A theorem on factorizable groups

By NOBORU ITO in Chicago (Illinois, U.S.A.). *)
To Professor Ladislaus Rédei on his seventieth birthday

The purpose of this note is to prove the following theorem.
Theorem. Let a finite group \mathfrak{G} be the product of two subgroups \mathfrak{A} and \mathfrak{B} such that (1) \mathfrak{X} and \mathfrak{B} have non-trivial centers; (2) if B is a non-identity element of \mathfrak{B}, then the centralizer of B in \mathfrak{G} is contained in \mathfrak{B}. Then \mathfrak{G} is not simple.

Remark. Take $\mathfrak{G}, \mathfrak{A}$ and \mathfrak{B} as the icosahedral group, a Sylow 5-subgroup and a tetrahedral subgroup respectively. Then all the conditions in the theorem except (1) to \mathfrak{B} are satisfied. This shows that (1) applied to \mathfrak{P} and (2) are not sufficient to imply the non-simplicity of $\boldsymbol{\sigma}$.

Notation. Let \mathfrak{X} be a finite group. $Z(\underset{X}{ }$) denotes the center of \mathfrak{X}. For a prime p, \dot{X}_{p} denotes a Sylow p-subgroup of \mathfrak{X}. Let \mathfrak{X} be a subset of $\mathfrak{X} .|\boldsymbol{Y}|$ denotes the number of elements in \mathfrak{Y}. Ns \mathfrak{Y} denotes the normalizer of \mathfrak{Y} in \mathfrak{X}. Cs \mathfrak{Y} denotes the centralizer of \mathfrak{Y} in \mathfrak{X}. If $\mathfrak{Y}=\{Y\}$, Cs $Y=$ Cs \mathfrak{Y}. For $X \in \mathfrak{Z},[X]$ denotes the conjugacy class of \mathfrak{X} containing X. $\mathfrak{E}=\{E\}$ denotes the identity subgroup of \mathfrak{X}. Let \mathscr{X} be a set of irreducible characters of \mathfrak{X}. Then $\Gamma(\mathscr{X})$ denotes the ring of rational integral linear linear combinations λ of characters in $\mathscr{X} . \Gamma_{0}(\mathscr{X})$ denotes the subring of $\Gamma(X)$ consisting of all λ with $\lambda(E)=0$. Let φ be a character of a subgroup 9). Then φ^{*} denotes the character of \mathfrak{X} induced by φ. $l_{\mathfrak{x}}$ denotes the principal character of \mathfrak{X}.

Proof. Assume that the theorem is false. Let \mathfrak{G} be a simple group satisfying all the conditions in the theorem.
(i) By a theorem of Burnside ([3], p. 491) $|\mathfrak{B}|$ is not a prime power.
(ii) $\mathfrak{Q C} \cap \mathfrak{B}=\mathfrak{C}$. In fact, otherwise take $B(\neq E) \in \mathfrak{H} \cap \mathfrak{B}$. Then $Z(\mathfrak{P}) \leqq C s B \leqq \mathfrak{B}$. This shows that \mathfrak{B} contains a normal subgroup of \mathfrak{G} containing $Z(\mathfrak{N})$. This is a contradiction.
*) This work was partially supported by NSF GP 9584.
(iii) \mathfrak{N} and \mathfrak{B} are Hall subgroups of \mathfrak{G}. In fact, otherwise, let p be a common prime divisor of $|A|$ and $|\mathfrak{B}|$. We may assume that $\mathfrak{G}_{p}=\mathfrak{N}_{p} \mathfrak{B}_{p}$ ([3], p. 676). Then $\mathfrak{R}_{p} \neq \mathfrak{E} \neq \mathfrak{B}_{p}$. Take $P(\neq E) \in \mathfrak{B}_{p}$. Then $Z\left(\mathfrak{G}_{p}\right) \subseteq \operatorname{Cs} P \subseteq \mathfrak{B}$. Take $P^{*}(\neq E) \in Z\left(\mathfrak{G}_{p}\right)$. Then $\mathfrak{N}_{p} \subseteq \mathfrak{W}_{p} \subseteq \mathrm{Cs} P^{*} \subseteq \mathfrak{B}$. This contradicts (ii).
(iv) \mathfrak{B} is a T.I. set. Namely if $X^{-1} \mathfrak{B} X \neq \mathfrak{B}$ for $X \in \mathfrak{G}$, then $X^{-1} \mathfrak{B} X \cap \mathfrak{B}=\mathfrak{C}$. In fact, otherwise, take $B(\neq E) \in X^{-1} \mathfrak{B} X \cap \mathfrak{B}$. Then $Z\left(X^{-1} \mathfrak{B} X\right) \subseteq \operatorname{Cs} B \subseteq \mathfrak{B}$. So $X^{-1} \mathfrak{B} X \subseteq \operatorname{Cs} Z\left(X^{-1} \mathfrak{B} X\right) \subseteq \mathfrak{B}$. Thus $X^{-1} \mathfrak{B} X=\mathfrak{B}$. This is a contradiction.
(v) Ns \mathfrak{B} is a Frobenius group with \mathfrak{B} the kernel. In fact; if Ns $\mathfrak{B}=\mathfrak{B}$, then by (iv) and by a theorem of Frobenius ([3], p. 495) (5 is not simple. Thus Ns $\mathfrak{B} \neq \mathfrak{B}$. Let \mathbb{C} be a complement of \mathfrak{B} in $\mathrm{Ns} \mathfrak{B}$ ([3], p. 126). Then by the condition (2) on \mathfrak{B} and by (iii) no element $(\neq E)$ of \mathbb{C} commutes with an element $(\neq E)$ of \mathfrak{B}. Hence we get our assertion ([3], p. 497).

By a theorem of Thompson ([3], p. 499) \mathfrak{B} is nilpotent.
(vi) By (iv) and (v) we are in a position to apply the theory of exceptional characters. Let \mathscr{S} be the set of irreducible characters of $\mathrm{Ns} \mathfrak{B}$ which do not have \mathfrak{B} in their kernel. Then the induction map ${ }^{*}$ is a linear isometry from $\Gamma_{0}(\mathscr{P})$ into the character ring of 6 such that $\lambda^{*}(E)=0$ for $\lambda \in \Gamma_{0}(\mathscr{P})([2],(23.1),(25.4))$. If $|\mathbb{C}|+1=|\mathfrak{B}|$, then $|\mathfrak{B}|$ must be a prime power. This contradicts (i). Hence ($\mathbb{C},{ }^{*}$) is coherent ([2], (31.6)). Namely ${ }^{*}$ can be extended to a linear isometry ${ }^{\mathscr{C}}$ from $\Gamma(\mathscr{S})$ into the character ring of $\mathscr{5}$.
(vii) Let χ be an irreducible component of $l_{\mathfrak{2}}^{*}$. Assume that $\chi \neq l_{\mathfrak{G}}$ and that $\pm \chi \notin \mathscr{S}^{\mathscr{Q}}$. Then there exists a rational integer c such that $\chi(B)=c$ for every $B(\neq E) \in \mathfrak{B}$. We show that

$$
\chi(E)=|\mathfrak{B}|-1 .
$$

In fact, since

$$
\sum_{B \in \mathfrak{B}} \chi(B) \mathrm{I}_{\mathfrak{B}}(B)=\chi(E)+c(|\mathfrak{B}|-1)=m|\mathfrak{B}|
$$

where m is a non-negative integer, we.obtain that

$$
\chi(E)-c=(m-c)|\mathfrak{B}| .
$$

Since $\chi(E) \leqq|\mathfrak{B}|-1$ and since \mathfrak{G} is simple, we see that

$$
\chi(E)>|c|, 0>c, m-c=1, m=0 \quad \text { and } \quad c=-1
$$

Thus $\chi(E)=|\mathfrak{B}|-1$. This implies that the permutation representation of $\mathfrak{5}$ induced by \mathfrak{A} is doubly transitive ([2], (9.6)). Here we notice that $l_{\mathfrak{Q}}^{*}$ is the character of this permutation representation.

Now let A be an element of $Z(\mathfrak{Y})$ of order p, a prime. Then since l_{21}^{*} is doubly transitive, $I_{\mathfrak{V}}^{*}(A)=1$. If $X^{-1} A X \in \mathfrak{V}$ for $X \in \mathscr{F}$, then X fixes the "point" \mathfrak{V}. Hence $X \in \mathfrak{Q}$ and $X^{-1} A X=A$.

Suppose that there exists a q-subgroup \mathfrak{Q} of \mathfrak{G} such that $q \neq p$ and A induces a non-trivial automorphism of \mathfrak{Q}. If q divides $|\mathfrak{B}|$, then we may assume that $\mathfrak{Q} \subseteq \mathfrak{B}$: A normalizes $\mathrm{Cs} \mathfrak{Q}$. Let Ω be the Sylow q -complement of \mathfrak{B}. Then since $\mathfrak{B} \supseteqq$ $\supseteq \mathrm{Cs} \mathfrak{Q} \supseteq$, A normalizes \mathfrak{K} and hence \mathfrak{B}. Then $\operatorname{Ns} \mathfrak{B}$ contains a normal subgroup of \mathfrak{G} containing \mathfrak{N}. This is a contradiction. Therefore q divides $|\mathfrak{N}|$. A normalizes $\mathrm{Cs} \mathfrak{Q}$. Since $\mathrm{Cs} \mathfrak{Q}$ contains some conjugate of $Z(\mathfrak{H})$, there exists a Sylow p-subproup $\mathfrak{D}(\neq \mathfrak{V})$. of $\mathrm{Cs} \mathfrak{Q}$ such that A normalizes \mathfrak{D}. Obviously $A \notin \mathfrak{D}$. \mathfrak{D} contains some conjugate $Y^{-1} A Y$ of A. Thus $A^{-1} Y^{-1} A Y \neq E$ is a p-element. Since $A \in Z(\mathfrak{H})$, we have that

$$
\left[A^{-1}\right][A]=|\mathfrak{B}|[E]+r\left[A^{-1} Y^{-1} A Y\right],
$$

where r is a positive integer. ${ }^{1}$) Since $\chi(A)=0$, this implies that $\chi\left(A^{-1} Y^{-1} A Y\right)$ is a negative integer. Hence $l_{0}^{*}\left(A^{-1} Y^{-1} A Y\right) \leqq 0$. Since $A^{-1} Y^{-1} A Y$ is a p-element, this is a contradiction. Therefore there exists no subgroup such as \mathfrak{Q}. Hence by a theorem of SHULT ([4]) \mathfrak{G} is not simple. Thus for every irreducible component $\zeta \neq l_{\mathfrak{G}}$ of l_{21}^{*} we must have $\pm \zeta \in \mathscr{S}^{G}$.
(viii) Now we can follow an arguement due to Burnside as follows ([1], §151). Put $\mathscr{S}=\left\{\zeta_{i}, \mathrm{l} \leqq i \leqq s\right\}$ with $s=|\mathscr{P}|$. If $s=2$, then $|\mathfrak{B}|$ is a prime power against (i). Hence $s \geqq 3$. By ([2], (23.1)) and by the coherence of $\left(\mathscr{S},{ }^{*}\right)$ we have the following equation:
(a)

$$
\left(e_{j} \zeta_{i}-e_{i} \zeta_{j}\right)^{*}=e_{j} \zeta_{i}^{*}-e_{i} \zeta_{j}^{*}=e_{j} \zeta_{i}^{\zeta}-e_{i} \zeta_{j}^{\zeta}
$$

where $1 \leqq i, j \leqq s$ and $e_{k}=\zeta_{k}(E) /|\mathbb{C}|$ for $k=1, \ldots, s$. (a) implies that

$$
\sum_{X \in \mathfrak{G}} 1_{21}^{*}(X)\left(e_{j} \zeta_{i}^{\zeta}(X)-e_{i} \zeta_{j}^{\mathscr{G}}(X)\right)=0
$$

Therefore the decomposition of I_{21}^{*} into its irreducible components has the following form:

$$
\begin{equation*}
1_{2 \mathfrak{l}}^{*}=1_{\mathfrak{G}}+m \sum_{i=1}^{s} \dot{e}_{i} \zeta_{i}^{\mathcal{B}} \tag{b}
\end{equation*}
$$

where m is a rational integer. By (b) we see that $\zeta_{i}^{\mathscr{C}}(E)>0$ for all i or $\zeta_{i}^{\ell}(E)<0$ for all i.

We show that $\left|\zeta_{j}^{\text {te }}(E)\right| \geqq \zeta_{j}(E)$ for all j. By (a) and by the Frobenius reciprocity theorem ([2], (9. 4)), this is obvious, if $\zeta_{j}^{\mathscr{G}}(E)>0$ or if $-\zeta_{j}^{\mathscr{C}}$ appears as an irreducible component of ζ_{j}^{*}. Hence we may assume that $\zeta_{j}^{\mathscr{C}}(E)<0$ and that $-\zeta_{j}^{\mathscr{C}}$ does not appear as an irreducible component of ζ_{j}^{*}. Then by (a) we see that $-\zeta_{j}^{*}$ appears as an irreducible component of ζ_{i}^{*} with the multiplicity $\zeta_{i}(E) / \zeta_{j}(E)$, where $j \neq i$. This implies that $\zeta_{i}(E) \geqq \zeta_{j}(E)$ and that $\left|\zeta_{j}^{\ell}(E)\right| \geqq \zeta_{i}(E)([2]$, (9.4)).

[^0]Now since $\sum_{i=1}^{s} \zeta_{i}(E)^{2}=|\mathfrak{B}||\mathbb{C}|-|\mathbb{C}|$, (b) implies that $|m|=1$ and $\left|\zeta_{i}^{\mathscr{E}}(E)\right|=\zeta\left(E_{i}\right)$. Then since $s \geqq 3$, we obtain that $\zeta_{i}^{\mathscr{G}}(E)>0$ and that $\zeta_{i}^{\mathscr{C}}$ restricted to $\mathrm{Ns} \mathfrak{B}$ is equal to $\zeta_{i} .(i=1, \ldots, s)$.

By a) we obtain that

$$
e_{j} \zeta_{i}^{\mathscr{C}}(A)=e_{i} \zeta_{j}^{\mathscr{E}}(A)
$$

for every element A of \mathfrak{G} which is not conjugate to some element $(\neq E)$ of \mathfrak{B}. Since the number of characters ζ_{i} with $\zeta_{i}(E)=|\mathbb{C}|$ equals $\left(\left(\mathfrak{B}: \mathfrak{B}^{\prime}\right)-1\right) /|\mathbb{C}|$, where \mathfrak{B}^{\prime} denotes the commutator subgroup of \mathfrak{B}, we may assume that $\zeta_{1}(E)=\zeta_{2}(E)=|\mathcal{C}|$. Then

$$
\zeta_{i}^{C}(A)=e_{i} \zeta_{1}^{\zeta}(A)
$$

for all i. Now by (b) be obtain that

$$
\begin{equation*}
1_{21}^{*}(A)=1+t \zeta_{1}^{\epsilon}(A) \tag{c}
\end{equation*}
$$

for every element A of \mathfrak{G} which is not conjugate to some element $(\neq E)$ of \mathfrak{B}, where $t=(|B|-1) /|\mathbb{C}|$. Let $\mathfrak{G}(i)$ be the set of elements G in \mathfrak{F} such that $I_{\mathfrak{A}(t)}^{*}(\dot{G})=i$. Since $t \geqq s \geqq 3$, by (c) we see that $\mathfrak{G}(0)$ coincides with the set of elements of \mathbb{G} which are conjugate to elements $(\neq E)$ of \mathfrak{B}. Then we have that
and that

$$
\sum_{B \in \mathscr{G}(0)} \zeta_{\mathcal{Y}}^{\mathscr{Y}}(B)=(\mathfrak{A}: \mathbb{C}) \sum_{B \in \mathfrak{B}-\{\xi\}} \zeta_{1}(B)=-|\mathfrak{M}|
$$

$$
\sum_{B \in \mathfrak{G}(0)} \zeta_{1}^{\ell}(B) \overline{\zeta_{2}^{\ell}(B)}=(\mathfrak{A}: \mathbb{C}) \sum_{B \in B-\{E\}} \zeta_{1}(B) \overline{\zeta_{2}(B)}=-|\mathfrak{Y}||\mathbb{C}| .
$$

Finally, since $\sum_{G \in \mathfrak{G}} \zeta_{1}^{\mathscr{G}}(G)=\sum_{G \in \mathscr{G}} \zeta_{1}^{\mathscr{1}}(G) \overline{\zeta_{2}^{\mathscr{C}}(G)}=0$, by (c) we obtain that
(d)

$$
-|\mathfrak{N}|+|\mathfrak{G}(t+1)|+2|\mathfrak{G}(2 t+1)|+\ldots+|\mathbb{C}|=0
$$

and
(e)

$$
-|A||\mathfrak{G}|+|\mathfrak{G}(t+1)|+4|\mathfrak{G}(2 t+1)|+\ldots+|\mathfrak{C}|^{2}=0
$$

(d) and (e) enforce $\mathfrak{G}(t+1), \mathfrak{G}(2 t+1), \ldots$ to be empty. Hence $|\mathfrak{N}|=|\mathfrak{C}|$ and $\mathfrak{V}=\mathbb{C}$. This is a contradiction.

Bibliography

[1] W. Burnside, Theory of groups of finite order (Cambridge, 1911).
[2] W. Feit, Characters of finite groups (New York, 1967).
[3] B. Huppert, Endliche Gruppen. I (Berlin-Heidelberg-New York, 1967).
[4] E. Shult, Some analogues of Glauberman's Z^{*}-theorem, Proc. Amer. Math. Soc., 17 (1966), 1186-1190.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE

[^0]: ${ }^{1}$) The usefulness of this equation we owe to Professor H. Wielandt.

