
On a linear transformation in the theory of probability 

By LAJOS T A K A C S in Cleveland (Ohio, U.S.A.)*) 

1. Introduction. In the theory of random fluctuations we frequently encounter 
the following problem: A sequence of mutually independent and identically dis-
tributed real random variables {£„; n= 1 , 2 , . . . } is given. We define a sequence 
of random variables {//„; n = 0, 1, 2, . . .} by the recurrence formula t]n = 
= max (0, //„'_!+ C„) (n= 1 ,2 , . . . ) , where rj0 is a nonnegative random variable 
which is independent of the sequence {c„}. The problem is to find the distribution 
function or the Laplace—Stieltjes transform of rj„ for every « = 1 , 2 , ... . We have 
several methods at our disposal for finding the generating function 

2 E{e " ""'•<} g" 
n=0 

f o r R e ( Y ) s O a n d | G | < L ; n a m e l y , a n a l y t i c a l m e t h o d s ( F . POLLACZEK [12], [13],. 

I . J . GOOD [6], J . H . B . KEMPERMAN [7]), a l g e b r a i c m e t h o d s ( G . BAXTER [2], [3] , 

J . G . WENDEL [18], [19], J . F . C . KINGMAN [8], [9], G . - C . ROTA [14]), c o m b i n a t o r i a l 

m e t h o d s ( E . S. ANDERSEN [1], F . SPITZER [16], W . FELLER [5], L . TAKACS [17]) , a n d 

t h e m e t h o d o f f a c t o r i z a t i o n ( s ee e .g . J . H . B . KEMPERMAN [7] a n d A . A . BOROVKOV [4]) . 

T h e m e t h o d o f f a c t o r i z a t i o n h a s b e e n i n t r o d u c e d b y N . WIENER a n d E . H O P F [21} 

f o r s o l v i n g i n t e g r a l e q u a t i o n s . ( S e e a l s o F . SMITHIES [15], H . WIDOM [20], a n d N . I . 

MUSKHELISHVILI [10].) It seems that all the existing methods have certain limi-
tations. The analytic method of Pollaczek is constructive and gives the solution 
in a closed form; however, certain restrictions should be imposed on the distri-
bution function of £„. Furthermore, since the solution appears as a solution of a 
singular integral equation, the uniqueness of the solution should be proved. The algeb-
raic methods are mostly descriptive, and even in the particular case when P {i/o = 0 } = l r 

the solution does not appear in a closed form. In general, combinatorial methods 
do not provide the solution in a closed form either, but fortunately, in some partic-

*) This research was supported by the National Science Founda t ion under Grant N o . G P -
24065. 
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ular cases, we can obtain explicit expressions for P { ' /„=*} ( « = 1 , 2, ...). The method 
of factorization is mostly restricted to the case of P { / / 0 = 0 } = 1 . 

In what follows we shall consider a more general problem than the one men-
tioned above, namely, the problem of finding a sequence of functions rn(s) (n = 1 ,2, ...) 
defined for Re (5 ,)=0 by a recurrence relation r„(s) — T{y ( j )r„_ l (.?)}, where y(s) and 
r 0 ( s ) are elements of a commutative Banach algebra R, T is a projection and 
T { r 0 ( s ) } = r0(s). We shall define R in such a way that on the one hand R is large 
enough to contain all the important functions arising in fluctuation theory and on the 
other hand R is small enough to allow an explicit representation of the t ransformat ion 
T , which is suitable for calculations. We shall provide a constructive method for 
finding the generating function of r n ( s ) ( n = 0 , 1 ,2 , ...), and we shall obta in the 
solution in a closed form. As a byproduct we obtain the method of factorizat ion 
and we shall show how it can be applied in the general case. 

2. A Banach algebra R. Denote by R the space of functions defined for 
Re ( s ) = 0 on the complex plane, which can be represented in the form 

where ( is a complex (or real) random variable with E { | ( | } < ° ° , and t] is a real 
r andom variable. The function s) is uniquely determined by the joint distr ibution 
of C and q. However, there are infinitely many possible distributions which yield 
the same <Z>(s). It follows f rom (1) that for Re ( j ) = 0 . 

Let us define the norm of <P(s) by 

where the infimum is taken for all C for which (1) holds (with a suitable f/)." Obvi-
ously, |<Z>Cs-)M|<i>|| fo r Re(s)=0. 

We have ||<P[|sO, and ||<P||=0 if and only if <P(s)=0. If a is a complex (or real) 
number and $ ( j ) 6 R , then a # ( j ) € R and ||a<J>|| = |ot| | |$ | | . Fur thermore, if « ^ ( j ^ R 
and <P2(S)£R, then $1(s) + $2(s)£R and H ^ + i y S H ^ J + H^II- The last state-
ment can be proved as follows: 

For any £ > 0 let $ 1 ( j ) = E { C i e - 5 " 1 } , where E{ |C t | } sS ¡ « P J + s , and let <P2(s) = 
= E { ( 2 e - s ' ' 2 } , where E{|C2 |} = | | # 2 | | + £ . Let v be a r andom variable which is 
independent of ( C i , / h ) and (£2^2)» and for which P { v = l } = P { v = 2 } = : ^ . Let 
us define C=2£v and t]=t]v . Then 

(3) E{ie-S»} = <*>!(*)+ and E{|C|} = E{ |Ci |}+ E{|C2|> -

Thus and + == H ^ H + | | $ 2 | | + 2 e . Since £ > 0 is arbitrary, 
this proves the statement. 

(1) 

(2) ii$n=infE{ia} 
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In what follows we shall not make use of the completeness of R. However, 
we can prove that R is complete, and therefore R is a- Banach space.. 

Next we observe that if ( P ^ f R and <P2(s)6R, then $ , ( i ) $ 2 ( 5 ) 6 R and 
= | | # i | | ||02-11 • To prove this let us define and <P2(s) in exactly the 

same way as above. However, let us assume now that (C^ / / , ) and (t '2 ,>h) a r e 
independent and take i = ( i ( 2 and = /7i+»h- Then 

(4) ~E{(e~s"} = ^ ( s ^ s ) and E.{|f|} = E{|c,|}E{|C2 |} < 

Thus ^ ( ^ ^ ( s ^ R and l l ^ ^ l l S (||<Pj|| +e)(||<P2|| +s). Since e > 0 is arbitrary 
this proves the statement. 

Accordingly, R is a commutative Banach algebra. 

3. A linear tansformation T. Let us define a transformation T in R by 

(5) T{0(i)} = <P+(s) = E{Ce-s" + }, 

where /7 + = max (0, if). As we shall show explicity in Theorem 2, the function <P+(s) 
is independent of the particular representation (1) of <P(s). Observe that <5+(s). 
is a regular function of s in the domain:Re and continuous for Re ( s ) £ 0 . 
Furthermore, |<P+(.s)'|^||<P|| for R e ( » l £ 0 . 

If a is a complex (or real) number and <P(s)£R, then T{a<P(s)} = aT{<P(s)}. 
If 0 j ( i ) € R and <P2(i)£R, then T {0,(s) +&2(s)} = T{<Pt(s)}+T{<P2(s)}. This 
follows immediately from the representation (3)'. Obviously, ||T|| = 1. Accordingly, 
T is a bounded linear transformation. Moreover, T2 = T, that is, T is a projection. 

We note that if <P,(s)(ER and 0 2 ( s ) e R , and T ^ C s ) } ^ « ^ ) and T {<P2(s)} = 
= 0 2 ( i ) , then T{<P1(5)<P2(5)}=0i(i)<P2(i). Furthermore, if 0 , ( i ) € R and <P2(i)£R, 
and T { $ t ( i ) } = c 1 and T{<P2(s)} = c2 , where c, and c2 are complex (or real) con-
stans, then T{0,(5)<P2(i)} = c1c2 . These statements follow immediately from the 
representation (4). . 

4. A recurrence relation. The problem mentioned in the Introduction and 
many other problems in the theory of probability and stochastic processes can be 
reduced to the problem of finding a sequence of functions {r„(s)} satisfying a recur-
rence relation of the form 

r„(s) = T{r(i)r.-,(i)} (n = 1, 2, ...), with T{r0(s)} = r0(s) and y(s)€R. 

To solve this problem we need the following auxiliary theorem. 

L e m m a . Let $ n ( s ) 6 R for n = 0, 1, 2, ... and let a„ (/;=0, 1, 2, ...) be complex 
(or real) .numbers. If 

2 i«mn<~, 
n= 0 

2 A 
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then 

(6) !P(i)= ¿«„«P„(i)6R and T{V(i)} = 2 anT{0n(s)}. 
/1=0 n=0 

P r o o f . If we refer to the facts that R is complete and T is continuous, then 
the Lemma follows immediately. However, we are not making use of the completeness 
of R and therefore a separate proof is required. 

F o r « = 0 , 1 , 2 , . . . let <P„(i) = E { O r 5 H where E{ |CJ}^2 | |<PJ . Let v. be a 
discrete r andom variable which is independent of the sequence (£„, rj„) ( « = 0 , 1 , 2 , . . . ) 
and which takes on nonnegative integral values with probabilities P { v = « } = / > „ > 0 
for « = 0 , 1 , 2 Define £=av iv / /?v and t] — t]v. Then 

E { £ e - S " } = ¿ P { v = « } ^ E { { „ e - M = 
n=0 Pn / 1 = 0 

and 

E{ |C |}= 2 ' P { v = « } M E { | i „ | } s 2 2 ' k l l W < - -

n = 0 Pn n = 0 

Accordingly, , P ( i ) = E and !f( .?)€R. Fur thermore , we have 

T {V(s)} = E{Ce- s"+} = ¿ P { v = n } ^ E{C„e- s""} = ¿ f l , T { i „ ( i ) } 
/ 1 = 0 Pn n = 0 

which is in agreement with (6). This completes the proof of the Lemma. 
In particular, it follows f rom the Lemma that if <£(.?) 6 R, then e'J0(s} £ R fo r 

any g, and [1— ¿»^(.s)] -1 g R and log [1 — £ R whenever | |<£||<1. If we 
form the power series expansions of these functions, then we can apply T term 
by term. 

T h e o r e m 1. Let us suppose 'that y(.?)£R, r 0 ( j ) G R and T { r 0 ( s ) } = r 0 ( . ? ) . 
Define r„(s) for « = 1 , 2 , ... by the recurrence relation 

(7) r „ ( i ) = T { y ( 5 ) r n _ 1 ( i ) } . 

If \Q\\\y\\<\, then 

( 8 ) 2 r„(s)g" = g - T { i o g [ i - s y ( s ) B T { r 0 ( s ) e ~ l o g [ 1 ~ + T { i o g [ i - < ? y ( s ) ] } } 
n= 0 

for Re ( s ) s 0 . 

P r o o f . Let us denote the right-hand side of (8) by U(s, g). Obviously, 
U(s, g)£R and T{C/(5, g)}=U(s, g). Now we shall show that U(s, g) satisfies 
the following equation 

(9) = f0(s). 
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Let us introduce the function 
f j ^ — elog[l-i?y(s)]-T{log[l-ey(s)]} 

for R e ( » = 0 . It is obvious that h(s)£R, l/h(s)£R, and r0(s)/h(s)£R. We can 
also see immediately that 
(10) T{A(j)} = 1 
and 

Now (10) and (11) imply that 

\r0(s) T r o ( j ) ] l = 0 

h(s) h(s) (12) TjA(s) 

that is, 
(13) T{[1 -gy(s)]U(s,g)} = r0(s) 
whence (9) follows. 

Let us expand U(s, g) in a power series as follows 

(14) U(s, Q)= 2 Un(s)Q". 
n= 0 

This series is convergent if ||y||-<l and evidently ^ „ ( ^ g R for n = 0, 1,2, ... . 
If we put (14) into (9), then we obtain that U0(s) = r0(s) and 

(15) i/„(i) = T{7(S)C/n_1(5)} 

for n = l , 2 , . . . . Accordingly, the sequence {t/„(s)} satisfies the same recurrence 
relation and the same initial condition as the sequence {/"„($)}. Thus Un(s) = rn(s) 
for 77 = 0, 1,2, ... which was to be proved. 

We note that by the Lemma we have 

for l e l l l y H i . . 
If, in particular, r 0 ( i ) s l , then (8) reduces to 

(16) ¿ r „ ( s ) e " = e-T{iog[i-«wi} = exp ¡ ¿ — T{[y(i)]"}| 
77= 0 177= 1 N. J 

where | e | | | y | | < l . 

The usefulness of formulas (8) and (16) depends on the applicability of the 
transformation T. Our next aim. is to give a method for finding T{3>(5)} for 
<£(i)6R and, in particular, for finding T{log [1 — £>y(s)]} for y ( i ) £ R and |g| ||y|| < 1. 
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5. A representation of T. If we know <P(s)£R for R e ( s ) = 0, then <t>'h(s) = 
= T{<P(j)} is uniquely determined for R e ( s ) £ 0 as a function which is regular in 
the domain Re ( s ) > 0 and continuous for Re (s) = 0. We can obtain <P+(s) explicitly 
by the following theorem. 

T h e o r e m 2. If <P(s)£R, then for R e ( s ) > 0 we have 

( 1 7 ) = T M + 

where the path of integration Le(e>0) consists of the imaginary axis from z = - / » 
to z = —iz and again from z = ie to z = i°°. 

P r o o f . Let C £
+ ( E = - 0 ) be the pa th which consists of the imaginary axis f rom 

i . 7 1 711 z = — to z = —is, the semicircle CT = <z:z = ee ^ a ^ — \ , and aeain £ I 2 2 J 
the imaginary axis f rom z = /e to z = /°°. Let C7(e>.0) be the path which consists 
of the imaginary axis from z = — to z = — is, the semicircle 

{7 1 7 1 1 

z: z =-ee", — 

and again the imaginary axis f rom z—h to z = /°°. Let C£
+ (R) ( 0 < e < R ) be a path 

taken in the negative direction and containing C+ f rom z — — iR to z = iR and the 
, I . I t 7T1 

semicircle c+ = j z : z=Re~"1, — S a g - 1 . Let C~(R) ( 0 < e < R ) be a path taken 

in the positive direction and containing C~ f r om z = —iR to z = iR and the semi-

circle c { ' . 7 1 711 

z: z=-Re~'*, 
Since <P+(z) is regular inside C+(/?) and continuous on the boundary, it follows 

by Cauchy's integral formula (see e.g. [11] p. 112) that 

C + (R) 

for 0 < e < R e (s) and | s |< / ? . Since |4>+(z)| =§||<i>|| for R e ( z ) s 0 , if we let 
the integral on the semicircle c^ tends to 0. Hence we obtain that 

(18) f ^ ^ d z = <P+(s) 2m J z(s-z) K 
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for 0 < e - = R e (s). If e—0, then in (18) the integral taken along the semicircle c£
+ 

tends to <*>+(0)/2=<i>(0)/2 and thus by (18) 

(19) Jim j dz + ~4>(0) = ^ (s) z(s — z) • 2 

for Re ( j ) > 0 . 
Next we observe that 

(20) <P(s)-$+(s) = E{Ce s [ - " ] + } - 0 ( O ) 

for R e ( s ) = 0 . This follows f rom the identity e-s"-e-s"+ = e~sn+ (es[~"1 + - 1 ) = 
= ] f w e e x t e n d the definition of <P(s)-&+(s) for Re (5)SO by (20), 
then 4>(s) — 0 + ( s ) becomes regular in the domain R e ( s ) < 0 and continuous for 
Re(s)==0. Obviously, \0(s)-$+(s) | == 2||<i>|| for Re ( i ) = 0 . By Cauchy's integral 
theorem (see e.g. [11] p. 105) it follows that 

, J < P ( z ) - < P - ( z ) d z = Q 

2ni J z(s — z) 

for Re(i)=>0. If we let R — <=o, we obtain that 

c: 

If e—0, the part of the integral taken along the semicircle of radius e tends to 
[$+(O)-0(O)]/2 = 0, and thus by (21) 

P 8 . Í B ' / í í ^ m f c . a v / t-o 2m J z(s — z) 

If we add (19) and (22), we obtain (17) which was to be proved. For Re (s)=0 
the function &+(s) can be obtained by continuity or by an integral representation 
similar to (17). 

We note that if <*>(s)=E{ie-s"} exists for some £ > 0 , that is, if E{|Ce-£ , |}<o=,, 
then 

<23> . •*<•)-ir/^4 
c ; 

for Re ( s ) > £ > 0 . For in this case (21) remains valid if C~ is replaced by C+, and 
hence (23) follows by (18). 
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6. A factorization. Finally, we show that for | e | | | y | | < l we can also obtain 
T{log [1 — ey (.?)]} by another method, namely, by the method of factorization. 

Let y O ) € R , | |y | |< l and suppose that 

for R e ( s ) = 0 , where i+(s, q) and i~(s, £>) as functions of s satisfy the following 
requirements: 

Al: r+(s, q) is regular in the domain R e ( j ) > 0 , 
A2: r+(s, g) is continuous and free f rom zeros in R e ( s ) S 0 , 
A3: logr+(s, e ) / i - 0 if Re (s)sO and 
Bt: r~(s, q) is regular in the domain R e ( i ) < 0 , 
B2: r~(s, q) is continuous and free f rom zeros in Re ( j ) = 0 , 
J53: l o g r - ( i , e)ls-~0 if R e ( s ) s O and 

Such a factorization always exists. For example, 

(25) • r+(s, £) = E T < L O G I 1 - E ) , ( S ® and r~ (s, Q) = e[oe[l
 - M M I - T { i o g [ i - e K * ) ] } 

satisfy all the requirements. Actually, the above requirements determine r+(s, o) 
and R~(s, Q) up to a factor depending only on Q. This is the content of the next 
theorem. 

T h e o r e m 3. If y ( i ) € R , and 

for Re ( j ) = 0 , where R+(s, Q) and T (s, Q) satisfy the requirements A1,A2,A3 

and By, B2, B3 respectively, then 

(27) T { i o g [ i - e y ( j ) ] } = i o g r + ( j , e ) + l o g r - ( 0 , e ) 

for R e ( s ) 3 s 0 . 

. P r o o f . We prove (27) for Re ( i ) > 0 ; the case R e ( i ) = 0 then follows by 
continuity. Let us define the pauis Le, C£

+, C~, C*(R), C~(R) in the same way 
as in the proof of Theorem 2. Then we have 

(24) = rt(.s, e)r~(s,Q) 

(26) l-eyfa) = r+(s,e)r-(s,e) 

(28) 

for 0 < £ < R e ( j ) and 

(29) 
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for Re 0 ) > 0 , Indeed, (28) and (29) follow in a similar way as (18) and (21): first 
we integrate along the paths CE

+(/J) and C~(R), respectively, and then let — 
If e - 0 in (28) and (29), then we get 

and 

(3D i i m ' i ' o g f ^ z ; g )
t / z - l i o g r - ( o , g ) = o v i-o 2ni J z(s-z) 2 

for R e ( i ) > 0 . Adding- (30) and (31) we obtain (27) for Re (.s)>0. This completes 
the proof of the theorem. 

By using (27) we can express (8) also'in the form 

<3 2 ) " 

where Re (s)^0 and ||y|| <1 . If r0(s)= 1, then (8) or (32) reduces to 

<33> 

where R e ( j ) s 0 and |g| ||y||-=l. 
The above results have numerous possible applications in the theory of prob-

ability and stochastic processes. Without going into details, we mention only the 
solution of the problem formulated in the Introduction. If we denote by y(j) the 
Laplace—Stieltjes transform of P {c„^x}, that is, y( j ) = E {e_si»} for Re (¿O^O 
and n=l, 2, ... , and by r„(s) the. Laplace—Stieltjes transform of P{i |„Sx}, that 
is, r n ( i ) = E { e _ s ' ' " } for R e ( s ) £ 0 and « = 0, 1,2, ... , then the generating function 
of the sequence {r„(s)} is given by (8) or by (32) for | i>|<l. If, in particular, 
P{>70=O}=1 , that is, r0(s)=\, then 

(34) ¿ r n ( 5 ) e " = e-TCosti-^))} = e x p f ^ - ^ T { [ y ( 5 ) ] " } ! 
n = 0 U=1 n J 

for 1 and Re (J) = 0. The first version of (34) is the general case of a formula 
of F. POLLACZEK [12] and the second Version can be reduced to a formula of 
F . SPITZER [16]. 



24 L. Takács: On a linear transformation in the theory of probability 

References 

[1] E. S. ANDERSEN, On sums of symmetrically dependent random variables, Skandinavisk Aktu-
arietidskrift, 3 6 ( 1 9 5 3 ) , 1 2 3 — 1 3 8 . 

[2] G . BAXTER, An operator identity, Pacific J. Math., 8 ( 1 9 5 8 ) , 6 4 9 — 6 6 3 . 

[3] G. BAXTER, An analytic problem whose solution follows from a simple algebraic identity, 
Pacific J. Math., 10 ( 1 9 6 0 ) , 7 3 1 — 7 4 2 . 

[4] A. A. BOROVKOV, New limit theorems in boundary problems for sums of independent terms, 
Sibirsk. Mat. ¿., 3 (1962), 645—694 (Russian). [English translation in Selected 
Translations in Mathematical Statistics and Probability, Amer. Math. Soc., 5 (1965), 
315—372.] 

[5] W. FELLER, On combinatorial methods in fluctuation theory, Probability and Statistics. The 
Harald Cramér Volume. Ed. U L F GRENANDER (Stockholm, 1959), 7 5 — 9 1 . 

[6] I. J. GOOD, Analysis of cumulative sums by multiple contour integration, Quart. J. Math. 
(Oxford), Sec. Ser., 12 (1961), 115—122. 

[7] J. H. B. KEMPERMAN, The passage problem for a stationary Markov chain (Chicago, 1961). 
[8] J. F. C. KINGMAN, Spitzer's identity and its use in probability theory, J. London Math. Soc., 

37 (1962), 309—316. " • 
[9] J. F. C. KINGMAN, On the algebra of queues, J. Appt. Probability, 3 (1966), 285—326. 

[10] N. I. MUSKHELISHVILI, Singular integral equations (Groningen, 1953). 
[11] W. F. OSGOOD, Functions of a complex variable (New York, 1948). 
[12] F. POLLACZEK, Fonctions caractéristiques de certaines répartitions définies au moyen de la 

notion d'ordre. Application à la théorie des attentes, C. R. Acad. Sei; Paris, 234 
(1952), 2334—2336. 

[13] F. POLLACZEK, Problèmes stochastiques posés par le phénomène de formation d'une queue 
d'attente à un guichet et par des phénomènes apparentés, Mémorial des sciences 
math., fasc. 136 (Paris, 1957). 

[14] G.-C. ROTA, Baxter algebras and combinatorial identities. I—II, Bult. Amer. Math. Soc., 
75(1969), 325—334. 

[15] F. SMITHIES, Singular integral equations, Proc. London Math. Soc., Sec. Ser., 46 (1940), 409— 
4 6 6 . 

[16] F . SPITZER, A combinatorial lemma and its application to probability theory, Trans. Amer. 
" Math. Soc., 82 (1956), 323—339. . 

[17] L . TAKÁCS, Combinatorial Methods in the Theory of Stochastic Processes (New York, 1967). 
[18] J . G . WENDEL, Spitzer's formula: A short proof, Proc. Amer. Math. Soc., 9 ( 1 9 5 8 ) , 9 0 5 — 9 0 8 . 

[19] J. G. WENDEL, Brief proof of a theorem of Baxter, Math. Scand., 11 (1962), 107—108. 
[20] H. WIDOM, Equations of Wiener—Hopf type, lUionis J. Math., 2 (1958), 261—270. 
[21] N . WIENER and E . H O P F , Über eine Klasse singulärer Integralgleichungen,' Sitz. Ber. Preuss. 

Akad. Wiss., Phys. Math. Klasse, Berlin, 31 (1931), 696—706. 

CASE WESTERN RESERVE UNIVERSITY 

(Received December 10, 1970) 


