
On random multiplicative functions 

By I. KATAI in Budapest 

1. We call f(n) a completely multiplicative (c.m.) function, if f(mn)=f(m)f(n) 
holds for all pairs m, n of positive integers. Let be the set of those c .m. functions 
which take the values + 1 and — 1 only. 

We say that a funct ion / ( « ) £ J* is of normal type, if 

(1.2) \imx-1N{n^x; f(n + i) = £i, i = 0, ...,k} = ̂ JTTY 
x 2. 

for A: = 0, 1 ,2 , ... and for all choices of e 0 = ± 1 , . . . ; sk = ± 1 . 
It would be interesting to give a necessary and sufficient condition for / ( « ) 

to be of normal type. Recently E. WIRSING [1] proved that a function / ( « ) £ ^sa t i s f ies 
(1 .1) with k = 0 if and only if 

( 1 - 2 ) 2 ! — • 
/(P)=-I P 

As is easy to see, the validity of (I . 2) is not sufficient for normality. Let for 
example / (« ) be defined as follows: / ( 2 ) = 1, and for an odd prime p let f ( p ) = 1 
or — 1 according as p s i or —1 (mod 4). Then, by an easy calculation we have 

Z f ( n ) f ( n + 4) = ^ + 1 n^x ^ 

hence it follows that / ( « ) is not a normal function. 
We shall see in the following section that almost all multiplicative functions 

are of normal type. One would think that the Liouville function /.(n) is normal . 
However we can only prove that the system l(n)=e1, X(n+ 1) = e2 has infinitely 
many solutions for an arbitrary choice of Ei — ± 1 , e 2 = ± 1 . This is a special 
case of the assertions which we shall prove in the section 3. 

2. Let c, c j , c 2 , . . . denote suitable positive constants; let e, s x , e 2 , . . . be arbitrary 
small positive constants not necessarily the same at every occurrence. Let dk(n) 
denote the number of solutions of the equation n = xlt ...,xk in positive integers 
Xj , ...,xk, and let d2(n)=d(n). 
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Let pn denote the nth prime number. Let (Q, si, P) be a probability space and 
i„ = cn(co) ( « = 1 , 2 , ...) be a sequence of independent random variables with the 
distribution P(cn = 1) = P{q„ = — 1) = Let f(n;co) be a completely multi-
plicative function which we define on the set of primes by f(p„',co) = £,n(oi). 

We have 

T h e o r e m 1. Almost all f(n; co) are of normal type-

Fox the proof we need some lemmas. 

L e m m a 1. For positive integers C, D let N(z;D,C) denote the number of 
solutions of the diophantine equation 

(2.1) x1-Dy1 = C 

in positive integers x, y satisfying xSz. Then 

(2. 2) N(z;D,C)^Cld(C2) log 2Dz. 

Perhaps this lemma is known, but I was unable to find a reference to it. W e 
prove now (2. 2). 

Without any restriction we can assume that D is a square-free number. For 
D = 1 inequality (2.2) obviously holds, therefore we assume that D > 1. 

Let KQfD) denote the quadratic extension field over the rational number-field 
generated by / D . Let R denote the ring of the algebraic integers in K(^D), and for 
a general y£R let (y) denote the principal ideal.generated by y. 

For a general solution x, y of (2. 1) let a = x + i Dy, P = x - fDy. Let . (C) = 
= ... N1/, where 7r1; ...,TZ, are different prime ideals. Using the fact that the norm of 
the ideals is a multiplicative functionand that N((C)) = C2, furthermore that N([n¡) is 

r 
a prime number or a square of a prime number we have _ / 7 ( 7 i + l ) — d(C2). 

¡=1 
Since a[i = C and a, y3£R, therefore (a)( /?)=(C) and so (a)|(C). Hence it follows 
that all the solutions can be classified into at most d(C2) classes, where two solu-
tions';»:, y; x l 5 >>! belong to the same class if and only if (a) = (x + fDy) = (c^) = 
= ( x y + Y D y i ) . Now we prove that the number of solutions of (2. 1) belonging to 
a fixed class does not exceed Cj log 2Dz, whence (2. 2) immediately shall follow. 

Let (xv ,j\T) v = 0, 1, ...., M be the all solutions in a class satisfying l S x 0 = 
S••• SxMSz, >>v = 0 and let av = x v - i - y v f D , = xv— yvYD. We have (or0) = 

= («!) = ••• = (a M ) . Therefore av = a„£v(j, ¡¡v = /?„ov(I, where eVft, ov(1 are units in R. 
Since C = xvpv = oiftPllQvlleVfl = gvllsvltC, we have QVFL = SYTI

I. Using the Dirichlet theo-
rem concerning the form of the units we see that all units have form ± £q 
( « = 0 , + 1 , + 2 , . . . ) , where e0= u ° ^ ^ , and u0, v0 are suitable positive 
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integers satisfying ul~Dvl = 4. Hence s0 > and we can assume that a„ = a0e". 

Using that x n S z and that by (2. 1) s w e have a„ ( C + l )z 

(« = 0, . . . , M). On the other hand, by aopo — C, 0 < / J o
< a o w e have a 0 > l . Hence 

e" < ( C + 1 )z, whence M ^ l ) z ^ ^ jQg ^cz follows. This completes the 
log e0 

proof of Lemma 1. 

C o r o l l a r y . For positive integers A, B, C let N(z; A, B, C) denote the number 
of solutions of 

(2.3) Ax2 — By2 = C 

in positive integers x, y, x^kz. Then 

N(z; A, B, C) siN(Az\ AB, AC) ^ cxd(A2 C2) log 2 A 2 B z . 

This is obvious. If (x, y) is a solution of (2. 3) then (Ax, y) is a solution of 
X2 —ABY2 — AC which proves the Corollary. 

L e m m a 2. (Borel—Cantelli) Let A l , A2, ... be an infinite sequence of sets in 
(Q,A,P) and let 2 F(Aj) < Then almost all co in Q are belonging to finitely 

y= I 
many A{ only. 

P r o o f of T h e o r e m 1. Let 0 < z 1 < z 2 < ••• <ik be arbitrary but fixed inte-
gers. For a general integer n let it = (n + iy)...(n + ik). Let us introduce the nota-
tion 

(2.4)-(2. 5) RJN(OJ) = 2 fin, CA); MI<N = / ( Œ ) ) 1 dP. 
n= 1 

First we give a non-trivial estimation for M 4 J V , whence by using the Borel—Can-
telli lemma we deduce that lim riN(co)IN = 0 for almost all co£Q. N-* OO 

It is obvious, that 
m*,n = 2 Jf(nln2n3n4;o})dP, 

n.,nj, n-,, IÎa 

where in the sum /?1; n2, n3, nA run independently over the values 1,2, ..., N. Using 

Jf(m; cû)dP= 1 or 0 according to m is a square-number, or not, we have that M 4 > N 

a 

is equal to the number of solutions of the equation 

(2.6) niii2n3n4 = X2 

in unknowns « ! , n2, n3, «4, X, satisfying l S w . S N (z = l , 2 , 3, 4). 
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For a fixed square-free integer E( > 0 ) let / / ( £ ) denote the number of solutions 
of the equation 

nlii2=EY2; 1 S n ^ N , 

in unknowns nlt n2, Y. 
It is obvious that if n i , n 2 , n 3 , n 4 is a solution of (2. 6) then the square-free 

parts of the numbers ii1 j j2 , ' b h 4 are the same. Hence we have 

E 
and consequently 
(2.7) ( m a x / / ( £ ) ) 2 

£ 

Observing that £ H(E) = N2 (since the number of the choice of all pairs n , , n2, 
E 

1 ^ » ¡ S N is JV2) we have 

(2.8) MA N^N2maxH(E). 
' £ 

N o w we estimate H(E). For a general positive square-free A let G(A) denote 
the number of n^N which can be written in the fo rm 

(2.9) n = AZ2, 

where Z is a suitable integer. Then we have 

(2.10) H(E) s 2 2G{ElU)G(E2U), 

where in the right hand side Ei runs over the divisors of E and U over the set of all 
square-free integers coprime to E. 

For k=\ we evidently have G(A)^ N\ A. Consequently by (2. 10) 

^ 2 TF Z V - N Z R D { E ) - C M ° * N ' £,E2 = £ P^ VslS V & . 

and hence by (2. 8) 
(2.11) M^K^CN3 \ogN:-

Assume now that k^2. Consider the solutions of n = AZ2. Since the numbers 
n + , n + ij2 have no common prime-divisors greater than ij2—i}i if j\ ^j'2 > f ° r an 
n satisfying (2. 9) we have 

(2.12) n + ij = RjCjZj (J = 2, . . . , k), 

where R j , C j are square-free numbers, the prime factors of R j are not greater than 
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k 

ik~i1 and the prime factors of Cj are greater than ik—and J] Cj\A. If n is a solu-
j = i 

tion of (2. 12), then 
(2.13) i2 — i! = R2C2Zi~R1C1Zl 

holds with suitable Zy, Z2 = N. Using the Corollary to Lemma 1 we have that the 
number of solutions of (2. 13) with Z , , Z 2 S A^is at most c1 d((Rx Cl(i2 — i1))2) log Ns 
^ctNr>. 

The number of all possible pairs of Rt, R2 occurring in (2. 12) is bounded for 
fixed /',, i2, ..., ik. The number of couples (R{, R2) is at most d2(A)ScNC2, since 
C1C1\A. Therefore 

(2.14) G(A)-jecNc. 

Using (2. 10) and the fact that the number of those A which occur as the square-
free part of a number n for some tfSN is at most N, we have 

H(E)scN1 + c. 
Hence by (2. 8) 
(2.15) .-•> M 4 j N ^ c N 3 + e 

follows. 
Using (2. 11) or (2. 15) according as k= 1 or we have 

(2.16) P(\nN\ - N*) - J ^ d P < cN3-*>+°. 
si 

4 

Let Nm=ms and a = — + e. By (2. 16) we have . • 

2 PQrisJ > N j + ) ^ c 1 m-'1-« 
m = 1 '"=1 Consequently by Lemma 2 we have , , -

(2.17) lim = 0 
Ns ' 

m 

for all fixed e > 0 and for almost all a>£Q. Since for N m ^ N < N m + l 

•• ' ' i : £ (2.18) : ^ Nm+l — Nm cm4 s < ciV5, 
therefore by (2. 17) 

lim n 4 0 , ) = 0 . : . 4 
J V 5 

for all £ > 0 and almost all a £ 

r+2e 
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Finally we remark, that a function / ( n ) i J 5 " is of normal type if and only if 
1 N _ 

lim — y. / ( « ) = 0 for all choice of k = 1, 2, ... and of ( /1 ( . . . , ik). This completes 

the proof of the theorem. 

3. T h e o r e m 2. Let f(n) be a completely multiplicative function, all values of 
which are +1 or —1. Assume that there exist at least two primes pt, p2 for'which 
f(pi)=f(p2) = — 1. Then for arbitrary e1; e2 (eL = ± 1, s2 =±1) there exist in-
finitely many n satisfying f(n)=e L, f(n +1) = E2. 

For (£1 ; £ 2 ) = ( + l , + 1 ) or (—1, 1) we can prove a stronger assertion. This is 
stated in Theorems 3 and 4. 

T h e o r e m 3. Assuming that the series 

z 
f ( p ) = - 1 p 

(3.1) X t 

diverges we have 

(3 .2) lim inf 1 Nf(x, 1,1) S 
J. 
1 2 ' 

1 
(3. 3) l i m i n f x - 1 ^ ^ , - 1, - 1) s — , 

where Nf(x, £,, £2) denotes the number of those n not exceeding x for which 
f(n)=E1, f(n +1) = e2. Consequently 

(3.4) l iminf 
X NSJC O 

Let 2P be the set of those primes p fo r which f ( p ) =—1. 

T h e o r e m 4. Suppose that & contains at least two elements and that the series 

converges. Then for both values £ = 1, —1 we have 
p 

(3. 5) lim x - 1 Ar / (*, E j £) = 1 (1 + 2 e # ^ + / J ( M A ) . 
4 I PZ& p+i pz<s> p+y ) 

The number standing on the right-hand side of (3. 5) is positive. 

P r o o f o f T h e o r e m s 2, 3, a n d 4. First we prove Theorem 2 for ( £ 1 ; £ 2 ) = 
= ( 1 , —1) and (—1, 1). The remaining two cases will follow f r o m Theorems 3 and 4. 

The assertion of Theorem 2 for ( e 1 , e 2 ) = ( l , - 1 ) and ( - 1 , 1) is equivalent to 
saying that f(n) assumes both of the values + 1 and —1 infinitely many times. Fo r 
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+ 1 this is true since/(w2) = + 1 for all n. To show this for —1 let p be a prime for 
. which f ( p ) = - 1 . Then f(p2k+i) = - 1 for all k. 

To prove Theorem 3 we need a theorem due to E. WIRSING [1], which we state as 

L E M M A 3 . If f(n) = ± 1 and the series ( 3 . 1 ) diverges, then 

(3 .6 ) x~x 2f(n)-Q as x — oo. 
X^X ' 

Let / ¡ 1 < n 2 < - - < i ) i s j ; be the sequence of those integers for which/(«¡) = — 1. 
Let m 1 < m 2 < — d e n o t e the complementary sequence, i.e. for w h i c h / ( « , ) = 
= + 1. Let Qk(x) denote the number of those щ for which щ+1—щ = к, n^x. 

. Similarly, let тк(х) denote the number of w's satisfying m i + i — т^ = k, m ^ x . 
From (3. 6) we easily deduce 

< 3 . 7 ) ¿ + 0 ( 1 ) = 2 Qk{x) = ' - J + 0(x), Л + 0 ( 1 ) = 2 Ч ( Х ) = 4 + O ( X ) 
k=l k= 1 

<3. 8) 2 kek(x) = x + o(x), 2 kxk(x) = x + o(x). 
k = l k=1 

Hence 

(3. 9) 2 (к-2)вк(х) = в1(х) + о(х), 2 (к~2)ч(х) = т1(х) + о(х) 
к=3 к=3 

follow. Consequently 

(3.10) 2 kQk{x) s 4qv(x) + o(x), 2 kxk(x) sS 4 T l (x ) + o{x), 
k*2 k*2 

(3.11) 2 вк(х)^2в1(х) + о(х), 2 rk(x) = 2rl(x) + o(x). 

Now we prove that lim i n f x - 1 i ? i ( x ) s The proof of the relation 
12 

lim i n f x ^ r ^ x ) S - ^ r - is similar, and so we omit it. Since from (3.6) x—<*> 12 

' 2 f(2n) — 0 
1 ' X 2 B S I 

X 
follows, among the >is the number of even numbers is — b o(x). Hence by (3. 11) 

4 
.v . ' . " - • ' 

we have that there are at least- 2Q1(X) — O(X) even n's satisfying ni+l—ni = 2. 4 

Let Sf denote the set of these n's. •• 
We distinguish two cases. 
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Case a). / ( 2 ) = 1. Then for n^Sf the integers nJ2 and ni+1/2 are consecutive 

numbers, and f u r t h e r m o r e / | ~ j j = / I ' - y ' j 
W; x 

1, — ^ — . Thus we have 
2 2 

E I ( T J ~ 

V 0 (jc) 1 
whence i — o(.r), i.e. lim inf s - j y , follows. 

Case b ) . / (2 ) = — l . T h e n , and ' are consecutive integers, and 

moreover / ( - y ) = / ( ] = + 1 , y s -^- . .Consequently 

(3.12) t ^ ) ^ ^ (*) + *(*). 

Since the interval [m(, w i + 1 ] for /w i + 1 —/wf = k , k ^ 3 contains (A: — 1) elements 
f r o m among the «'s, we deduce that 

<?,(*)• S 2(k-2)xk(x); . 

hence by (3. 12) v 

(3 .13) ^ . W ^ . W + o W . , 

follows. From here by (3. 12) we obtain. 

x 
30i (*) £ j + o W , 

i.e. • lim x ~ V i ( * ) £ - ^ r . 
°° iz 

N o w we prove Theorem 4. For this we need the following . , 

L e m m a 4. [2] If h(n) is a complex-valued completely multiplicative function 

satisfying the conditions: a) \h(n)\ s l(/i = 1 ,2 , . . .), and b) Z * conver-
p P' 

ges, then )ii 

lim ZmHn+1) = 7 7 ( 1 + 2 , 
n-'X p \ a - 1 P ) ' -

l i - x - 2 * » - / 7 ( 1 + 1 ^ = ^ ] . « S i p I *=l Pa ) 
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Observing that the conditions of Lemma 4 are satisfied for h(n)=f(n) and tha t 

4N(x,e,e) = 2 ( /(«) + E)(/(n + l) + e) = 2 / ( " ) / ( " + 1) + 2E 2 / ( » ) + * +0(1) , nil OSI «Si 
by Lemma 4 we obtain (3. 5); 

Finally we prove the positivity of A..If 3£3?, then 

4 I A p J + ^ p + l ) 

Since JJ is not an empty product, it must be smaller than 1; so indeed /1 > 0 . IF 
pi» 

2 (i then 

1 7 P ~ 1 1 / 7 p ~ 3 ) 

Using the fact that the products on the right hand side are not empty, we agairu 
have A > 0 . If 2, 3 are not belonging to then 

^ j i i - 2 n n^'4. 
4 l P i » , p>3 P + 1 J 

Using the relation ——^ < (——H for o s 3 , 
p+l Kp + 1) 

4{ P\ip+1} 
also in this case. 
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