A theorem on factorizable groups

By NOBORU ITO in Chicago (Illinois, U.S.A.) *) To Professor Ladislaus Rédei on his seventieth birthday

The purpose of this note is to prove the following theorem.

Theorem. Let a finite group \mathfrak{G} be the product of two subgroups \mathfrak{A} and \mathfrak{B} such that (1) \mathfrak{A} and \mathfrak{B} have non-trivial centers; (2) if B is a non-identity element of \mathfrak{B} , then the centralizer of B in \mathfrak{G} is contained in \mathfrak{B} . Then \mathfrak{G} is not simple.

Remark. Take \mathfrak{G} , \mathfrak{A} and \mathfrak{B} as the icosahedral group, a Sylow 5-subgroup and a tetrahedral subgroup respectively. Then all the conditions in the theorem except (1) to \mathfrak{B} are satisfied. This shows that (1) applied to \mathfrak{A} and (2) are not sufficient to imply the non-simplicity of \mathfrak{G} .

Notation. Let \mathfrak{X} be a finite group. $Z(\mathfrak{X})$ denotes the center of \mathfrak{X} . For a prime p, \mathfrak{X}_p denotes a Sylow *p*-subgroup of \mathfrak{X} . Let \mathfrak{X} be a subset of \mathfrak{X} . $|\mathfrak{Y}|$ denotes the number of elements in \mathfrak{Y} . Ns \mathfrak{Y} denotes the normalizer of \mathfrak{Y} in \mathfrak{X} . Cs \mathfrak{Y} denotes the centralizer of \mathfrak{Y} in \mathfrak{X} . If $\mathfrak{Y} = \{Y\}$, Cs $Y = \operatorname{Cs} \mathfrak{Y}$. For $X \in \mathfrak{X}$, [X] denotes the conjugacy class of \mathfrak{X} containing X. $\mathfrak{E} = \{E\}$ denotes the identity subgroup of \mathfrak{X} . Let \mathscr{X} be a set of irreducible characters of \mathfrak{X} . Then $\Gamma(\mathscr{X})$ denotes the ring of rational integral linear linear combinations λ of characters in \mathscr{X} . $\Gamma_0(\mathscr{X})$ denotes the subring of $\Gamma(\mathscr{X})$ consisting of all λ with $\lambda(E) = 0$. Let φ be a character of a subgroup \mathfrak{Y} . Then φ^* denotes the character of \mathfrak{X} induced by φ . $I_{\mathfrak{X}}$ denotes the principal character of \mathfrak{X} .

Proof. Assume that the theorem is false. Let \mathfrak{G} be a simple group satisfying all the conditions in the theorem.

(i) By a theorem of BURNSIDE ([3], p. 491) [3] is not a prime power.

(ii) $\mathfrak{A} \cap \mathfrak{B} = \mathfrak{E}$. In fact, otherwise take $B(\neq E) \in \mathfrak{A} \cap \mathfrak{B}$. Then $Z(\mathfrak{A}) \leq Cs B \leq \mathfrak{B}$. This shows that \mathfrak{B} contains a normal subgroup of \mathfrak{G} containing $Z(\mathfrak{A})$. This is a contradiction.

*) This work was partially supported by NSF GP 9584.

4 A

(iii) \mathfrak{A} and \mathfrak{B} are Hall subgroups of \mathfrak{G} . In fact, otherwise, let p be a common prime divisor of $|\mathcal{A}|$ and $|\mathfrak{B}|$. We may assume that $\mathfrak{G}_p = \mathfrak{A}_p \mathfrak{B}_p$ ([3], p. 676). Then $\mathfrak{A}_p \neq \mathfrak{E} \neq \mathfrak{B}_p$. Take $P(\neq E) \in \mathfrak{B}_p$. Then $Z(\mathfrak{G}_p) \subseteq \operatorname{Cs} P \subseteq \mathfrak{B}$. Take $P^*(\neq E) \in Z(\mathfrak{G}_p)$. Then $\mathfrak{A}_p \subseteq \mathfrak{G}_p \subseteq \operatorname{Cs} P^* \subseteq \mathfrak{B}$. This contradicts (ii).

(iv) \mathfrak{B} is a T.I. set. Namely if $X^{-1}\mathfrak{B}X \neq \mathfrak{B}$ for $X \in \mathfrak{G}$, then $X^{-1}\mathfrak{B}X \cap \mathfrak{B} = \mathfrak{E}$. In fact, otherwise, take $B(\neq E) \in X^{-1}\mathfrak{B}X \cap \mathfrak{B}$. Then $Z(X^{-1}\mathfrak{B}X) \subseteq \operatorname{Cs} B \subseteq \mathfrak{B}$. So $X^{-1}\mathfrak{B}X \subseteq \operatorname{Cs} Z(X^{-1}\mathfrak{B}X) \subseteq \mathfrak{B}$. Thus $X^{-1}\mathfrak{B}X = \mathfrak{B}$. This is a contradiction.

(v) Ns \mathfrak{B} is a Frobenius group with \mathfrak{B} the kernel. In fact, if Ns $\mathfrak{B}=\mathfrak{B}$, then by (iv) and by a theorem of FROBENIUS ([3], p. 495) \mathfrak{G} is not simple. Thus Ns $\mathfrak{B}\neq\mathfrak{B}$. Let \mathfrak{C} be a complement of \mathfrak{B} in Ns \mathfrak{B} ([3], p. 126). Then by the condition (2) on \mathfrak{B} and by (iii) no element ($\neq E$) of \mathfrak{C} commutes with an element ($\neq E$) of \mathfrak{B} . Hence we get our assertion ([3], p. 497).

By a theorem of THOMPSON ([3], p. 499) \mathfrak{B} is nilpotent.

(vi) By (iv) and (v) we are in a position to apply the theory of exceptional characters. Let \mathscr{S} be the set of irreducible characters of Ns \mathfrak{B} which do not have \mathfrak{B} in their kernel. Then the induction map * is a linear isometry from $\Gamma_0(\mathscr{S})$ into the character ring of \mathfrak{G} such that $\lambda^*(E)=0$ for $\lambda \in \Gamma_0(\mathscr{S})$ ([2], (23. 1), (25. 4)). If $|\mathfrak{C}|+1 = |\mathfrak{B}|$, then $|\mathfrak{B}|$ must be a prime power. This contradicts (i). Hence (\mathfrak{C} , *) is coherent ([2], (31. 6)). Namely * can be extended to a linear isometry \mathscr{C} from $\Gamma(\mathscr{S})$ into the character ring of \mathfrak{G} .

(vii) Let χ be an irreducible component of $l_{\mathfrak{A}}^*$. Assume that $\chi \neq l_{\mathfrak{G}}$ and that $\pm \chi \notin \mathscr{G}^{\mathscr{C}}$. Then there exists a rational integer c such that $\chi(B) = c$ for every $B(\neq E) \in \mathfrak{B}$. We show that

$$\chi(E)=|\mathfrak{B}|-1.$$

In fact, since

$$\sum_{B \in \mathfrak{B}} \chi(B) \mathfrak{l}_{\mathfrak{B}}(B) = \chi(E) + c(|\mathfrak{B}| - 1) = m |\mathfrak{B}|,$$

where *m* is a non-negative integer, we obtain that

 $\chi(E) - c = (m - c)|\mathfrak{B}|.$

Since $\chi(E) \leq |\mathfrak{B}| - 1$ and since \mathfrak{G} is simple, we see that

$$\chi(E) > |c|, 0 > c, m-c = 1, m=0 \text{ and } c = -1.$$

Thus $\chi(E) = |\mathfrak{B}| - 1$. This implies that the permutation representation of \mathfrak{G} induced by \mathfrak{A} is doubly transitive ([2], (9. 6)). Here we notice that $l_{\mathfrak{A}}^*$ is the character of this permutation representation.

Now let A be an element of $Z(\mathfrak{A})$ of order p, a prime. Then since $l_{\mathfrak{A}}^*$ is doubly transitive, $l_{\mathfrak{A}}^*(A) = 1$. If $X^{-1}AX \in \mathfrak{A}$ for $X \in \mathfrak{G}$, then X fixes the "point" \mathfrak{A} . Hence $X \in \mathfrak{A}$ and $X^{-1}AX = A$.

Suppose that there exists a q-subgroup \mathfrak{Q} of \mathfrak{G} such that $q \neq p$ and A induces a non-trivial automorphism of \mathfrak{Q} . If q divides $|\mathfrak{B}|$, then we may assume that $\mathfrak{Q} \subseteq \mathfrak{B}$. A normalizes $\mathfrak{Cs} \mathfrak{Q}$. Let \mathfrak{R} be the Sylow q-complement of \mathfrak{B} . Then since $\mathfrak{B} \supseteq \supseteq \mathfrak{Cs} \mathfrak{Q} \supseteq \mathfrak{R}$, A normalizes \mathfrak{R} and hence \mathfrak{B} . Then Ns \mathfrak{B} contains a normal subgroup of \mathfrak{G} containing \mathfrak{A} . This is a contradiction. Therefore q divides $|\mathfrak{A}|$. A normalizes $\mathfrak{Cs} \mathfrak{Q}$. Since $\mathfrak{Cs} \mathfrak{Q}$ contains some conjugate of $Z(\mathfrak{A})$, there exists a Sylow p-subproup $\mathfrak{D}(\neq \mathfrak{G})$ of $\mathfrak{Cs} \mathfrak{Q}$ such that A normalizes \mathfrak{D} . Obviously $A \notin \mathfrak{D}$. \mathfrak{D} contains some conjugate $Y^{-1}AY$ of A. Thus $A^{-1}Y^{-1}AY \neq E$ is a p-element. Since $A \in Z(\mathfrak{A})$, we have that

$$[A^{-1}][A] = |\mathfrak{B}|[E] + r[A^{-1}Y^{-1}AY],$$

where r is a positive integer.¹) Since $\chi(A)=0$, this implies that $\chi(A^{-1}Y^{-1}AY)$ is a negative integer. Hence $l_{\mathfrak{A}}^*(A^{-1}Y^{-1}AY) \leq 0$. Since $A^{-1}Y^{-1}AY$ is a *p*-element, this is a contradiction. Therefore there exists no subgroup such as \mathfrak{Q} . Hence by a theorem of SHULT ([4]) \mathfrak{G} is not simple. Thus for every irreducible component $\zeta \neq l_{\mathfrak{G}}$ of $l_{\mathfrak{A}}^*$ we must have $\pm \zeta \in \mathscr{S}^{\mathfrak{G}}$.

(viii) Now we can follow an argument due to Burnside as follows ([1], § 151). Put $\mathscr{S} = \{\zeta_i, 1 \le i \le s\}$ with $s = |\mathscr{S}|$. If s = 2, then $|\mathfrak{B}|$ is a prime power against (i). Hence $s \ge 3$. By ([2], (23. 1)) and by the coherence of $(\mathscr{S}, *)$ we have the following equation:

(a)
$$(e_j\zeta_i - e_i\zeta_j)^* = e_j\zeta_i^* - e_i\zeta_j^* = e_j\zeta_i^{\mathscr{C}} - e_i\zeta_j^{\mathscr{C}},$$

where $1 \leq i, j \leq s$ and $e_k = \zeta_k(E)/|\mathfrak{C}|$ for k = 1, ..., s. (a) implies that

$$\sum_{X \in \mathfrak{G}} \mathbf{1}^*_{\mathfrak{N}}(X) \left(e_j \zeta_i^{\mathscr{C}}(X) - e_i \zeta_j^{\mathscr{C}}(X) \right) = 0.$$

Therefore the decomposition of $I_{\mathfrak{A}}^*$ into its irreducible components has the following form:

$$\mathfrak{A}_{\mathfrak{A}} = \mathbf{1}_{\mathfrak{G}} + m \sum_{i=1}^{s} e_i \zeta_i^{\mathscr{C}},$$

where *m* is a rational integer. By (b) we see that $\zeta_i^{\mathscr{C}}(E) > 0$ for all *i* or $\zeta_i^{\mathscr{C}}(E) < 0$ for all *i*.

We show that $|\zeta_j^{\mathscr{C}}(E)| \ge \zeta_j(E)$ for all *j*. By (a) and by the Frobenius reciprocity theorem ([2], (9, 4)), this is obvious, if $\zeta_j^{\mathscr{C}}(E) > 0$ or if $-\zeta_j^{\mathscr{C}}$ appears as an irreducible component of ζ_j^* . Hence we may assume that $\zeta_j^{\mathscr{C}}(E) < 0$ and that $-\zeta_j^{\mathscr{C}}$ does not appear as an irreducible component of ζ_j^* . Then by (a) we see that $-\zeta_j^*$ appears as an irreducible component of ζ_i^* with the multiplicity $\zeta_i(E)/\zeta_j(E)$, where $j \ne i$. This implies that $\zeta_i(E) \ge \zeta_j(E)$ and that $|\zeta_j^{\mathscr{C}}(E)| \ge \zeta_i(E)([2], (9, 4))$.

4*

¹) The usefulness of this equation we owe to Professor H. WIELANDT.

Now since $\sum_{i=1}^{s} \zeta_i(E)^2 = |\mathfrak{B}| |\mathfrak{C}| - |\mathfrak{C}|$, (b) implies that |m| = 1 and $|\zeta_i^{\mathscr{C}}(E)| = \zeta(E_i)$. Then since $s \ge 3$, we obtain that $\zeta_i^{\mathscr{C}}(E) > 0$ and that $\zeta_i^{\mathscr{C}}$ restricted to Ns \mathfrak{B} is equal to ζ_i . (i=1, ..., s).

By a) we obtain that

$$e_i \zeta_i^{\mathscr{C}}(A) = e_i \zeta_i^{\mathscr{C}}(A)$$

for every element A of \mathfrak{G} which is not conjugate to some element $(\neq E)$ of \mathfrak{B} . Since the number of characters ζ_i with $\zeta_i(E) = |\mathfrak{C}|$ equals $((\mathfrak{B}:\mathfrak{B}')-1)/|\mathfrak{C}|$, where \mathfrak{B}' denotes the commutator subgroup of \mathfrak{B} , we may assume that $\zeta_1(E) = \zeta_2(E) = |\mathfrak{C}|$. Then

$$\zeta_i^{\mathscr{C}}(A) = e_i \zeta_1^{\mathscr{C}}(A)$$

for all *i*. Now by (b) be obtain that

(c)
$$l_{\mathfrak{Y}}^*(A) = 1 + t\zeta_1^{\mathscr{C}}(A)$$

for every element A of \mathfrak{G} which is not conjugate to some element $(\neq E)$ of \mathfrak{B} , where $t = (|B|-1)/|\mathfrak{C}|$. Let $\mathfrak{G}(i)$ be the set of elements G in \mathfrak{G} such that $l_{\mathfrak{A}}^*(G) = i$. Since $t \ge s \ge 3$, by (c) we see that $\mathfrak{G}(0)$ coincides with the set of elements of \mathfrak{G} which are conjugate to elements $(\neq E)$ of \mathfrak{B} . Then we have that

$$\sum_{B \in \mathfrak{G}(0)} \zeta_1^{\mathscr{C}}(B) = (\mathfrak{A}:\mathfrak{C}) \sum_{B \in \mathfrak{B} - \{E\}} \zeta_1(B) = -|\mathfrak{A}|$$

and that

$$\sum_{B \in \mathfrak{G}(0)} \zeta_1^{\mathscr{C}}(B) \overline{\zeta_2^{\mathscr{C}}(B)} = (\mathfrak{A}:\mathfrak{C}) \sum_{B \in B - \{E\}} \zeta_1(B) \overline{\zeta_2(B)} = -|\mathfrak{A}| |\mathfrak{C}|.$$

Finally, since $\sum_{G \in \mathfrak{G}} \zeta_1^{\mathscr{G}}(G) = \sum_{G \in \mathfrak{G}} \zeta_1^{\mathscr{G}}(G) \overline{\zeta_2^{\mathscr{G}}(G)} = 0$, by (c) we obtain that (d) $-|\mathfrak{Y}|| + |\mathfrak{G}(t+1)| + 2|\mathfrak{G}(2t+1)| + |\mathfrak{H}| = 0$

and
$$|\alpha_1| + |\theta_1| + 2|\theta_2| + 1|| + 1|\theta_1| = 0$$

(e)
$$-|A||\mathfrak{G}|+|\mathfrak{G}(t+1)|+4|\mathfrak{G}(2t+1)|+...+|\mathfrak{C}|^2=0.$$

(d) and (e) enforce $\mathfrak{G}(t+1)$, $\mathfrak{G}(2t+1)$, ... to be empty. Hence $|\mathfrak{A}| = |\mathfrak{C}|$ and $\mathfrak{A} = \mathfrak{C}$. This is a contradiction.

Bibliography

[1] W. BURNSIDE, Theory of groups of finite order (Cambridge, 1911).

[2] W. FEIT, Characters of finite groups (New York, 1967).

[3] B. HUPPERT, Endliche Gruppen. I (Berlin-Heidelberg-New York, 1967).

[4] E. SHULT, Some analogues of Glauberman's Z*-theorem, Proc. Amer. Math. Soc., 17 (1966), 1186-1190.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE

(Received October 14, 1970)