On n-permutable equational classes

By E. T. SCHMIDT in Budapest

The product $\Theta \circ \Phi$ of two congruences Θ, Φ of an algebra A is defined by the following rule: $a \equiv b(\Theta \circ \Phi)$ if and only if $c \in \mathcal{A}$ exists such that $a \equiv c(\Theta)$ and $c \equiv b(\Phi)$. Two congruences Θ_{1} and Θ_{2} are n-permutable if and only if $\Theta_{1} \circ \Theta_{2} \circ$ $\circ \Theta_{1} \circ \Theta_{2} \circ \cdots=\Theta_{2} \circ \Theta_{1} \circ \Theta_{2} \circ \Theta_{1} \circ \cdots$, where on both sides there are n factors. An algebra A is n-permutable if every two congruences in A are n-permutable. We define an equational class to be n-permutable if every algebra of this class is n-permutable. It is well known, that an n-permutable equational class is $(n+1)$ permutable. In [1] G. Grätzer asks for examples of equational classés which show that n-permutability and ($n+1$)-permutability are not equivalent ${ }^{1}$). In this note we give an example with this property.

Theorem. For every natural number $n>2$ there exists an ($n+1$)-permutable equational class \mathscr{K}_{n} which is not n-permutable.

Proof. Let n be a natural number. An n-Boolean algebra

$$
\mathscr{B}=\left(B ; \vee, \wedge, f_{1}(x), \ldots, f_{n}(x), o_{0}, o_{1}, \ldots, o_{n}\right)
$$

is an algebra. with two binary operations V, Λ, n unary operations $f_{1}(x), \ldots, f_{n}(x)$ and $n+1$ nullary operations $o_{0}, o_{1}, \ldots, o_{n}$, such that the following conditions are satisfied:

1. $(B ; \vee, \wedge)$ is a distributive lattice;
2. $x \vee o_{n}=o_{n} ; x \vee o_{0}=\dot{x}$ for all $x \in B$;
3. $\left[\left(x \vee o_{i-1}\right) \wedge o_{i}\right] \vee f_{i}(x)=o_{i},\left[\left(x \vee o_{i-1}\right) \wedge o_{i}\right] \wedge f_{i}(x)=o_{i-1}$.

The class of all n-Boolean algebras is denoted by \mathscr{K}_{n}. If $o_{i-1} \leqq x \leqq o_{i}$ then $f_{i}(x)$ is the relative complement from x in $\left[o_{i-1}, o_{i}\right]$, i.e. this interval is a Boolean lattice. A 1-Boolean algebra is a Boolean algebra. A finite chain \mathscr{C}_{n} of $n+1$ elements is

[^0]an n-Boolean algebra, if we take its elements as nullary operations: $o_{0}<o_{1}<o_{2}<\cdots$ $\cdots<o_{n}\left(o_{i} \in \mathscr{C}_{n}\right)$, and $f_{i}(x)=o_{i}$ if $x<o_{i}, f_{i}(x)=o_{i-1}$ if $x \geqq o_{i}$. The congruences of \mathscr{C}_{n} are the lattice-congruences, i.e. \mathscr{C}_{n} is not n-permutable. This shows that \mathscr{K}_{n} is not n-permutable.

Let B denote an arbitary n-Boolean algebra and $x, y \in B, x>y$. Set $a_{i}=\left(o_{i} \wedge x\right) \vee y$. (Then is $a_{0}=y, a_{n}=x$.) If Θ_{1} and Θ_{2} are arbitary congruences from B, such that $x \equiv y\left(\Theta_{1} \vee \Theta_{2}\right)$, then $a_{i-1} \equiv a_{i}\left(\Theta_{1} \vee \Theta_{2}\right)(i=1,2, \ldots, n)$. The interval $\left[a_{i-1}, a_{i}\right]$ is projective to a subinterval of $\left[o_{i-1}, o_{i}\right]$, i.e. $\left[a_{i-1}, a_{i}\right]$ is a Boolean lattice. Every Boolean lattice is 2-permutable and so for every i. $i=1,2, \ldots, n)$ there exists a $t_{i} \in\left[a_{i-1}, a_{i}\right]$ such that

$$
a_{i-1} \equiv t_{i}\left(\Theta_{1}\right) i \text { odd, } \quad a_{i-1} \equiv t_{i}\left(\Theta_{2}\right) i \text { even, } \quad a_{i} \equiv t_{i}\left(\Theta_{1}\right) i \text { even, } a_{i} \equiv t_{i}\left(\Theta_{2}\right) i \text { odd. }
$$

We have therefore between x, y a chain $y_{0}=a_{0}=y, y_{1}=t_{1}, y_{2}=t_{2}, \ldots, y_{n}=x=a_{n}$ with $n+1$ elements, such that $y_{i-1} \equiv y_{i}\left(\Theta_{1}\right)$ if i even and $y_{i-1} \equiv y_{i}\left(\Theta_{2}\right)$ if i odd. \mathscr{K}_{n} is therefore $(n+1)$-permutable.

Remark. An equational class is $(n+1)$-permutable if and only if there exists ($n+2$)-ary algebraic operations p_{0}, \ldots, p_{n+1} satisfying the following identities (see [3]):

$$
\begin{gathered}
p_{0}\left(x_{0}, \ldots, x_{n+1}\right)=x_{0}, p_{i-1}\left(x_{0}, x_{0}, x_{2}, x_{2}, \ldots\right)=p_{i}\left(x_{0}, x_{0}, x_{2}, x_{2}, \ldots\right)(i=\text { even }) \\
p_{i-1}\left(x_{0}, x_{1}, x_{1}, x_{3}, x_{3}, \ldots\right)=p_{i}\left(x_{0}, x_{1}, x_{1}, x_{3}, x_{3}, \ldots\right)(i \text { odd }) \\
p_{n+1}\left(x_{0}, \ldots, x_{n+1}\right)=x_{n+1} .
\end{gathered}
$$

A. Mitschke and H. Werner have considered for the class \mathscr{K}_{n} the algebraic operations:

$$
p_{i}\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=\left(x_{i} \wedge f_{n+1-i}\left(x_{i+1}\right) \vee \dot{x}_{i+2}\right) \vee\left(x_{i+2} \wedge\left(f_{i}\left(x_{i+1}\right) \vee x_{i}\right)\right)
$$

which show that \mathscr{K}_{n} is $(n+1)$-permutable.

Bibliography

[I] G. Grätzer, Two Mal'cev type theorems in universal algebra, J. Comb. Theory, 8 (1970), 334-342.
[2] A. Mitschee, Implication algebras are 3-permutable and 3-distributive, Algebra Universalis, 1 (1971), 1862-186.
[3] E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Math. Forschungsberichte, 25 (Berlin, 1969).

[^0]: ${ }^{1}$) For $n=2$ A. Mitschie [2] has solved this problem.

