On random multiplicative functions

" By I. KATAI in Budapest -

- 1. We call f(n) a completely multiplicative (c. m') function,- if f(mn) =f(m) f(n)
- holds for all pairs m, n of positive integers. Let & be the set of those c.m. functions.
which take the values +1 and —1 only. _

We say that a function f(n) ¢ Z is of normal type,- if

o - 1
12 limx~!N{n=x; f(a+i)=e; i=0,....k} = Pl

for k= v0 1,2, ... and for all choices of g5 = +1,...; g = £1.

It would be mterestmg to give a necessary and sufﬁcwnt condition for f(n)'
© to be of normal type. Recently E. WiRsING [1] proved that a functlon f(n) 69" satisfies-
(1. 1) with k=0 if and only if

: , 1

(1.2) - 2 —=c.
o ’ fy=—1P : o

As is easy to see, the validity of (1. 2) is not sufficient for normality. Let for .
example f(n) be defined as follows: f(2)=1, and for an odd. prime p let f(p)=1 -
or —1 according as p=1 or —1 (mod 4). Then, by an easy calculation we have

Z’ f(n)f(n+4) —+o(x>

hence it follows that f(#) is not a normal function.

We shall see in the following section that almost all multiplicative functions
are of normal type. One would think that the Liouville function A(n) is normal.
However we can only prove that the system A(n) =¢,, A(n+.1) = ¢, has infinitely
many solutions for an arbitrary choice of &, ==+1, ¢, = = 1. This is a special
case of the assertions which we shall prove in the section 3. B

2. Let ¢, ¢y, c,, ... denote suitable positive constants; let g, ¢, , €, ....be arbitrary
small positive constants not necessarily the same at every occurrence. Let dj(n)
denote the number of solutions of the equation n=x,, ..., x, in.positive integers
X5 .5 Xg, and let d,(n)=d(n). : :
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Let p, denote the ath prime number. Let (Q, &7, P) be a probability space and

. & =E(w) (n=1,2,...) be a sequence of independent random variables with the

distribution P(¢, = 1) = P&, =—1) = L. Let f(n; ®w) be a completely multi-
plicative function which we define on the set of primes by f(p,; ®)=¢,(w).

We have
Theorem 1. Almost all f(n; w) are of normal type.
For the proof we need some lemmas.

Lemma 1. For positive integers C, D let N(z; D, C) denote the number of
solutions of the diophantine equation

) : xXX—Dy* =C
in positive integers x, y satisfying x =z. Then
.2) ' N(z; D, C)=c,d(C?) log 2Dz.

Perhaps this lemma is known, but T was unable to find a reference to it. We
prove now (2.2). : : :

Without any restriction we can assume that D is a square-free number. For
D=1 inequality (2.2) obviously holds, therefore we assume that D>1.

Let K(YD) denote the quadratic extension field over the rational number-field
generated by JD. Let R denote the ring of the algebraic integers in K(}D), and for
a general y€R let-(y) denote the principal ideal generated by 7. '

For a general solution x, y of (2. 1) let = x+VDy, B = x—-VDy. Let (C) =
=mni'... 1), where m,, ..., 7, are different prime ideals. Using the fact that the norm of
the ideals is a multiplicative functionand that N((C)) = C?, furthermore that N(r,) is

a prime number or a square of a prime number we have H(y,-i—]) = d(C?).

Since aff=C and «, € R, therefore (x)(f)= (C) and so (a)[(C) Hence it follows
that all the solutions can be classified into at most d(C?) classes; where two solu-
" tions;x, y; x,, y; belong to the same class if and only if («) = (x+VDy) = (a,) =
= (x,+VDy,). Now we prove that the number of solutions of (2. 1) belonging to
a fixed class does not exceed ¢, log 2Dz, whence (2. 2) immediately shall follow.

Let (x,,y,) v=0,1, ..., M be the all solutions in a class satisfying 1 =x,=
=X =-=xy=z p,=0and let o, = x,+,VD, B, = x,—»,JD. We have (x,) =
- =(a;)=--- =(ay). Therefore a,=a,¢,,, p,=p,0,,, where ¢, o,, are units in R.
Since C4avﬂv:a 1 Oy = 008, C, We have g, =¢;.'. Using the Dirichlet theo-
Tem concernmg the form of the units we see that all units have form + ¢

n=0, il, +2,...), where so—__;/_’ﬂ, and wu,, v, are suitable positive
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VD

integ'éré satisfying u2 — Dvk = 4. Hence ¢, > 5 and we can assume that o, = o, "
’ Ct+22 _Cz |
=", we have a, = (C+1)z
ey €+
(n=0, ..., M). On the other hand, by «yf,=C, 0 <f,<a, we have o, >1. Hence

log (C+ 1)z .
& < (C+ 1)z, whence M = # = ¢, log 2Cz follows. This completes the
0g &, ~

Using that x,=z and that by (2. 1) jz,, = V

proof of Lemma 1.

Corollary. For positive integers A, B, C let N(z; A, B, C) denote the number
of solutions of

(2.3) - AX*— By = C
in positive integers x, y, x=z. Then
N(z; 4, B, C)=N(4z; AB, AC)=c,d(A*C?) log 24*Bz.
This is obvious. If (x, y) is a solution of (2. 3) then (Ax, y) is a solution of
— ABY? = AC which proves the Corollary.

Lemma 2. (Borel—Cantelli) Let A, A,, .. . be an infinite sequence of sets in
(Q, A, P) and let Z P(A;)<<e. Then almost all o in Q are belongmg to ﬁmtely

many A only

Proof of Theorem 1. Let 0<i, <i, <---<{, be arbitrary but fixed inte-
gers. For a general integer n let i = (n+i,).. (n+zk) Let us introduce the nota-
tion :

CARS  m©) = 2 [ 0) M= [ tw@)ar.

First we give a non-trivial estimation for M, y, whence by using the Borel—Can-
telli lemma we deduce that llm 11y (w)/N =0 for almost all w€ Q.

It is obvious, that
Myy= 2 ff(ﬁ1ﬁ2ﬁ3ﬁ4;w)dP,

ny,ny, 3, 0

where in the sum ”1, n,, ny, 04 TUN mdependently over the values 1, 2, ..., N. Using

f f(m; w)dP =1 or 0 according to m is a square- number or not, we have that M, y
is equal to the number of solutions of the equation

(2.6) i fiyfiyfiy=X?

in unknoWns nys Mgy N3, s, X; satisfying 1=m,=N (i=1,2,3,4).

6
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For a fixed square-free integer E(=0) let H(E) denote the number of solutions
of the equation
mia,=EY?;, 1=n=N, 1=n,=N

in unknowns ny, n,, Y. :
It is obvious that if n,, n,,n;, n, is a solution of (2. 6) then the square-free
parts of the numbers i1,7,, #i; i1, are the same. Hence we have

) . M4,N:§H2(E)’
and consequently _
@0 ' : M4’N§(mé1x H(E))%’H(E).

Obsefving that Z’H(E):NZ' (since the number of the choice of all pairs n,, n,, |
. I=n=Nis N?) vfe have
@.8) M, v = N?max H(E).

NGW we esfimate H(E). For a general positive square-free A let G(4) denote
the number of n=N which can be written in the form
2.9) - i=AZ2,
where Z is a suitable integer. Then we‘ have

 (2.10) - H(E)= 2 3 G(EU)G(E,D),

where in the right hand side E1 runs over the d1v1sors of E and U over the set of all

square-free integers coprime to E.
For k=1 we ev1dently have G(A)<}/N/A Consequently by (2. 10)

HE)s > 2’ = NlogNd(E) = cNlog N,

E\E,=E VE U=N VE

and hence by (2. 8)
2.11) ' _ M, y=cN?log N:

Assume now that k=2. Consider the solutions of i=AZ2. Since the numbers
n+i; , n+i; have no common prime-divisors greater than i; —i; if j, #j,, for an
n satisfying (2. 9) we have :

(2.12) n+i, = R,C;Z}  (j=1,2,..,k),

~where R;, C; are square-free numbers, the prime factors of R; are not greater than
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i,—i; and the prlme factors of C; are greater than i, —i; and ]] Cil4. ¥ n 1s a solu-

tion of (2. 12), then
(2.13) iZ—il = RzCzZ%“Rlclzf

holds with suitable Z,, Z,=N. Using'the CoroHary to Lemma 1 we have that the

number of solutlons of 2. 13) with Z,, Z2 =Nisatmost¢, d((R1 C (12 —iy))?) log N<

<C N, .
The number of all p0351ble pairs of R,, R, occurring in (2. 12) is ‘bounded for

fixed i,, i;, ..., iy. The number of couples (Ry, Ry) is at most d*(A)=cN®, since
C,GC,|A. Therefore :

(2.14) ' C G(4)=cN".
Using (2. 10) and the fact that the number of those A which occur as the square-
free part of a number 7 for some n=N is at most N, we have
. H(E)=cN'*=
Hence by (2.8) .
2.15) - e My §cN3+“’
follows.
Using (2. 11) or (2. 15) accordmg as k=1 or k=2, we have

(2.16) P(Ir]NI > N% = %’i dP < cN3-42%¢,
i ' 2

- N . 4 N : .
Let N,=m> and « =—5—+a. By (2. 16) we have -

Z’ P(lny,.] > N"51 ) =c Z’ m >“;‘ < oo,

. m= m=

Consequently by Lemma 2 we have -

Q.17) ' : - Iim. M =0
A e N?+28 ; N _ s
for all fixed ¢=0 and for almost all w¢ Q. S?nce for N,=N<N,,,,
L ) - s C Ca

< ¢N5,

_Eu-lh .

@18)  |iy—fy| = N=Np = Npyy—N, = cm* = cN
therefore by (2.17) - -
o S gim @

N—oo g
5+

“for all e>0 and almost all w € Q. )
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Finall)'rziwé remark, that a function f(n)€# is of normal type if and only -if
1w A , _ )
Igim v > f(n)=0 for all choice of k=1,2,... and of (i, ..., iy). This completes
— cO n=1 - ’ . e
the proof of the theorem.

3. Theorem 2. Let f(n) be a completely multiplicative function, all values of
which are +1 or —1. Assume that there exist at least two primes p, p, for which
f(p)=f(p;)=—1. Then for arbitrary ¢,, ¢, (¢, =x1, ¢, =*x1) there exist in-
finitely many n satisfying f(n)=¢,, f(n+1) =g,. '

For (¢, &,)=(+1, +1) or (—1, 1) we can prove a stronger assertion. This is
stated in Theorems 3 and 4.

Theorem 3. Assuming that the series

1
3.1 =
G- f(p)=—1 P
diverges we have
3.2 _ llmmfx 1Nf(x 1, 1)>_1§
(3.3) ) lmlmfx‘le(x —1, _1)5%,

where N,(x,¢&,,€,) denotes the number of those n not exceedmg x for whlch
f(n)—sl, f(n+1) = &,. Consequently

e 1.m.nf_§f(,,)f(n+1)__i

Let 2 be the set of those primes p for which f(p) = —
Theorem 4. Suppose that P contains at least two elements and that the series

1
2, — converges. Then for both values e=1, —1 we have
pEF D

(3.5 hm x~ 1Nf(x g, s) ——[1+2a

H (def A )

ry) P+1 pEP P+l J
The number standmg on the right-hand side of (3. 5) is positive. ‘

Proof of Theorems 2, 3, and 4. First we prove Theorem 2 for (g, ¢,) =
=(1, —1) and (—1, 1). The remaining two cases will follow from Theorems 3 and 4.
The assertion of Theorem 2 for (e, &,)=(1, —1) and (—1, 1) is equivalent to
saying that f(n) assumes both of the values +1 and —1 infinitely many times. For
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+1 this is true since f(n?) = +1 for all n. To show this for —1 let p be a prime for
. which f(p) = —1. Then f(p**') =—1 for all k.

To prove Theorem 3 we need a theorem due to E. WIRSING [1], which we state as

LemMa 3. If f(n) =+1 and the series (3.-1') “diverges, then

(3.6) x7t Zf(n) 0 as x—oo.
Let n1<n2<...<nL§x be the sequence of those integers for which f(n;) =—1.
Let mj<m,<---<mg=x denote the complementary sequence, i.e. for which f(m;)=.

=+41. Let Qk(x) denote the number of those n; for which n,,,—n, = k, n,=x.
. Similarly, let 7,(x) denote the number of m’s satlsfymg My —~my; =k, m=x.
-From (3. 6) we easily deduce

(3.7 L+O(l)= Z’Qk(x) +0(X) R+0() = ka(X) —+0(X)

(3. S) . ki ko, (x) = x +o(;c), ‘ 2’1 kt (x) = x.4.-o(x).
Hence B o

6y 3 (k=2e ) = W+, 3 k=Du = 1 () +o(0)

follow. Consequently A

.10) 3 k() = 4@ +o(), - 3 k() = 41,(x) +o (),
GI) - Tal =200, I ul) = 2609+0().

Now we prove that lim infx~1g, (x) = 112 The proof of the-relatiOn

lim inf x~ rl(x) = _17 is similar, and so we omit it. Since from (3 6)

xoo 1

— 2 f(zn)»o

2n5x
follows, amr)ng the n’s the number of even numbers is %4— o(x). Hence by'x(3; ~l~l)

we have that there are at least z—Zgl(x) o(x) even n’s satrsfymg n,+ =2,

Let ¥ denote the set of these n’s.
' We distinguish two cases.
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Case a). f(ﬁ):l Then for n;€ & the integers n;/2 and n;,,/2 are consecutive

numbers, and furthermoref[ ] f[ '“] =—1, n_z, = % Thus we have

. le (%] = %_291(-")_0(3‘),

]2 follows

whence 3¢,(x) = %—o(r) i.e. liminf Q‘\E ) =

Case b). f(2) = — 1. Then, for n; 69’ £ and L 2 are consecutive mtegers and

.. Consequently

Il/\

moreoverfi%) =f( '51 ) =+1, %

A

3.12) B T, [%] = %--2@l1(x)+o(x).

Since the interval [m;, m;, ] for m;, , —m; = k, k=3 contains (k — 1) elements
from among the n’s, we deduce that B

a2 3 (=2)n09; -
~ hence by (3.12) ' . ' W
(3.13) ' () 21 (x)+o(x)

follows. From here by 3. 12) we obtain.
A .
30,() = J+o(¥),

. : - 1
e imrla@ =g
Now we prove Theorem 4. For this we need the following

Lemma 4. [2] If h(n) is a complex-u_alued completely multiplicative Junction

satisfying the conditions: a) |h(n)| = l(n =1,2,..), and .b) Zh(—p;i conver-
ry

ges, then - : . N

Jim x-* 2h(n)h(n+1)— ]][1+2 gﬂﬂ;—f@ﬁ],

n=x

n=x

lim x=* 2 h(r) = H[‘*gm—%@} -
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Observing thaf the conditions of Lemma 4 are satisfied for h(n) =f(n) and that
AN(x,6,8) = S (fm+e)(f(n+1)+e) = 2 S f(n +1)+ 2 Z’f(h)+x +0(1),

by Lemma 4 we obtain (3. 5).
Finally we prove the positivity of 4. If 3¢ 2, then

1 p—1
A= —|1-2-%
4[ 4pe9]Z¢3P+1

Since ]I is not an empty product it must be smaller than 1; so indeed A>0 If

pEF
p#3

3¢P, 2¢2, then
' 1 2 p—1 L p—3]
A= —|1—-= —_— —1.
4 3p6£>3 p+1 3 pEQIZ>3 p+1
Using the fact that the products on the right hand side are not empty, we again
have 4>0. If 2, 3 are not belonging to £, then

|

[ p€9p>3p+1 p>3p+1]

=

M

Using the relatlon ] for p>3

also in this case. -
References
[1} E. WiIrsSING, Das asymptotische Verhalten von Summen iiber multiplikati\}e Funktionen. II,

Acta Math, Acad. Sci. Hung.,‘18 (1967), 411—467.
[2} 1. KATAlL On the distribution of arithmetical functions, ibidem (to appear).

( Received January -50, 1969)



