On random multiplicative functions

By I. KÄTAI in Budapest

1. We call $f(n)$ a completely multiplicative (c.m.) function, if $f(m n)=f(m) f(n)$ holds for all pairs m, n of positive integers. Let \mathscr{F} be the set of those c . m. functions which take the values +1 and -1 only.

We say that a function $f(n) \in \mathscr{F}$ is of normal type, if

$$
\begin{equation*}
\lim _{x} x^{-1} N\left\{n \leqq x ; f(n+i)=\varepsilon_{i} ; i=0, \ldots, k\right\}=\frac{1}{2^{k+1}} \tag{1.2}
\end{equation*}
$$

for $k=0,1,2, \ldots$ and for all choices of $\varepsilon_{0}= \pm 1, \ldots ; \varepsilon_{k}= \pm 1$.
It would be interesting to give a necessary and sufficient condition for $\dot{f}(n)$ to be of normal type. Recently E. WIRSING [1] proved that a function $f(n) \in \dot{F}$ satisfies (1.1) with $k=0$ if and only if

$$
\begin{equation*}
\sum_{f(p)=-1} \frac{1}{p}=\infty \tag{1.2}
\end{equation*}
$$

As is easy to see, the validity of (1.2) is not sufficient for normality: Let for example $f(n)$ be defined as follows: $f(2)=1$, and for an odd prime p let $f(p)=1$ or -1 according as $p \equiv 1$ or $-1(\bmod 4)$. Then, by an easy calculation we have

$$
\sum_{n \leqq x} f(n) f(n+4)=\frac{x}{4}+o(x)
$$

hence it follows that $f(n)$ is not a normal function.
We shall see in the following section that almost all multiplicative functions are of normal type. One would think that the Liouville function $\lambda(n)$ is normal. However we can only prove that the system $\lambda(n)=\varepsilon_{1}, \lambda(n+1)=\varepsilon_{2}$ has infinitely many solutions for an arbitrary choice of $\varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1$. This is a special case of the assertions which we shall prove in the section 3 .
2. Let c, c_{1}, c_{2}, \ldots denote suitable positive constants; let $\varepsilon, \varepsilon_{1}, \varepsilon_{2}, \ldots$ be arbitrary small positive constants not necessarily the same at every occurrence. Let $d_{k}(n)$ denote the number of solutions of the equation $n=x_{1}, \ldots, x_{k}$ in positive integers x_{1}, \ldots, x_{k}, and let $d_{2}(n)=d(n)$.

Let p_{n} denote the nth prime number. Let (Ω, \mathscr{A}, P) be a probability space and $\xi_{n}=\xi_{n}(\omega)(n=1,2, \ldots)$ be a sequence of independent random variables with the distribution $P\left(\zeta_{n}=1\right)=P\left(\zeta_{n}=-1\right)=\frac{1}{2}$. Let $f(n ; \omega)$ be a completely multiplicative function which we define on the set of primes by $f\left(p_{n} ; \omega\right)=\xi_{n}(\omega)$.

We have
Theorem 1. Almost all $f(n ; \omega)$ are of normal type.
For the proof we need some lemmas.
Lemma 1. For positive integers C, D let $N(z ; D, C)$ denote the number of solutions of the diophantine equation

$$
\begin{equation*}
x^{2}-D y^{2}=C \tag{2.1}
\end{equation*}
$$

in positive integers x, y satisfying $x \leqq z$. Then

$$
\begin{equation*}
N(z ; D, C) \leqq c_{1} d\left(C^{2}\right) \log 2 \dot{D} z \tag{2.2}
\end{equation*}
$$

Perhaps this lemma is known, but I was unable to find a reference to it. We prove now (2.2).

Without any restriction we can assume that D is a square-free number. For $D=1$ inequality (2.2) obviously holds, therefore we assume that $D>1$.

Let $K(\sqrt{D})$ denote the quadratic extension field over the rational number-field generated by \sqrt{D}. Let R denote the ring of the algebraic integers in $K(\sqrt{D})$, and for a general $\gamma \in R$ let $\cdot(\gamma)$ denote the principal ideal generated by γ.

For a general solution x, y of (2.1) let $\alpha=x+\sqrt{D} y, \beta=x-\sqrt{D} y$. Let. $(C)=$ $=\pi_{1}^{\gamma_{1}} \ldots \pi_{r}^{\gamma_{r}}$, where π_{1}, \ldots, π_{r} are different prime ideals. Using the fact that the norm of the ideals is a multiplicative functionand that $N((C))=C^{2}$, furthermore that $N\left(\pi_{i}\right)$ is a prime number or a square of a prime number we have $\prod_{i=1}^{r}\left(\gamma_{i}+1\right) \leqq d\left(C^{2}\right)$. Since $\alpha \beta=C$ and $\alpha, \beta \in R$, therefore $(\alpha)(\beta)=(C)$ and so $(\alpha) \mid(C)$. Hence it follows that all the solutions can be classified into at most $d\left(C^{2}\right)$ classes; where two solutions ${ }^{\text {P }} x, y ; x_{1}, y_{1}$ belong to the same class if and only if $(\alpha)=(x+\sqrt{D} y)=\left(\alpha_{1}\right)=$ $=\left(x_{1}+\sqrt{D} y_{1}\right)$. Now we prove that the number of solutions of (2.1) belonging to a fixed class does not exceed $c_{1} \log 2 D z$, whence (2.2) immediately shall follow.

Let $\left(x_{v}, y_{v}\right) v=0,1, \ldots ., M$ be the all solutions in a class satisfying $1 \leqq x_{0} \leqq$ $\leqq x_{1} \leqq \cdots \leqq x_{M} \leqq z, y_{v} \geqq 0$ and let $\alpha_{v}=x_{v}+y_{v} \sqrt{D}, \beta_{v}=x_{v}-y_{v} / \bar{D}$. We have $\left(\alpha_{0}\right)=$ $=\left(\alpha_{1}\right)=\cdots=\left(\alpha_{M}\right)$. Therefore $\alpha_{v}=\alpha_{\mu} \varepsilon_{v \mu}, \beta_{v}=\beta_{\mu} \varrho_{v \mu}$, where $\varepsilon_{v \mu}, \varrho_{v \mu}$ are units in R. Since $C=\alpha_{v} \beta_{v}=\alpha_{\mu} \beta_{\mu} \varrho_{v \mu} \varepsilon_{v \mu}=\varrho_{v \mu} \varepsilon_{v \mu} C$, we have $\varrho_{v \mu}=\varepsilon_{v \mu}^{-1}$. Using the Dirichlet theorem concerning the form of the units we see that all units have form $\pm \varepsilon_{0}^{n}$ $(n=0, \pm 1, \pm 2, \ldots)$, where $\varepsilon_{0}=\frac{u_{0}+\sqrt{D} v_{0}}{2}$, and u_{0}, v_{0} are suitable positive
integers satisfying $u_{0}^{2}-D v_{0}^{2}=4$. Hence $\varepsilon_{0}>\frac{\sqrt{D}}{2}$ and we can assume that $\alpha_{n}=\alpha_{0} \varepsilon^{n}$. Using that $x_{n} \leqq z$ and that by (2. 1) $y_{n} \leqq \sqrt{\frac{\overline{C+z^{2}}}{D}} \leqq \frac{C z}{D}$, we have $\alpha_{n} \leqq(C+1) z$ $(n=0, \ldots, M)$. On the other hand, by $\alpha_{0} \beta_{0}=C, 0<\beta_{0}<\alpha_{0}$ we have $\alpha_{0}>1$. Hence $\varepsilon^{n}<(C+1) z$, whence $M \leqq \frac{\log (C+1) z}{\log \varepsilon_{0}} \leqq c_{1} \log 2 C z$ follows. This completes the proof of Lemma 1.

Corollary. For positive integers A, B, C let $N(z ; A, B, C)$ denote the number of solutions of

$$
\begin{equation*}
A x^{2}-B y^{2}=C \tag{2.3}
\end{equation*}
$$

in positive integers $x, y, x \leqq z$. Then

$$
N(z ; A, B, C) \leqq N(A z ; A B, A C) \leqq c_{1} d\left(A^{2} C^{2}\right) \log 2 A^{2} B z
$$

This is obvious. If (x, y) is a solution of (2.3) then $(A x, y)$ is a solution of $X^{2}-A B Y^{2}=A C$ which proves the Corollary.

Lemma 2. (Borel-Cantelli) Let A_{1}, A_{2}, \ldots be an infinite sequence of sets in (Ω, A, P) and let $\sum_{j=1} P\left(A_{j}\right)<\infty$. Then almost all ω in Ω are belonging to finitely many A_{i} only.

Proof of Theorem 1. Let $0<i_{1}<i_{2}<\cdots<i_{k}$ be arbitrary but fixed integers. For a general integer n let $\bar{n}=\left(n+i_{1}\right) \ldots\left(n+i_{k}\right)$. Let us introduce the notation

$$
\begin{equation*}
\eta_{N}(\omega)=\sum_{n=1}^{N} f(\bar{n}, \omega) ; \quad M_{l, N}=\int_{\Omega}\left(\eta_{N}(\omega)\right)^{l} d P \tag{2.4}
\end{equation*}
$$

First we give a non-trivial estimation for $M_{4, N}$, whence by using the Borel-Cantelli lemma we deduce that $\lim _{N \rightarrow \infty} \eta_{N}(\omega) / N=0$ for almost all $\omega \in \Omega$.

It is obvious, that

$$
M_{4, N}=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} \int f\left(\bar{n}_{1} \bar{n}_{2} \bar{n}_{3} \bar{n}_{4} ; \omega\right) d P
$$

where in the sum $n_{1}, n_{2}, n_{3}, n_{4}$ run independently over the values $1,2, \ldots, N$. Using $\int_{\Omega} f(m ; \omega) d P=1$ or 0 according to m is a square-number, or not, we have that $M_{4, N}$ is equal to the number of solutions of the equation

$$
\begin{equation*}
\bar{n}_{1} \bar{n}_{2} \bar{n}_{3} \bar{n}_{4}=X^{2} \tag{2.6}
\end{equation*}
$$

in unknowns $n_{1}, n_{2}, n_{3}, n_{4}, X$, satisfying $1 \leqq n_{i} \leqq N(i=1,2,3,4)$.

For a fixed square-free integer $E(>0)$ let $H(E)$ denote the number of solutions of the equation

$$
\bar{n}_{1} \bar{n}_{2}=E Y^{2} ; \quad 1 \leqq n_{1} \leqq N, \quad 1 \leqq n_{2} \leqq N
$$

in unknowns n_{1}, n_{2}, Y.
It is obvious that if $n_{1}, n_{2}, n_{3}, n_{4}$ is a solution of (2.6) then the square-free parts of the numbers $\bar{n}_{1} \bar{n}_{2}, \bar{n}_{3} \bar{n}_{4}$ are the same. Hence we have

$$
M_{4, N}=\sum_{E} H^{2}(E)
$$

and consequently
(2.7)

$$
M_{4, N} \leqq\left(\max _{E} H(E)\right) \sum_{E} H(E) .
$$

Observing that $\sum_{E} H(E)=N^{2}$ (since the number of the choice of all pairs n_{1}, n_{2}, $1 \leqq n_{i} \leqq N$ is N^{2}) we have

$$
\begin{equation*}
M_{4, N} \leqq N^{2} \max _{E} H(E) \tag{2.8}
\end{equation*}
$$

Now we estimate $H(E)$. For a general positive square-free A let $G(A)$ denote the number of $n \leqq N$ which can be written in the form

$$
\begin{equation*}
\bar{n}=A Z^{2} \tag{2.9}
\end{equation*}
$$

where Z is a suitable integer. Then we have

$$
\begin{equation*}
H(E) \leqq \sum_{E_{1} E_{2}=E} \sum_{U} G\left(E_{1} U\right) G\left(E_{2} U\right) \tag{2.10}
\end{equation*}
$$

where in the right hand side E_{1} runs over the divisors of E and U over the set of all square-free integers coprime to E.

For $k=1$ we evidently have $G(A) \leqq \sqrt{N / A}$. Consequently by (2.10)

$$
H(E) \leqq \sum_{E_{1} E_{2}=E} \frac{N}{\sqrt{E}} \cdot \sum_{U \leqq N} \frac{1}{U} \leqq \frac{N \log N}{\sqrt{E}} d(E) \leqq c N \log N,
$$

and hence by (2.8)

$$
\begin{equation*}
M_{4, N} \leqq c N^{3} \log N \tag{2.11}
\end{equation*}
$$

Assume now that $k \geqq 2$. Consider the solutions of $\bar{n}=A Z^{2}$. Since the numbers $n+i_{j_{1}}, n+i_{j_{2}}$ have no common prime-divisors greater than $i_{j_{2}}-i_{j_{1}}$ if $j_{1} \neq j_{2}$, for an n satisfying (2.9) we have

$$
\begin{equation*}
n+i_{j}=R_{j} C_{j} Z_{j}^{2} \quad(j=1,2, \ldots, k) \tag{2.12}
\end{equation*}
$$

where R_{j}, C_{j} are square-free numbers, the prime factors of R_{j} are not greater than
$i_{k}-i_{1}$ and the prime factors of C_{j} are greater than $i_{k}-i_{1}$ and $\prod_{j=1}^{k} C_{j} \mid A$. If n is a solution of (2.12), then

$$
\begin{equation*}
i_{2}-i_{1}=R_{2} C_{2} Z_{2}^{2}-R_{1} C_{1} Z_{1}^{2} \tag{2.13}
\end{equation*}
$$

holds with suitable $Z_{1}, Z_{2} \leqq N$. Using the Corollary to Lemma 1 we have that the number of solutions of (2.13) with $Z_{1}, Z_{2} \leqq N$ is at most $\dot{c}_{1} d\left(\left(R_{1} C_{1}\left(i_{2}-i_{1}\right)\right)^{2}\right) \log N \leqq$ $\leqq c_{1} N^{c_{1}}$.

The number of all possible pairs of R_{1}, R_{2} occurring in (2.12) is bounded for fixed $i_{1}, i_{2}, \ldots, i_{k}$. The number of couples $\left(R_{1}, R_{2}\right)$ is at most $d^{2}(A) \leqq c N^{t_{2}}$, since $C_{1} C_{2} \mid A$. Therefore

$$
\begin{equation*}
G(A) \leqq c N^{\varepsilon} \tag{2.14}
\end{equation*}
$$

Using (2.10) and the fact that the number of those A which occur as the squarefree part of a number \bar{n} for some $n \leqq N$ is at most N, we have

$$
H(E) \leqq c N^{1+\varepsilon}
$$

Hence by (2.8)

$$
\begin{equation*}
M_{4, N} \leqq c N^{3+\varepsilon} \tag{2.15}
\end{equation*}
$$

follows.
Using (2.11) or (2.15) according as $k=1$ or $k \geqq 2$, we have

$$
\begin{equation*}
P\left(\left|\eta_{N}\right|>N^{x}\right) \leqq \int_{\Omega} \frac{\left|\eta_{N}\right|^{4}}{N^{4 \alpha}} d P<c N^{3-4 x+\varepsilon} \tag{2.16}
\end{equation*}
$$

Let $N_{m}=m^{5}$ and $\alpha=\frac{4}{5}+\varepsilon$. By (2.16) we have

$$
\sum_{m=1}^{\infty} P\left(\left|\eta_{N_{m}}\right|>N_{m}^{\frac{4}{5}+\varepsilon}\right) \leqq c \sum_{m=1}^{\infty} m^{-1-\varepsilon}<\infty .
$$

Consequently by Lemma 2 we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\eta_{N_{m}}(\omega)}{N_{m}^{\frac{4}{5}}+2 \varepsilon}=0 \tag{2.17}
\end{equation*}
$$

for all fixed $\varepsilon>0$ and for almost all $\omega \in \Omega$. Since for $N_{m} \leqq N<N_{m+1}$

$$
\begin{equation*}
\left|\eta_{N}-\eta_{N_{m}}\right| \leqq N-N_{m} \leqq N_{m+1}-N_{m} \leqq c m^{4} \leqq c N_{m}^{\frac{4}{5}}<c N^{\frac{4}{5}} \tag{2.18}
\end{equation*}
$$

therefore by (2.17)

$$
\lim _{N \rightarrow \infty} \frac{\eta_{N}(\omega)}{N^{\frac{4}{5}}+2 \varepsilon}=0
$$

for all $\varepsilon>0$ and almost all $\omega \in \Omega$.

Finally we remark, that a function $f(n) \in \mathscr{F}$ is of normal type if and only if $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(\bar{n})=0$ for all choice of $k=1,2, \ldots$ and of $\left(i_{1}, \ldots, i_{k}\right)$. This completes the proof of the theorem.
3. Theorem 2. Let $f(n)$ be a completely multiplicative function, all values of which are +1 or -1 . Assume that there exist at least two primes p_{1}, p_{2} for which $f\left(p_{1}\right)=f\left(p_{2}\right)=-1$. Then for arbitrary $\varepsilon_{1}, \varepsilon_{2}\left(\varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1\right)$ there exist infinitely many n satisfying $f(n)=\varepsilon_{1}, f(n+1)=\varepsilon_{2}$.

For $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(+1,+1)$ or $(-1,1)$ we can prove a stronger assertion. This is stated in Theorems 3 and 4.

Theorem 3. Assuming that the series

$$
\begin{equation*}
\sum_{f(p)=-1} \frac{1}{p} \tag{3.1}
\end{equation*}
$$

diverges we have

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} x^{-1} N_{f}(x, 1,1) \geqq \frac{1}{12} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} x^{-1} \dot{N}_{f}(x,-1,-1) \geqq \frac{1}{12} \tag{3.3}
\end{equation*}
$$

where $N_{f}\left(x, \varepsilon_{1}, \varepsilon_{2}\right)$ denotes the number of those n not exceeding x for which $f(n)=\varepsilon_{1}, f(n+1)=\varepsilon_{2}$. Consequently

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{1}{\dot{x}} \sum_{n \leq x} f(n) f(n+1) \geqq-\frac{5}{6} . \tag{3.4}
\end{equation*}
$$

Let \mathscr{P} be the set of those primes p for which $f(p)=-1$.
Theorem 4. Suppose that \mathscr{P} contains at least two elements and that the series $\sum_{p \in \mathcal{G}} \frac{1}{p}$ converges. Then for both values $\varepsilon=1,-1$ we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{-1} N_{f}(x, \varepsilon, \varepsilon)=\frac{1}{4}\left(1+2 \varepsilon \prod_{p \in \mathscr{P}} \frac{p-1}{p+1}+\prod_{p \in \mathscr{P}} \frac{p-3}{p+1}\right)(\stackrel{\text { def }}{=} A) \tag{3.5}
\end{equation*}
$$

The number standing on the right-hand side of (3.5) is positive.
Proof of Theorems 2, 3, and 4. First we prove Theorem 2 for $\left(\varepsilon_{1}, \varepsilon_{2}\right)=$ $=(1,-1)$ and $(-1,1)$. The remaining two cases will follow from Theorems 3 and 4 .

The assertion of Theorem 2 for $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1,-1)$ and $(-1,1)$ is equivalent to saying that $f(n)$ assumes both of the values +1 and -1 infinitely many times. For
+1 this is true since $f\left(n^{2}\right)=+1$ for all n. To show this for -1 let p be a prime for which $f(p)=-1$. Then $f\left(p^{2 k+1}\right)=-1$ for all k.

To prove Theorem 3 we need a theorem due to E. Wirsing [1], which we state as
Lemma 3. If $f(n)= \pm 1$ and the series (3.1) diverges, then

$$
\begin{equation*}
x^{-1} \sum_{x \leq x} f(n) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Let $n_{1}<n_{2}<\cdots<n_{L} \leqq x$ be the sequence of those integers for which $f\left(n_{i}\right)=-1$. Let $m_{1}<m_{2}<\cdots<m_{R} \leqq x$ denote the complementary sequence, i.e. for which $f\left(m_{i}\right)=$ $=+1$. Let $\varrho_{k}(x)$ denote the number of those n_{i} for which $n_{i+1}-n_{i}=k, n_{i} \leqq x$. Similarly, let $\tau_{k}(x)$ denote the number of m 's satisfying $m_{i+1}-m_{i}=k, m_{i} \leqq x$. From (3.6) we easily deduce

$$
\begin{equation*}
L+\dot{O}(1)=\sum_{k=1}^{\infty} \varrho_{k}(x)=\frac{x}{2}+o(x) ; \quad R+O(1)=\sum_{k=1}^{\infty} \tau_{k}(x)=\frac{x}{2}+o(x) \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} k \varrho_{k}(x)=x+o(x), \quad \sum_{k=1}^{\infty} k \tau_{k}(x)=x+o(x) \tag{3.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{k=3}^{\infty}(k-2) \varrho_{k}(x)=\varrho_{1}(x)+o(x), \quad \sum_{k=3}^{\infty}(k-2) \tau_{k}(x)=\tau_{1}(x)+o(x) \tag{3.9}
\end{equation*}
$$

follow. Consequently

$$
\begin{equation*}
\sum_{k \neq 2} k \varrho_{k}(x) \leqq 4 \varrho_{1}(x)+o(x), \sum_{k \neq 2} k \tau_{k}(x) \leqq 4 \tau_{1}(x)+o(x), \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k \neq 2} \varrho_{k}(x) \leqq 2 \varrho_{1}(x)+o(x), \quad \sum_{k \neq 2} \tau_{k}(x) \leqq 2 \tau_{1}(x)+o(x) \tag{3.11}
\end{equation*}
$$

Now we prove that $\lim _{x \rightarrow \infty} \inf x^{-1} \varrho_{1}(x) \geqq \frac{1}{12}$. The proof of the relation $\lim _{x \rightarrow \infty} \inf x^{-1} \tau_{1}(x) \geqq \frac{1}{12}$ is similar, and so we omit it. Since from (3.6)

$$
\frac{1}{x} \sum_{2 n \leqq x} f(2 n) \rightarrow 0
$$

follows, among the n 's the number of even numbers is $\frac{x}{4}+o(x)$. Hence by (3. 11) we have that there are at least $\frac{x}{4}-2 \varrho_{1}(x)-o(x)$ even n 's satisfying $n_{i+1}-n_{i}=2$. Let \mathscr{S} denote the set of these n 's.

We distinguish two cases.

Case a). $f(2)=1$. Then for $n_{i} \in \mathscr{S}$ the integers $n_{i} / 2$ and $n_{i+1} / 2$ are consecutive numbers, and furthermore $f\left(\frac{n_{i}}{2}\right)=f\left(\frac{n_{i+1}}{2}\right)=-1, \frac{n_{i}}{2} \leqq \frac{x}{2}$. Thus we have

$$
\varrho_{1}\left(\frac{x}{2}\right) \geqq \frac{x}{4}-2 \varrho_{1}(x)-o(x)
$$

whence $3 \varrho_{1}(x) \geqq \frac{x}{4}-o(x)$, i.e. $\lim \inf \frac{\varrho_{1}(x)}{x} \geqq \frac{1}{12}$, follows.
Case b). $f(2)=-1$. Then, for $n_{i} \in \mathscr{S}, \frac{n_{i}}{2}$ and $\frac{n_{i+1}}{2}$ are consecutive integers, and moreover $f^{i}\left(\frac{n_{i}}{2}\right)=f\left(\frac{n_{i+1}}{2}\right)=+1, \frac{n_{i}}{2} \equiv \frac{x}{2}$. Consequently

$$
\begin{equation*}
\tau_{1}\left(\frac{x}{2}\right) \geqq \frac{x}{4}-2 \varrho_{1}(x)+o(x) \tag{3.12}
\end{equation*}
$$

Since the interval $\left[m_{i}, m_{i+1}\right.$] for $m_{i+1}-m_{i}=k, k \geqq 3$ contains $(k-1)$ elements from among the n 's, we deduce that

$$
\varrho_{1}(x) \geqq \sum_{k=3}^{\infty}(k-2) \tau_{k}(x) ;
$$

hence by (3.12)

$$
\begin{equation*}
\varrho_{1}(x) \geqq \tau_{1}(x)+o(x) \tag{3.13}
\end{equation*}
$$

follows. From here by (3.12) we obtain.
i.e.

$$
3 \varrho_{1}(x) \geqq \frac{x}{4}+o(x),
$$

$$
\lim _{x \rightarrow \infty} x^{-1} \varrho_{1}(x) \geqq \frac{1}{12}
$$

Now we prove Theorem 4. For this we need the following
Lemma 4. [2] If $h(n)$ is a complex-valued completely multiplicative function satisfying the conditions: a) $|h(n)| \leqq 1(n=1,2, \ldots)$, and b) $\sum_{p} \frac{h(p)-1}{p}$ converges, then

$$
\begin{gathered}
\lim _{x \rightarrow \infty} x^{-1} \sum_{n \leqq x} h(n) h(n+1)=\prod_{p}\left(1+2 \sum_{\alpha=1}^{\infty} \frac{h\left(p^{\alpha}\right)-h\left(p^{\alpha-1}\right)}{p^{\alpha}}\right), \\
\lim _{x \rightarrow \infty} x^{-1} \sum_{n \leq x} h(n)=\prod_{p}\left(1+\sum_{\alpha=1}^{\infty} \frac{h\left(p^{\alpha}\right)-h\left(p^{\alpha-1}\right)}{p^{\alpha}}\right) .
\end{gathered}
$$

Observing that the conditions of Lemma 4 are satisfied for $h(n)=f(n)$ and that $4 N(x, \varepsilon, \varepsilon)=\sum_{n \leqq x}(f(n)+\varepsilon)(f(n+1)+\varepsilon)=\sum_{n \leqq x} f(n) f(n+1)+2 \varepsilon \sum_{n \leqq x} f(n)+x+0(1)$, by Lemmà 4 we obtain (3.5).

Finally we prove the positivity of A. If $3 \in \mathscr{P}$, then

$$
A \geqq \frac{1}{4}\left(1-2 \cdot \frac{2}{4} \prod_{p \in \mathscr{F}, p \neq 3} \frac{p-1}{p+1}\right)
$$

Since $\prod_{\substack{p \in \mathcal{F} \\ p \neq 3}}$ is not an empty product, it must be smaller than 1 ; so indeed $A>0$. If $3 \notin P, 2 \in \mathscr{P}$, then

$$
A \geqq \frac{1}{4}\left(1-\frac{2}{3} \prod_{p \in \mathscr{P}, p>3} \frac{p-1}{p+1}-\frac{1}{3} \prod_{p \in \mathscr{F}, p>3} \frac{p-3}{p+1}\right)
$$

Using the fact that the products on the right hand side are not empty, we again have $A>0$. If 2,3 are not belonging to \mathscr{P}, then

$$
A \geqq \frac{1}{4}\left(1-2 \prod_{p \in \mathscr{P}, p>3} \frac{p-1}{p+1}+\prod_{p>3} \frac{p-3}{p+1}\right)
$$

Using the relation $\frac{p-3}{p+1}<\left(\frac{p-1}{p+1}\right)^{2}$ for $p \geqq 3$,

$$
A \geqq \frac{1}{4}\left(1-\prod_{p \in \mathcal{F}} \frac{p-1}{p+1}\right)^{2}>0
$$

also in this case.

References

[1] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math: Acad. Sci. Hung., 18 (1967), 411-467.
[2] I. Katal, On the distribution of arithmetical functions, ibidem (to appear).

