On *n*-permutable equational classes

By E. T. SCHMIDT in Budapest

The product $\Theta \circ \Phi$ of two congruences Θ , Φ of an algebra A is defined by the following rule: $a \equiv b(\Theta \circ \Phi)$ if and only if $c \in A$ exists such that $a \equiv c(\Theta)$ and $c \equiv b(\Phi)$. Two congruences Θ_1 and Θ_2 are *n*-permutable if and only if $\Theta_1 \circ \Theta_2 \circ \Theta_1 \circ \Theta_2 \circ \cdots = \Theta_2 \circ \Theta_1 \circ \Theta_2 \circ \Theta_1 \circ \cdots$, where on both sides there are *n* factors. An algebra A is *n*-permutable if every two congruences in A are *n*-permutable. We define an equational class to be *n*-permutable if every algebra of this class is *n*-permutable. It is well known, that an *n*-permutable equational class is (n+1)-permutable. In [1] G. GRÄTZER asks for examples of equational classes which show that *n*-permutability and (n+1)-permutability are not equivalent¹). In this note we give an example with this property.

Theorem. For every natural number n>2 there exists an (n+1)-permutable equational class \mathcal{K}_n which is not n-permutable.

Proof. Let n be a natural number. An n-Boolean algebra

 $\mathscr{B} = (B; \forall, \land, f_1(x), \ldots, f_n(x), o_0, o_1, \ldots, o_n)$

is an algebra with two binary operations \lor , \land , *n* unary operations $f_1(x), \ldots, f_n(x)$ and n+1 nullary operations o_0, o_1, \ldots, o_n , such that the following conditions are satisfied:

1. $(B; \vee, \wedge)$ is a distributive lattice;

2. $x \lor o_n = o_n, x \lor o_0 = x$ for all $x \in B$;

3. $[(x \lor o_{i-1}) \land o_i] \lor f_i(x) = o_i$, $[(x \lor o_{i-1}) \land o_i] \land f_i(x) = o_{i-1}$.

The class of all *n*-Boolean algebras is denoted by \mathscr{K}_n . If $o_{i-1} \leq x \leq o_i$ then $f_i(x)$ is the relative complement from x in $[o_{i-1}, o_i]$, i.e. this interval is a Boolean lattice. A 1-Boolean algebra is a Boolean algebra. A finite chain \mathscr{C}_n of n+1 elements is

¹) For n=2 A. MITSCHKE [2] has solved this problem.

an *n*-Boolean algebra, if we take its elements as nullary operations: $o_0 < o_1 < o_2 < \cdots$ $\cdots < o_n$ ($o_i \in \mathscr{C}_n$), and $f_i(x) = o_i$ if $x < o_i$, $f_i(x) = o_{i-1}$ if $x \ge o_i$. The congruences of \mathscr{C}_n are the lattice-congruences, i.e. \mathscr{C}_n is not *n*-permutable. This shows that \mathscr{K}_n is not *n*-permutable.

Let B denote an arbitary n-Boolean algebra and $x, y \in B, x > y$. Set $a_i = (o_i \land x) \lor y$. (Then is $a_0 = y, a_n = x$.) If Θ_1 and Θ_2 are arbitary congruences from B, such that $x \equiv y$ ($\Theta_1 \lor \Theta_2$), then $a_{i-1} \equiv a_i(\Theta_1 \lor \Theta_2)$ (i=1, 2, ..., n). The interval $[a_{i-1}, a_i]$ is projective to a subinterval of $[o_{i-1}, o_i]$, i.e. $[a_{i-1}, a_i]$ is a Boolean lattice. Every Boolean lattice is 2-permutable and so for every i (i=1, 2, ..., n) there exists a $t_i \in [a_{i-1}, a_i]$ such that

$$a_{i-1} \equiv t_i(\Theta_1) \ i \text{ odd}, \ a_{i-1} \equiv t_i(\Theta_2) \ i \text{ even}, \ a_i \equiv t_i(\Theta_1) \ i \text{ even}, \ a_i \equiv t_i(\Theta_2) \ i \text{ odd}.$$

We have therefore between x, y a chain $y_0 = a_0 = y$, $y_1 = t_1, y_2 = t_2, ..., y_n = x = a_n$ with n+1 elements, such that $y_{i-1} \equiv y_i(\Theta_1)$ if i even and $y_{i-1} \equiv y_i(\Theta_2)$ if i odd. \mathscr{K}_n is therefore (n+1)-permutable.

Remark. An equational class is (n+1)-permutable if and only if there exists (n+2)-ary algebraic operations p_0, \ldots, p_{n+1} satisfying the following identities (see [3]):

$$p_0(x_0, ..., x_{n+1}) = x_0, p_{i-1}(x_0, x_0, x_2, x_2, ...) = p_i(x_0, x_0, x_2, x_2, ...)$$
 (i=even),

$$p_{i-1}(x_0, x_1, x_1, x_3, x_3, ...) = p_i(x_0, x_1, x_1, x_3, x_3, ...)$$
 (*i* odd),

 $p_{n+1}(x_0, \ldots, x_{n+1}) = x_{n+1}.$

A. MITSCHKE and H. WERNER have considered for the class \mathscr{K}_n the algebraic operations:

$$p_i(x_0, x_1, \dots, x_{n+1}) = (x_i \wedge f_{n+1-i}(x_{i+1}) \vee x_{i+2}) \vee (x_{i+2} \wedge (f_i(x_{i+1}) \vee x_i))$$

which show that \mathcal{K}_n is (n+1)-permutable.

Bibliography

- [1] G. GRÄTZER, Two Mal'cev type theorems in universal algebra, J. Comb. Theory, 8 (1970), 334-342.
- [2] A. MITSCHKE, Implication algebras are 3-permutable and 3-distributive, Algebra Universalis, 1 (1971), 1862—186.
- [3] E. T. SCHMIDT, Kongruenzrelationen algebraischer Strukturen, Math. Forschungsberichte, 25 (Berlin, 1969).

(Received November 2, 1970).