <£(№). Non-closed ideals exist in great abundance, however, and have 
been completely described. Indeed, if C denotes the collection of all sequences 
{An}~=1 of non-negative real numbers that tend to zero, then there is a simple one-
to-one, inclusion preserving correspondence between the ideals 3 in and the 
subsets J of C, called ideal sets, that satisfy the following conditions: 

') The research for this paper was supported in part by the National Science Foundation. 
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i) if {A,,} is a sequence in / , and if n is any permutation of the positive integers, 
then {An(n)} is also in J, 

ii) if {A„} and are in J, then so is {A„+/<„}, 
iii) if {A„} is in J, and if for all n, then {/(„} is also in J. 

The precise nature of this correspondence is as follows: if T belongs to 3 then 
\T\=(T*T)i does too, and, since | r | is compact, its eigenvalues (counting multi-
plicities) can be arranged in a sequence belonging to C. The set of all sequences 
{A,,} so obtained from the various operators forms the ideal set J of 3 . Con-
versely, if J is an ideal set in C, and if we say of an operator T on ffl that it belongs 
to J if, when the eigenvalues of | r | are arranged in a sequence, that sequence belongs 
to J, then the set of all operators belonging to J forms an ideal 3 , of which J is 
clearly the ideal set. (These results are due originally to VON NEUMANN; a good 
account of them may be found in [5] or [7].) Note that under this correspondence 
the entire set C is the ideal set of the maximum ideal (E of all compact operators, 
and that the ideal set of the ideal $ of operators of finite rank is the set F of finitely 
non-zero sequences. Note also that these facts free the discussion of ideals in i f ( J ? ) 
from the Hilbert space ffl. When, in the sequel, we refer to an ideal 3 in i f ( j f ) and 
then to the "same" ideal on another space J f , what is meant, of course, is that ideal 
in i f ( j f ) having the same ideal set as 3 . Moreover, the correspondence between 
ideal sets and operators can be extended even to operators f rom one space to another. 
Let J be an ideal set of sequences and let 3 be its associated ideal, and suppose 
given an operator T mapping one Hilbert space J f into another space JT. Then 
we shall say that T is affiliated with 3 if, when the eigenvalues of \T\=(T*T)* 
are arranged in a sequence, that sequence belongs to J. (When and JT do coincide, 
affiliation reduces to set membership.) Note that if T: № — JT is affiliated with 3 
in this sense, then it continues to be true that T* ¿T -*JSC is also. Similarly, it is easy 
to show that if T\ and T2 both map J f into J f and if both are affiliated with 3 , 
then TY + T2 is too, and that if T: — i s affiliated with 3 and if S L : jT — J i ^ , 

so that the product SVTS2 is defined, then StTS2 is also affiliated 
with 3 . 

2. Operators with small restrictions. The following theorem is the central tool 
of the paper. 

T h e o r e m 2. 1. Let J4? and J f be Hilbert spaces, and let T be an operator mapping 
№ into . Suppose that there does not exist a finite dimensional subspace 
such that T\3>L is bounded below. Then for any prescribed ideal 3 other than the ideal 

of operators of finite rank, and for any rj greater than zero, there exists an infinite 
dimensional subspace i f c ,3f such that the restriction T0 = T\i?(T0: i f — J f ) is 
affiliated with 3 and satisfies the condition | | ro | | <>7. 
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Before proving the theorem, it is advantageous to establish a working criterion 
for determining when an operator is affiliated with a given ideal. 

L e m m a 2. 2. Let № and .5f be Hilbert spaces. Then a necessary and sufficient 
condition for an operator T: ffl c/f to be affiliated with a given ideal 3 is that there 
exist an orthonormal basis {e„} in and an orthonormal sequence {/„} in such 
that Ten = /.„f, for all n, where {|A„|} belongs to the ideal set of 3 . 

P r o o f . If the criterion is satisfied, then \T\e„ = \k„\en for all n, so the condition 
is clearly sufficient. On the other hand, if T is affiliated with 3 , then there exists 
an or thonormal basis {e„} in 2/e such that \T\en=Xnen for all n, where {A„} is in the 
ideal set of 3 . But then, if W denotes the partial isometry in the polar resolution of 
T, so that T= W\T\, and if we s e t / „ = Wen, then {/„} is an or thonormal sequence 
in J f , and Ten = l„fn. • 

P r o o f of T h e o r e m 2. 1. If T has an infinite dimensional null space, we 
may simply set T0 = 0. Otherwise, let T—W\T\ be the polar resolution of T as 
above, and let £ denote the spectral measure of |T | . Then, according to our assump-
tions, no projection £([0, e)) ( s > 0 ) has finite rank, while £({0}) does have finite 
rank. Hence £((0 , e)) has infinite rank for every positive e, and it follows at once 
that for every positive e there exists 5, 0 < ( 5 < e , such that £((<5, e)) has rank greater 
than one. 

Now let {?.„} be any one fixed sequence in the ideal set / of 3 satisfying the 
conditions 0 < A „ + 1 for every n. (Such sequences exist since J^F; see 
[4 ,Lemma 1. l j ^ W e s e t e j and determine <5, ,0<£>j < e , s u c h t h a t £ , = £ ( ( 5 1 , E 1 ) ) 
has rank exceeding one. Next, define e2 = d vf \X 2 and choose 82 so that 0<c>2 < e 2 

and so that £ 2 = £((<52, e2)) has rank exceeding one. Continuing in this fashion, 
we obtain an infinite sequence of spectral projections £„ such that, for every n, 
Jln=En{^f) has dimension at least two and such that || \T\ \ J i n \ I n each 
subspace Jtn we select a pair of orthogonal unit vectors e„ and f„ in such a way that 
the plane [e„,/„] contains the vector |T|e„, and write 

I T\en = <xne„ + pnf„. 

Then 0 < a „ = ( | 7 > „ , e„)sX„ and for all -n. 
Finally, let JS? denote the subspace spanned by the sequence {en}, and set 

A = \T\ {Se-.g^yf, so that T0 = T\& is given by T0=WA. Since the vectors Te„ 
are all orthogonal and less than q in norm, it is obvious that ||7"0|| is also less than 
i]. On the other hand, if P denotes the (orthogonal) projection of ¿4? onto i f , then 
PA and (1 —P)A, regarded as mappings f rom i f to Jf", both clearly satisfy the cri-
terion of Lemma 2. 2. But then, of course, A = PA + ( 1 — P)A and T0~ WA are 
also affiliated with 3 . • 
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The hypotheses of Theorem 2. 1 are formulated as they are in order to facilitate 
the proof of the theorem, not with a view to applications. We pause to list some 
alternate versions of the condition imposed on T. 

L e m m a 2. 3. The following conditions are equivalent for any operator 
T: X - X . 2 ) 

i) T is bounded below on the orthocomplement of some finite dimensional 
subspace. 

ii) The null space of T is finite dimensional and the range of T is dosed. 
iii) There exists an operator S: C/f — such that ST is a projection of finite 

co-rank. 
iv) T is semi-Fredho/m with index less than + 
v) There exists no orthonormal sequence {e„}^=l such that | | 7 e J —0. 

In the special case = the conclusion of the main theorem can also be 
reformulated in a useful manner. The following is an immediate consequence of 
Theorem 2. 1, f rom which, in turn, the latter may easily be deduced. 

C o r o l l a r y 2. 4. Let T be an operator in i£(?/C) and suppose that the range 
of T is not dosed, or that the null space of T is infinite dimensional. Let 3 be any 
ideal other than the ideal Jy, and lét rj be a positive number. Then there exists a de-
composition ./i = i£ i£L of № into infinite dimensional subspaces with respect to 
which the matrix representation of T has the form 

where K and L are both affiliated with 3 and have norm less than IJ. 

P r o o f . From the proof of Theorem 2. 1 it is clear that both the subspace i £ 
constructed there and its orthocomplement are infinite dimensional. Everything 
else is obvious. • 

3. Subspaces that are nearly invariant. I f 3 is any ideal in i f ( ^ f ) , then the quotient 
algebra i£{M')IZs is clearly a *-algebra. Moreover, for the norm-closed ideal C 
of all compact operators the quotient algebra is even a C*-algebra with respect to 
the quotient norm. As is customary, we shall refer to this algebra as the Calkin 
algebra over . If T is an operator in ), we denote by T the residue class 
of T in the Calkin algebra. 

2 ) This lemma is but a part of a more encompassing theorem due to J. P. WILLIAMS [14, Theo-
rem (1. 1)], which generalizes some results of W O L F [15]. The authors wish to take this opportunity 
to express this gratitude to WILLIAMS for a number of stimulating and enlightening conversations 
on this point as well as on other related subjects. 
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T h e o r e m 3. 1. Let T be an operator i f (J^), and let 3 be any ideal other than 
g. Then there exists a scalar X and a decomposition of into infinite dimensional 
subspaces i f and J?1 such that the corresponding matrix representation of T has 
the form 

[X + K 
0) I L *J 

where K and L are both affiliated with 3 . Moreover, the decomposition can be so 
arranged that the norms of K and L are less than any prescribed positive i]. 

P r o o f . The residue class T of T in the Calkin algebra over ffl has non-empty 
spectrum a by the Gelfand—Mazur Theorem, and in a there are points k such that 
f — X has no left inverse. (These are the points of the left essential spectrum in the 
terminology of [14]. For example, any complex number in the topological boundary 
of o is such a X.) But then T — X fails to satisfy the criterion of Lemma 2. 3, and the 
theorem follows. • 

As the proof of Theorem 3. 1 shows, the choice of X is quite independent of 
3 and of r\. It may be noted that X can be taken to be any scalar in the boundary 
of the spectrum of T itself, other than an isolated eigenvalue of finite multiplicity, 
since such points automatically survive in the spectrum of f ; see, for instance, 
[10, Theorem 2]. It may also be noted that Theorem 3. I, as well as Corollaries 
3. 2, 3. 5, and 3. 6, are definitely false for 3 = g . Finally, if i f and i f x are both 
identified with the same space j<f (as they may be whenever convenience so dictates), 
then the entries in (1) will all be in i f ( y f ) , and K and L will be actual members of 
the ideal 3 on X . 

Theorem 3. 1 may be paraphrased by saying that the residue class of T modulo 
3 has the form 

(o *)• 

In this formulation, however, the matrix entries are to be interpreted merely as 
the components in the Pierce decomposition of the residue class of T relative to a 
non-zero, Hermitian idempotent; residue classes modulo 3 cannot, in general, be 
realized spatially as operators. 

C o r o l l a r y 3. 2. For any operator T in i f and for any ideal 3 in i f p f ) 
other than 5% there exists an infinite dimensional subspace ££ with infinite dimensional 
orthocomplement i f - 1 such that i f is invariant under T modulo 3 , i.e., such that 
(l-P)TP^^s, where P denotes the projection of J f onto i f . 

Note, in particular, that Corollary 3. 2 solves in the affirmative the invariant 
subspace problem in the Calkin algebra. (For another representation of i f ( ^ f ) 
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having the same property the reader may consult [1].) The following result exploits 
the metrical aspect of Theorem 3. 1. 

C o r o l l a r y 3. 3. For any operator T in i f ( X ) and any positive number »/ there 
exists an operator R such that \\T— /?|| < >] and such that R possesses an infinite 
dimensional invariant subspace i f having infinite dimensional orthocomplement. Like-
wise, for any positive integer p, there exists an operator Rp that is within r\ of T in 
norm and possesses a p-dimensiona! invariant subspace. 

P r o o f . By Theorem 3. 1 there exists an infinite dimensional subspace i f with 
infinite dimensional orthocomplement such that the corresponding matrix represen-
tation has the form (1) with the property that ||£|| </ ; . To obtain a suitable operator 
R we have but to define 

In order to construct Rp we choose bases {e„} and { f n } in i f and i f 1 , respectively. 
It is then a simple matter, since K and L are compact, to find p basis vectors en 

such that, if S? denotes the subspace they span, then ||(T— < rj. Then the 
matrix of Rp may be obtained by replacing all the off-diagonal entries in the corres-
pondings columns by zero's. • 

In the special case of a seminormal operator the preceding results can be improved 
in a natural but significant manner. First, a lemma. 

L e m m a 3 .4 . Let S and T be two operators from into , and suppose 
that S is metrically dominated by T, i.e., that || Sx\\ S||lAi| for every x in 2/C. Then 
S is affiliated with every ideal with which T is. 

P r o o f . It is clear that l^l is metrically dominated by \T\. The lemma follows 
via a straightforward application of the minimax principle, or alternatively, via 
[8, Theorem 1]. • 

T h e o r e m 3. 5. Let T be a seminormal operator in i f {№), and let 3 be any 
ideal other than Then there exists a scalar X and a decomposition of Jf into infinite 
dimensional subspaces i f and i f 1 such that the corresponding matrix representation 
of T has the form 

R—T-

(2) 
X+K M 

L * 

where K, L, and M all are affiliated with 3 . Moreover, the decomposition can be 
so arranged that the norms of K, L, and M are all less than any prescribed positive r\. 
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P r o o f . We may suppose that T is hyponormal. Let J f be decomposed as 
in Theorem 3. 1, in such a way that, in the matrix representation (I), the operator 

(f S) 
has norm less than tj. Since K and L are affiliated with 3 , it follows, as we have 
seen, that (T-X)|if: i f — J f is affiliated with 3 and has norm less than t/. Since 
T — X is hyponormal along with T, this implies in turn, by Lemma 3. 4, that (T—X)*\£f 
is also affiliated with 3 and has norm less than tj. Since the matrix of (T—X)* is 

(K* L*) 
\M* * ) 

it follows, finally, that M and M* are affiliated with 3 and have norm less than tj. • 
Here again, as was the case in Theorem 3. 1, the result may be interpreted 

matricially if we are careful not to attribute undue spatial significance to the matrix 
entries. It says that if 3 = ^ 5 , and if T is seminormal, then the residue class of T 
modulo 3 has the form 

<3> (i S ) . 
(In this connection see also [14, Theorem (4. 2)].) 

C o r o l l a r y 3. 6. If T is a seminormal operator in i f ( j ^ ) , and if 3 is any ideal 
in i f O f ) other than g , then there exists an infinite dimensional subspace i f , with 
infinite dimensional orthocomplement, such that i f is reducing for T modulo 3 , i.e., 
such that TP — PT where P denotes the projection of 2/C onto i f . 

C o r o l l a r y 3. 7. For any seminormal operator T in i f ( : / f ) and any positive 
number tj there exists an operator R such that |j T — R\\ < t] and such that R possesses 
an infinite dimensional reducing subspace with infinite dimensional orthocomplement. 
Likewise, for any positive integer p, there exists an operator Rp that is within r\ of T 
in norm and possesses a p-dimensional reducing subspace. 

The proofs of Corollaries 3. 6 and 3. 7 are straightforward analogs of those 
of Corollaries 3. 2 and 3. 3, and will be omitted. The finite dimensional part of 
Corollary 3. 7 is essentially due to S T A M P F U [12] , who states the result in the case 
p = ]. We owe to the same paper the observation that Corollary 3. 7 remains valid 
if T merely differs f rom a seminormal operator by a compact operator. (The same 
may also be said, of course, of Corollary 3. 3.) 

Theorem 3. 5 yields at least one other interesting result. Indeed, a glance at (3) 
reveals the validity of the following assertion. 
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C o r o l l a r y 3. 8. If T is a seminormal operator in i f ( X ) , and if 3 is any ideal 
other than Jy. then there exists on infinite dimensional subspace i f such that, for every 
X in i f ( j * f ) , the commutator C = TX — XT has the property that its compression 
PC\Se to i f belongs.to 3 . 

In particular, this shows that 0 belongs to the (essential) numerical range of 
C (see [ 1 3 ] ) , thus recapturing a result of C. R . P U T N A M [11] . 

4. Operators congruent to scalars. In this section we give several criteria for 
an operator in i f ( ¿ f ) to be congruent to a complex number modulo one or another 
of the ideals in i f ( X ) . 

T h e o r e m 4. 1. Let T be an operator in i f ( X ) and let 3 be an ideal. Then a 
necessary and sufficient condition for T to be congruent to a scalar modulo 3 is that, 
for any two orthogonal subspaces Jt and Jf in 2/C, 

(C) PjrTP n £ 3 , where P u and Pjr denote the (orthogonal) projections of onto 
Jt and , respectively. 

P r o o f . The necessity of the condition is evident. To prove sufficiency, con-
sider first the case 3 ^ 5 - According to Theorem 3. 1, there exist subspaces i f and 
if-1-, both infinite dimensional, with respect to which T has the form 

r / ?) 
with K and L affiliated with 3 . Moreover, X is also affiliated with 3 because of (C). 
Hence, T is congruent modulo 3 to the matrix 

Now let V be an isometry of i f 1 onto i f , and use the map 1 © V to identify X 
with Under this unitary equivalence, T' is carried onto the operator 

?J 
where Y0 = VYV*. Clearly T" continues to satisfy (C), so that if Jt and JV denote, 
respectively, the subspaces { ( x , x ) : x £ i f } and {(x, — x): x £ i f } , then P^T"PM must 
belong to 3 . But for any vector (x, j ) in i f © i f we have Pr(x,y) = %(x—y,y—x), 
so that 

PjrT'Xx, x) = i ((;. - y 0)x, ( r 0 - A)x). 

It follows at once that 7 0 is congruent to A modulo 3 , and hence that T" and T' 
are too. 
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It remains to consider the case 3 = 5- If T satisfies (C) with 3 = then, by 
what has already been shown, T is congruent to some k modulo every ideal 3 ^ g 
(clearly the same k in each case), so that T—• k belongs to the intersection of all 
the ideals 3 ^ g . Since this intersection is known to be equal to $ (see [4]), the theo-
rem follows. • 

A second criterion is given by the following corollary. 

C o r o l l a r y 4. 2. A necessary and sufficient condition for an operator T in 
3? ( f f ) to be congruent to some scalar modulo a given ideal 3 is that for every infinite 
dimensional subspace if with infinite dimensional complement, the compression P^.TISC 
of T to g should be congruent modulo 3 to some scalar. 

Proo i f . Once again, it is clear that the condition is necessary. The proof will 
be completed by showing that an operator T satisfying the hypothesis of the corol-
lary also satisfies condition (C) of Theorem 4. 1. Accordingly, let Ji and Jf be 
orthogonal subspaces of 2?. Clearly we may assume both Ji and Jf to be infinite 
dimensional, since otherwise P/TP a is automatically in Write Ji — J i ^ J l ^ , 
where Jt l and Ji 2 are both infinite dimensional, and consider the compression of 
T to The hypothesis assures us that this compression is congruent to 
some scalar modulo 3 , whence, by Theorem 4. 1, PxTPMi must belong to 3 . Si-
milarly, PjSrTPJl2 belongs to 3 , f rom which it follows immediately that PXTPM 

does so too. • 

Our third and final criterion is one that 'has already essentially been noted by 
C A L K I N (see [5 , Theorem 2 . 9 ] ) but our proof is completely different f rom his. 

T h e o r e m 4. 3. A necessary and sufficient condition for an operator T in {?/£) 
to be congruent to a scalar modulo an ideal 3 is that TX — XT should belong to 3 
for every X in if(«?f). 

P r o o f . As before, the condition is clearly necessary, and we verify its suffi-
ciency by showing that an operator that satisfies it also satisfies condition (C). 
Let Ji and Jf be orthogonal subspaces of ^C (infinite dimensional as before), and 
let W be any partial isometry with initial space and final space Ji. Then 
(.'TW- WT)PJt belongs to 3 along with TW- WT, and since W\Ji=0, this implies 
that WTPM belongs to 3 . But then so does P_rWTPM = WPYTPU and therefore, 
finally, W* WPrTPM = PXTPU. • 

It may be noted that in the special case 3 = (£ all three of these results yield 
criteria for an operator no t , to be a commutator [3]. This observation, Theorem 
4. 3, and also the final result of § 3 all suggest that the ideas of the present note have 
interesting ramifications into commutator theory. In the next and final section we 
explore these connections in some depth. 
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5. Applications to commutator theory. As has just been noted, it is shown in 
[3] that an operator T in i f ( X ) is a commutator if and only if it is not congruent 
to a non-zero scalar modulo the ideal (L On the other hand, in the earlier paper [2] 
it was shown, using considerably more elementary techniques, that every operator 
on ye © ye of the form 

where Kx and K2 are compact operators, is a commutator. Considering this fact, 
together with Theorem 3. 1, and taking adjoints if necessary, we immediately obtain 
the following result. 

T h e o r e m 5. 1. Every non-Fredholm operator in i f (ye) is a commutator. 

This theorem prompts the following question: how far is it possible to proceed 
with the solution of the commutator problem, using only the techniques of [2] 
and the results of § 2? in other words, h o w far can one proceed without use of 
the sophisticated results of [3]; in particular, without introduction of the ^-function 
and the standard form for operators of class (F)? 

It is almost certain that one should not expect much success with the Fredholm 
operators of index zero, since the non-commutators in i f ( X ) are Fredholm of 
index zero, while, at the same time, there are many Fredholm operators of index 
zero that are commutators, e.g., the invertible operators of class (F). Thus it is 
reasonable to limit attention to Fredholm operators of index different from zero. 
Operating under the above named restrictions, we are able to prove the following 
suggestive result. 

T h e o r e m 5. 2. Every partial isometry in i f (ye) that is a Fredholm operator 
of index different from zero is a commutator. 

P r o o f . Note first that consideration of adjoints shows that it suffices to deal 
with the case in which the given partial isometry W has negative index. In this case 
there exists an operator F of finite rank (possibly zero) such that V + F is an iso-
metry, and such that the ranges of F and W are orthogonal. The isometry W+ F 
can be written uniquely as IV+F = U@S, where U is a unitary operator on a 
^-dimensional s u b s p a c e X o f ye (0 S k S tf 0), while S is a unilateral shift of multi-
plicity m ( 0 < m < x 0 ) acting on the space J { = y e Q X . Suppose, temporarily, 
that m = I, and let {en}^L1 be an orthonormal basis in J l such that S e „ = e n + 1 for 
all n. Reordering this basis as 

{ex, e3, e2„ -1, ...', e2, eA, ..., e2„, ...} 
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we obtain a unitary isomorphism of Jl onto a Hilbert space Jf Q.Jf, which carries S 
onto an operator matrix of the form 

where S0 is unitarily equivalent with 5. A similar device shows that, no matter 
what the multiplicity m may be, S is always unitarily equivalent with (4), where 
.S0 is unitarily equivalent with S itself. It follows easily that W+F = U®S is 
unitarily equivalent with an operator matrix 

acting on a Hilbert space where U l is the direct sum of a unitary operator 
and the zero operator on an infinite dimensional space, while Sl is an isometry 
and B\ is a co-isometry. (If A: = 0, then ( / , = 0, if k is finite, then has finite rank, 
and, if /c = K0 , then Sl has infinite defect.) Now the unitary isomorphism tp of 
J f onto gP®3f> that carries W+F = U@S onto (5) also carries F onto some 
matrix, — say the matrix 

Clearly each Ft ( / = 1 , 2 , 3 , 4 ) is of finite rank, and clearly also the given partial 
isometry W is unitarily equivalent via cp with an operator W0 having the matrix 

Since the range of W is orthogonal in J f to the range of F, it follows easily that 
the null space in SP of S1 — Fl is contained in the null space of F4. Since 5 , —Fl 

is a semi-Fredholm operator, this implies that there exists an operator Y of finite 
rank in ££(SP} such that Y(Sl—F2) = F4 (see [8, Theorem 1]). We now apply a 
similarity transformation to (6) as follows: 

(4) 

(Z 
{ * o j ' 

where Z = XJv — Fi — (S \ — F2)Y. Since Ul has infinite dimensional null space 
(no matter what k is) and since Fx + ( 5 L — F2)Y has finite rank, it is easily seen that 
Z has an infinite dimensional null space too. Hence Z is a commutator (this fol-
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lows, f o r ins tance , f r o m T h e o r e m 5. 1), say Z = [А, В] . C o n s i d e r n o w the t w o o p e r a t o r 

ma t r i ce s 

m ( i ? ) - ( 5 o r ) . 

where R a n d T r e m a i n t o be d e t e r m i n e d . Ca l cu l a t i on s h o w s t h a t t he c o m m u t a t o r 

of the o p e r a t o r s in (8) is t he o p e r a t o r m a t r i x 

(g\ ( z 0 4 - i m 

Since A m a y be rep laced by a n y t r ans l a t e A + X w i t h o u t c h a n g i n g a n y of these cal-
cu la t ions , we m a y ce r ta in ly a r r a n g e f o r A — 1 to be inver t ib le , w h e r e u p o n it b e c o m e s 
a t r ivial i ty t o solve f o r R a n d T in (9) so as t o m a k e (9) e q u a l t o (7). T h u s fV0 is 
s imi lar t o a c o m m u t a t o r , a n d the t h e o r e m is p r o v e d . • 
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