On some inequalities concerning series of positive terms

By LÁSZLÓ LEINDLER in Szeged

Recently A. Prékopa [1] has proved the integral inequality

$$
\begin{equation*}
\int_{-\infty}^{\infty} \sup _{x+y=t} f(x) g(y) d t \geqq 2\left(\int_{-\infty}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{-\infty}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where $f(x)$ and $g(y)$ are arbitrary non-negative measurable functions.
It seems worth while to observe that the formal analogue

$$
\sum_{n=-\infty}^{\infty} \sup _{k+l=n} a_{k} b_{l} \geqq 2\left(\sum_{k=-\infty}^{\infty} a_{n}^{2}\right)^{1 / 2}\left(\sum_{l=-\infty}^{\infty} b_{l}^{2}\right)^{1 / 2}
$$

of the inequality (1) is in general not true. (See e. g. the sequences $a_{0}=b_{0}=1$ and $a_{n}=b_{n}=0$ if $n \neq 0$.) But we will show that without the factor 2 the inequality does hold, i. e. we have

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \sup _{k+l=n} a_{k} b_{l} \geqq\left(\sum_{k=-\infty}^{\infty} a_{k}^{2}\right)^{1 / 2}\left(\sum_{t=-\infty}^{\infty} b_{l}^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

for any non-negative sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$.
First. we give a very short and simple proof of (2). Next we generalize (2) as follows:

The orem. Suppose that $1 \leqq r, s \leqq \infty$ and $\frac{1}{r}+\frac{1}{s}=1+\frac{1}{\gamma}$, where $1 \leqq \gamma \leqq \infty$. Then for non-negative a_{n}, b_{n} we have

$$
\begin{equation*}
\left.\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} a_{k}^{\gamma} b_{n-k}^{\gamma}\right)^{1 / \gamma} \geqslant\left(\sum_{k=-\infty}^{\infty} a_{k}^{r}\right)^{1 / r}\left(\sum_{n=-\infty}^{\infty} b_{n}^{s}\right)^{1 / s}{ }^{*}\right) \tag{3}
\end{equation*}
$$

*) If $c_{k} \geqq 0$ and $\gamma=\infty$, then $\left\{\sum_{k=-\infty}^{\infty} c_{k}^{?(1 / \gamma}\right.$ means $\sup _{k} c_{k}$.

Let us formulate the special case $\gamma=\infty$ of (3) as a
Corollary. If $p, q \geqq 1$ and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \sup _{k} a_{k} b_{n-k} \geqq\left(\sum_{n=-\infty}^{\infty} a_{n}^{p}\right)^{1 / p}\left(\sum_{n=-\infty}^{\infty} b_{n}^{q}\right)^{1 / q} \tag{4}
\end{equation*}
$$

Our theorem can be generalized from two to any finite number of series with a straightforward generalization of the proof which follows.
E.g. we have

$$
\sum_{n=-\infty}^{\infty}\left[\sum_{i+j+k=n}\left(a_{i} b_{j} c_{k}\right)^{\prime}\right]^{1 / v} \geqq\left[\sum_{i=-\infty}^{\infty} a_{i}^{r}\right]^{1 / r}\left[\sum_{j=-\infty}^{\infty} b_{j}^{s}\right]^{1 / s}\left[\sum_{k=-\infty}^{\infty} c_{k}^{t}\right]^{1 / t},
$$

where a_{n}, b_{n}, c_{n} are non-negative and $1 \leqq r, s, t \leqq \infty ; \frac{1}{r}+\frac{1}{s}+\frac{1}{t}=2+\frac{1}{\gamma}(1 \leqq \gamma \leqq \infty)$.
The integral analogue of our result will be published in another paper. The method of proof to be given there is quite different from that of Prékopa and also slightly different from that one given for series in the present paper.

Proof of (2). Denote

$$
\left\|a_{n}\right\|=\left(\sum_{n=-\infty}^{\infty} a_{n}^{2}\right)^{1 / 2},\left\|b_{n}\right\|=\left(\sum_{n=-\infty}^{\infty} b_{n}^{2}\right)^{1 / 2} \quad \text { and } \quad c_{n}=\sup _{k} a_{k} b_{n-k}
$$

We may assume that $0<\Sigma c_{n}<\infty$. This assumption implies that not all a_{n} and b_{n} vanish, and $0<\left\|a_{n}\right\|<\infty$ and $0<\left\|b_{n}\right\|<\infty$, indeed, for any k and $n, c_{n} \geqq a_{k} b_{n-k}$. Taking the Cauchy product of the series Σa_{n}^{2} and Σb_{n}^{2} we obtain

$$
\left\|a_{n}\right\|^{2}\left\|b_{n}\right\|^{2}=\sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_{k}^{2} b_{n-k}^{2} \leqq \sum_{n=-\infty}^{\infty} c_{n} \sum_{k=-\infty}^{\infty} a_{k} b_{n-k} \leqq \sum_{n=-\infty}^{\infty} c_{n}\left\|a_{n}\right\|\left\|b_{n}\right\| .
$$

Hence (2) follows evidently.
Proof of (3). We may also assume that the sum on the left-hand side of (3) has finite value and that not all a_{n} and b_{n} vanish. If $a_{\mu}>0$, then we have

$$
\left[\sum_{k=-\infty}^{\infty}\left(a_{k} b_{n-k}\right)^{\gamma}\right]^{1 / \gamma} \geqq a_{\mu} b_{n-\mu} \text { for any } n
$$

and hence

$$
\sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty}\left(a_{k} b_{n-k}\right)^{\gamma}\right]^{1 / \gamma} \geqq a_{\mu} \sum_{n=-\infty}^{\infty} b_{n}
$$

Therefore $\Sigma b_{n}<\infty$. For analogous reasons, $\Sigma a_{n}<\infty$. Since $r \geqq 1$ and $s \geqq 1$ we also have

$$
\begin{equation*}
A \equiv\left[\sum_{n=-\infty}^{\infty} a_{n}^{r}\right]^{1 / r}<\infty \quad \text { and } \quad B \equiv\left[\sum_{n=-\infty}^{\infty} b_{n}^{s}\right]^{1 / s}<\infty \tag{5}
\end{equation*}
$$

If $r=\infty$ or $s=\infty$, then $\gamma=\infty$ and $s=1$ or $r=1$, respectively. In these cases (3) holds. If e.g. $r=\infty$, then by (5) there exists v such that $a_{v}=\sup a_{k}$; thus the inequality

$$
a_{v} b_{n} \leqq \sup _{k} a_{k} b_{n+v-k}
$$

holds for all n; hence we obtain that

$$
\sum_{n=-\infty}^{\infty} a_{v} b_{n} \leqq \sum_{n=-\infty}^{\infty} \sup _{k} a_{k} b_{n+v-k}
$$

and this is what was to be proved.
If both r and s are finite we set

$$
\begin{equation*}
c_{n}=a_{n} / A \quad \text { and } \quad d_{n}=b_{n} / B, \tag{6}
\end{equation*}
$$

and we have

$$
\sum_{n=-\infty}^{\infty} c_{n}^{r}=1 \quad \text { and } \sum_{n=-\infty}^{\infty} d_{n}^{s}=1 .
$$

Taking the Cauchy product of these two series we obtain

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} I_{n}=1, \quad \text { where } \quad I_{n}=\sum_{k=-\infty}^{\infty} c_{k}^{r} d_{n-k}^{s} \tag{8}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
I_{n} \leqq\left[\sum_{k=-\infty}^{\infty}\left(c_{k} d_{n-k}\right)^{\gamma}\right]^{1 / \eta} \tag{9}
\end{equation*}
$$

If $\gamma=1$, then $r=s=1$, and thus in (9) equality holds. If $1<\gamma \leqq \infty$, set $\gamma^{\prime}=\frac{\gamma}{\gamma-1}$ ($1 \leqq \gamma^{\prime}<\infty$). Then by the inequality of Hölder,

$$
I_{n}=\sum_{k=-\infty}^{\infty} c_{k} d_{n-k} c_{k}^{r-1} d_{n-k}^{s-1} \leqq J_{n}\left[\sum_{k=-\infty}^{\infty}\left(c_{k} d_{n-k}\right)^{\gamma}\right]^{1 / \gamma},
$$

where

$$
J_{n}=\left[\sum_{k=-\infty}^{\infty} c_{k}^{(r-1) \gamma^{\prime}} d_{n-k}^{(s-1) \gamma^{\prime}}\right]^{1 / \gamma^{\prime}}
$$

thus we have to prove that $J_{n} \leqq 1$. If $r=1$ then $(s-1) \gamma^{\prime}=s$, and if $s=1$ then
$(r-1) \gamma^{\prime}=r$; thus in these cases $J_{n} \leqq 1$ follows immediately from (7). If both r and s are greater than 1 , we can use (7) through the inequality

$$
x y \leqq \frac{x^{p}}{p}+\frac{y^{q}}{q} \quad(x, y \geqq 0)
$$

applied to $x=c_{k}^{(r-1) \gamma^{\prime}}, y=d_{n-k}^{(s-1) \gamma^{\prime}}, p=\frac{r}{(r-1) \gamma^{\prime}}$ and $q=\frac{s}{(s-1) \gamma^{\prime}}$ (note that $\left.\frac{1}{p}+\frac{1}{q}=1\right) ;$ then we get

$$
J_{n}^{\gamma^{\prime}} \leqq \sum_{k=-\infty}^{\infty}\left(\frac{1}{p} c_{k}^{r}+\frac{1}{q} d_{n-k}^{s}\right)=1 .
$$

Now by (5), (7), (8) and (9) we have

$$
1=\sum_{n=-\infty}^{\infty} I_{n} \leqq \sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty}\left(\frac{a_{k}}{A}\right)^{\gamma}\left(\frac{b_{n-k}}{B}\right)^{\gamma}\right]^{1 / \gamma}=\frac{1}{A \cdot B} \sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty}\left(a_{k} \dot{b}_{n-k}\right)^{\gamma}\right]^{1 / \gamma}
$$

which implies (3).
The proof is now complete.
My grateful acknowledgement is due to Professor Béla Szőkefalvi-Nagy for stimulating conversations.

Reference

[1] A. Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math., 32 (1971), 301-316.
(Received January 28, 1971)

