
Remarks on endomorphism rings of torsion-free abelian groups; 

By L. C. A. van LEEUWEN in Delft (Holland) 

1. The commutativity of the endomorphism ring 

In this paper we study endomorphism rings of torsion-free abelian groups. 
In [2], Problem 46(a) F U C H S asks to determine all abelian groups with commutative 
endomorphism ring. Later F U C H S has shown the following [3]. Call a family of 
groups Gz(oi.£l) a rigid system if H o m ( G a , C ^ ) = 0 or a subgroup of the rationals 
according as a ^ p or To every cardinal m, less than the first inaccessible 
aleph, there exists a rigid system consisting of 2"' torsion-free groups of cardinal-
ity m. . 

The groups in a rigid system are obviously always indecomposable and they 
have commutative endomorphism rings. So the question arises: if the endomor-
phism ring of a torsion-free abelian group G is commutative, is G then indecompos-
able? It is easy to construct a counter-example. Let px, p2 be different primes. Gp 

is the group of the rationals whose denominators are powers of p i i GPi is similar 
with respect to p2 • Then {CPi , CP2} is a rigid system and E(G)si E(Gp ) +E(GPi) 
(ring-direct sum), since Gp_ is a fully invariant subgroup of G — GPi+Gf (direct 
sum) ( / = 1 , 2 ) . Hence E{G) is commutative, but G = GPi + GP:i is decomposable. 

Conversely, assume that G is an indecomposable group. Is E(G) then a com-
mutative ring? For well-known indecomposable groups, such as the group Z of 
integers, the group Q of rationals, the group Z(p) of />-adic integers, any pure sub-
group G of Z(p), this is true. However, one can construct a counter-example as 
follows: 

Let R be the ring of integer quaternions i.e. elements of the form a0+ali + 
+ a2j + aik with a^Z (/ = 0 , 1 , 2 , 3 ) and i2 =j2 = k2 = — 1, ij = k= —ji, ik = 
= —j = —ki, jk = i = — kj with obvious addition and multiplication. R is a reduced, 
torsion-free ring of rank 4 . By a theorem of C O R N E R [1] every reduced torsion-free 
ring A of finite rank n is isomorphic to the endomorphism ring E{G) of some 
reduced, torsion-free group G of rank In. Hence R is isomorphic to the endo-
morphism ring E(G) of some reduced, torsion-free group G of rank 8. 
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Since R has no zero-divisors, the same is true for E(G). Hence 0 and 1 are the 
only idempotents in £(G) . But this implies that G is indecomposable, for if G — Gl + G2 

for subgroups GI,G2, then the projections n¡:G~*G¡, ¿ = 1,2, are orthogonal 
idempotents of E(G) whose sum nl+n2 — 1. So we get either 7TJ — 1, 712 —- 0 OF 
Tij== 0, Ti2 — 1 which means either G2= 0 or G ^ O . Hence G is indecomposable, 
but E(G)^iR is not commutative. Thus we have to impose stronger conditions 
on the group G in order that its ring of endomorphisms be commutative. We recall 
f r om [4]: 

D e f i n i t i o n 1. (cf. [4], definition 2. 1) For groups G and H, we say that 

(i) G is quasi-contained in H {GQ.H) if nG^H for some non-zero integer n; 
(ii) G is quasi-equal to H (G=H) if GQH and HQG; 
(iii) G is quasi-decomposable if there exist non-zero independent groups A and B 

such that G = A+B; 
(iv) G is strongly indecomposable if G is not quasi-decomposable. 

Now suppose that G is a torsion-free group of rank 2. Then G is strongly in-
decomposable or G — Gi + Cz, Gy=G2, or G = Gt+G2, G¡ of incomparable 
types, or G = S + B, type B < type S. 

Let E(G) be the ring of endomorphisms of G. Then E(G) is a torsion-free ring 
and QE(G) is the minimal g-a lgebra containing E{G). QE(G) can be characterized 
as the set of linear t ransformation <£ of QG (minimal g-a lgebra containing G) 
such that n$(G)QG for some H ? 0 in Z . 

The algebra QE(G) is the ring of quasi-endomorphisms of G and will be denoted 
by E(G). Now if G is strongly indecomposable then E(G) is a quadrat ic number 

field, Q, or the ring of 2 X 2 triangular matrices | a, b £ g j with equal diagonal 

elements. In all cases E(G) is commutative, hence E(G), which is a subring of E(G), 
is commutative. Hence: 

If G is a strongly indecomposable group of rank 2, then E(G) is commutative. 

Although the condition of strong indecomposability of G is sufficient for the 
commutativity of E(G) it is not necessary, as may be seen f r o m G = G1 + G2, G¡ 
of incomparable types (cf. first counter-example). We can extend this result to 
torsion-free groups of prime rank, in case G is irreducible. 

D e f i n i t i o n 2. A group G is irreducible if it has no proper non-trivial pure 
fully invariant subgroups (cf. [4], definition 5. 1). 

Now let G be a strongly indecomposable group of prime rank. If G is irreducible, 
then E(G) is commutative. By Corollary 5. 6 [4], E(G) = T is a division ring and by 
Theorem 5. 5, [/":£?] = rank G=p ( p a prime). 
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Now let F be the center of r, then [F:Q] = [r:F][F:Q]=p; but [r:F]=n2, 
so n2\p which implies n = 1, hence F = F or E(C) = r is commutative. Then E(G), 
as a subring of E(G), is commutative. For irreducible groups G of prime rank, 
REID [4] has shown that G is either strongly indecomposable or equal to a direct 
sum of isomorphic rank one groups. Hence for these groups indecomposability 
implies strongly indecomposability. Hence: 

T h e o r e m 1. Let G be an irreducible, indecomposable torsion-free group of prime 
rank. Then E(G) is commutative. 

One might ask whether strong indecomposability is always sufficient for com-
mutativity of the endomorphism ring. The answer is no and the counter-example 
is again the ring R of integer quaternions. As we have seen, RsiE(G), where G is 
a reduced torsion-free group of rank 8. Now the ring E(G) of quasi-endomorphisms 
of G is the quaternion field F with basis 1, i, j, k over Q. 

Since F is a field it is a local ring, that is, a ring R with identity such that R/J(R) 
is a division ring, where J(R) is the Jacobson radical of R. 

By Corollary 4. 3 [4], a torsion-free group G of finite rank is strongly inde-
composable if and only if E(<7) is a local ring. Since F = E(G) is such a ring, it fol-
lows that G is strongly indecomposable. However, E(G)^R is not commutative. 

For the class of irreducible groups of prime rank we have seen that they are 
either strongly indecomposable or equal to a direct sum of isomorphic rank one 
groups.-Now assume that G is such a group and E(G) is commutative. Then the 
number of direct summands in a direct sum representation of G cannot be greater 
than one. i 

Hence G is strongly indecomposable or G is a rank one group. A rank one 
group is clearly strongly indecomposable. Hence, if we use Theorem 1, we get: 

T h e o r e m 2. Let G be an irreducible group of prime rank. Then E(G) is com-
mutative if and only if G is strongly indecomposable. 

If we omit the condition that the rank of G should be prime, we have the fol-
lowing result: 

T h e o r e m 3. Let G be an irreducible group of finite rank k, such that k is square 
free. Then E(G) is commutative if and only if G is strongly indecomposable. 

P r o o f . Assume E(G) is commutative, then E(G) is commutative. Since G is 
irreducible, E ( G ) = rm where T is a division algebra, m is the number of strongly 
indecomposable summands in a quasi-decomposition of G and m[r : g ] = r ank (? 
[4]. Since r ,„ is commutative, it follows that m — \, E(G) = T and G is strongly in-
decomposable. Conversely, assume that G is strongly indecomposable. Since G is 
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irreducible, G has a quasi-decomposition G = 2 G, with each G, strongly in-
;= 1 

decomposable [4]. It follows that m = 1 and E ( G ) = T is a division ring. Moreover 
[ r : g ] = rank G = k. Since the dimension of f over its center must be a square divid-
ing k, this dimension is 1 and E(G) = T is commutative. Hence E(G) is commutative. 
Note that Theorem 2 is a special case of Theorem 3. 

From [4] we use the 

D e f i n i t i o n 3. Let G be a torsion-free group of finite rank. Let S be the pure 
subgroup of G generated by the collection of non-zero minimal pure fully invariant 
subgroups of G. We call S the pseudo-socle of G. 

R E I D [4] has shown that G = S if and only if E(G) is semi-simple. So we inve-
stigate the commutativity of E{G) under the condition that the radical of E(G) is 
zero. First we remark that the quasidecomposition of a torsion-free group of finite 
rank is essentially unique i.e. if G has finite rank then any quasi-decomposit ion of 
G has only finitely many summands and if 

i 2 ^ = 0 = 2 ^ , 
i i= i «?... j=i 

with the Hi and Kj strongly indecomposable ( / = 1 , ...,s; j— 1, . . . , / ) , then s = t 
and for some permutation n of {1, 2, . . . , t } we have K j is quasi-isomorphic to 
0 " = 1 , . . . , f) [4]. 

j 
T h e o r e m 4. Let G be a torsion-free group offinite rank with E(G) semi-simple, 

but not simple. Then E(G) is commutative if and only if in any quasi-decomposition 
of G the summands have commutative endomorphism rings. 

P r o o f . Assume E(G) is commutative, then E(G) is commutative. Since E(G) 
has D.C.C. on right ideals and is semi-simple, we get E(G) ^ A t - { — + A m (direct 
sum), where A,• is a field ( / = 1, . . . , m). Identify E(G) with this direct s u m and write 

m 

E(G) = 2ftE(G), where Ai—ftE{G) ( / = 1 , . . . , m) and f induces the projection 
i= 1 

o f E ( G ) onto A¡. To this decomposition o f E ( G ) there corresponds a quasi-decomposi-
m 

tion of G =i ZGfi with E(G/j) = / ; E ( G ) f =A,, so that E ( G f ) is a field. Hence 
i = l 

Gf is strongly indecomposable ( / = 1, . . . , m) ([4], Corollary 4. 3). Hence any quasi-
decomposition of G has m strongly indecomposable summands and each of these 
summands has a commutative quasi-endomorphism ring and therefore a commuta-
tive endomorphism ring. 

Conversely, assume that the condition for G with respect to quasi-decompos-
ability is satisfied. Since E(G) has D.C.C. on right ideals and is semi-simple, it 
may be identified with a finite direct sum of matrix rings over division rings: E(G) = 
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= ¿ljH M „ (Wedderburn). This implies there is a set {e1; . . . , e„} of non-zero 
mutually orthogonal idempotents of E(G) whose sum is the identity in E(G):1 = 

n 
e1+e2-\— +e„. Then there is a quasi-decomposition G = Ge{ of G, which 

¡=i 
corresponds to the direct decomposition of E(G) ([4], Theorem 3. 1). Now E(Ge,) s 
= e ;E(G)e; = zl;e; = zl;, since is the unit element for Ah so that At must be com-

mutative. Hence E(G) is commutative and therefore E(G) is commutative. This 
completes the proof of the theorem. 

From the semi-simplicity of E(G) one easily derives that the components Get 

in a quasi-decomposition of G have a semi-simple quasi-endomorphism ring E(Ge ;), 
since the radical of eiE(G)ei ( s iE(Ge ; ) ) is e-^e,, where N is the radical of E(G). 
Hence Theorem 4 reduces the case of groups G of finite rank with E(G) semi-simple 
but not simple to the case of strongly indecomposable groups G of finite rank 
with E(G) semisimple but not simple. 

Next assume that G is a strongly indecomposable group with semi-simple 
E(G). Then E(G) is a division algebra ([4], Corollary 4. 3). Now we have the 
following sufficient condition in order that E(G) be commutative: G has a com-
mutative E(G) if G has a non-zero minimal pure fully invariant subgroup P, whose 
rank k is square-free. 

(Note that the case G = P or G is irreducible is contained in Theorem 3.) 
Indeed, if the condition is satisfied, then rank P = [E(G):Q] =k, k square-free. 

Since the dimension of E(G) over its center must be a square dividing k, E(G) is 
commutative and an algebraic number field. Hence E(G) is commutative. 

The condition is satisfied if the rank of G is 2 or 3. If G is irreducible, G—P 
and the rank of G is square-free. If G is not irreducible, there exists a minimal non-
zero pure fully invariant subgroup P in G, distinct f rom G, and the rank of P is 1 
or 2. Hence the condition is satisfied. 

2. The Jacobson radical 

All the groups G considered here are torsion-free groups of finite rank. So 
E(G) always satisfies the D.C.C. for right ideals. It is well known that under this 
condition G is strongly indecomposable if and only if E ( G ) | J V is a division ring, 
where N is the Jacobson radical of E(G) (Corollary 4. 3, [4]), i.e. E(G) is a local ring. 

We prove now 

T h e o r e m 5. Let G be a torsion-free group such that E(G) satisfies the D.C.C. 
on right ideals. Then the Jacobson radical of E(G)( = J(E(G})) is zero implies that 
the Jacobson radical of E ( G ) ( = / ( E ( G ) ) ) is zero i.e. E ( G ) is semi-simple. 

9 A 
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P r o o f . Since E(G) satisfies D.C.C. for right ideals, y(E(G)) coincides with 
the union of all left nilpotent ideals in E(G) and ./(E(G)) is nil. Hence ./(E(G)) is 
a pure ideal in E(G), since the nil radical of a torsion-free ring is a pure ideal ([2], 
p. 271). It follows that nil radical of E(G) = E{G)C\ nil radical of E(G), according 
to the correspondence between pure ideals in E(G) and E(G). So we get nil radical 
of E(G) = £(G) n y ( E ( G ) ) and then £ ( G ) n y ( E ( G ) ) g J{E(G)). 

Now suppose J(E(G))= 0 and let <p£J(E(Gj). Then <p£E(C), so Bn^O^Z 
such that nq>£E(G). Also nq> e J (E(G)) , hence n<p £J(E(G)) H E(G) £ J (E(G)) = 0, 
so nq> = 0, which implies (p= 0, since E(G) is torsion-free.. Hence y ( E ( G ) ) = 0 . This 
completes the proof of Theorem 5. 

Since E(G) is semi-simple if and only if G = S, it follows immediately: 

C o r o l l a r y . Let G be a torsion-free group of finite rank. If the Jacobson radical 
j(E(Gj) of the endomorphism ring E(G) is zero, then G = S. 

One may ask whether J(E(G)) = 0 is a necessary condition in order that 
y(E(G)) = 0. This is not the case as may be seen from the following example. Let 
G = Z(p) be the group of p-adic integers. Then E(G) = Z(p) and E(G) = .£(/?), the 
p-adic number field. Hence / ( E ( G ) ) = 0 , but J(E(G))=pZ(p), so J(E{G))^0. Of 
course, if E(G) satisfies D.C.C. on right ideals, then nil radical of E(G)=J(E(G)) = 
= E(G)r\J(E(G)). Hence J(E(G)) = 0 if and only if y(E(G)) = 0 in this case. 
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