## On random multiplicative functions

By I. KÁTAI in Budapest

1. We call f(n) a completely multiplicative (c.m.) function, if f(mn) = f(m) f(n) holds for all pairs m, n of positive integers. Let  $\mathscr{F}$  be the set of those c. m. functions which take the values +1 and -1 only.

We say that a function  $f(n) \in \mathcal{F}$  is of normal type, if

(1.2) 
$$\lim_{x} x^{-1} N\{n \le x; \ f(n+i) = \varepsilon_i, \ i = 0, ..., k\} = \frac{1}{2^{k+1}}$$

for k=0, 1, 2, ... and for all choices of  $\varepsilon_0=\pm 1, ...;$   $\varepsilon_k=\pm 1.$ 

It would be interesting to give a necessary and sufficient condition for f(n) to be of normal type. Recently E. Wirsing [1] proved that a function  $f(n) \in \mathcal{F}$  satisfies (1.1) with k=0 if and only if

(1.2) 
$$\sum_{f(p)=-1} \frac{1}{p} = \infty.$$

As is easy to see, the validity of (1.2) is not sufficient for normality. Let for example f(n) be defined as follows: f(2) = 1, and for an odd prime p let f(p) = 1 or -1 according as  $p \equiv 1$  or  $-1 \pmod{4}$ . Then, by an easy calculation we have

$$\sum_{n\leq x} f(n)f(n+4) = \frac{x}{4} + o(x);$$

hence it follows that f(n) is not a normal function.

We shall see in the following section that almost all multiplicative functions are of normal type. One would think that the Liouville function  $\lambda(n)$  is normal. However we can only prove that the system  $\lambda(n) = \varepsilon_1$ ,  $\lambda(n+1) = \varepsilon_2$  has infinitely many solutions for an arbitrary choice of  $\varepsilon_1 = \pm 1$ ,  $\varepsilon_2 = \pm 1$ . This is a special case of the assertions which we shall prove in the section 3.

2. Let  $c, c_1, c_2, \ldots$  denote suitable positive constants; let  $\varepsilon, \varepsilon_1, \varepsilon_2, \ldots$  be arbitrary small positive constants not necessarily the same at every occurrence. Let  $d_k(n)$  denote the number of solutions of the equation  $n = x_1, \ldots, x_k$  in positive integers  $x_1, \ldots, x_k$ , and let  $d_2(n) = d(n)$ .

82 I. Kátai

Let  $p_n$  denote the *n*th prime number. Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $\xi_n = \xi_n(\omega)$  (n = 1, 2, ...) be a sequence of independent random variables with the distribution  $P(\xi_n = 1) = P(\xi_n = -1) = \frac{1}{2}$ . Let  $f(n; \omega)$  be a completely multiplicative function which we define on the set of primes by  $f(p_n; \omega) = \xi_n(\omega)$ .

We have

Theorem 1. Almost all  $f(n; \omega)$  are of normal type.

For the proof we need some lemmas.

Lemma 1. For positive integers C, D let N(z; D, C) denote the number of solutions of the diophantine equation

$$(2.1) x^2 - Dy^2 = C$$

in positive integers x, y satisfying  $x \le z$ . Then

(2. 2) 
$$N(z; D, C) \le c_1 d(C^2) \log 2Dz$$
.

Perhaps this lemma is known, but I was unable to find a reference to it. We prove now (2.2).

Without any restriction we can assume that D is a square-free number. For D=1 inequality (2.2) obviously holds, therefore we assume that D>1.

Let  $K(\sqrt{D})$  denote the quadratic extension field over the rational number-field generated by  $\sqrt{D}$ . Let R denote the ring of the algebraic integers in  $K(\sqrt{D})$ , and for a general  $\gamma \in R$  let  $(\gamma)$  denote the principal ideal generated by  $\gamma$ .

For a general solution x, y of (2.1) let  $\alpha = x + \sqrt{D}y$ ,  $\beta = x - \sqrt{D}y$ . Let  $(C) = \pi_1^{\gamma_1} \dots \pi_r^{\gamma_r}$ , where  $\pi_1, \dots, \pi_r$  are different prime ideals. Using the fact that the norm of the ideals is a multiplicative functionand that  $N((C)) = C^2$ , furthermore that  $N(\pi_i)$  is a prime number or a square of a prime number we have  $\prod_{i=1}^r (\gamma_i + 1) \leq d(C^2)$ . Since  $\alpha\beta = C$  and  $\alpha$ ,  $\beta \in R$ , therefore  $(\alpha)(\beta) = (C)$  and so  $(\alpha)|(C)$ . Hence it follows that all the solutions can be classified into at most  $d(C^2)$  classes, where two solutions  $(x, y; x_1, y_1)$  belong to the same class if and only if  $(\alpha) = (x + \sqrt{D}y) = (\alpha_1) = (x_1 + \sqrt{D}y_1)$ . Now we prove that the number of solutions of (2.1) belonging to a fixed class does not exceed  $(\alpha_1 \log 2Dz)$ , whence (2.2) immediately shall follow.

Let  $(x_v, y_v)$  v = 0, 1, ..., M be the all solutions in a class satisfying  $1 \le x_0 \le x_1 \le ... \le x_M \le z$ ,  $y_v \ge 0$  and let  $\alpha_v = x_v + y_v \sqrt{D}$ ,  $\beta_v = x_v - y_v \sqrt{D}$ . We have  $(\alpha_0) = (\alpha_1) = ... = (\alpha_M)$ . Therefore  $\alpha_v = \alpha_\mu \varepsilon_{v\mu}$ ,  $\beta_v = \beta_\mu \varrho_{v\mu}$ , where  $\varepsilon_{v\mu}$ ,  $\varrho_{v\mu}$  are units in R. Since  $C = \alpha_v \beta_v = \alpha_\mu \beta_\mu \varrho_{v\mu} \varepsilon_{v\mu} = \varrho_{v\mu} \varepsilon_{v\mu} C$ , we have  $\varrho_{v\mu} = \varepsilon_{v\mu}^{-1}$ . Using the Dirichlet theorem concerning the form of the units we see that all units have form  $\pm \varepsilon_0^n$   $(n = 0, \pm 1, \pm 2, ...)$ , where  $\varepsilon_0 = \frac{u_0 + \sqrt{D} \varrho_0}{2}$ , and  $u_0$ ,  $v_0$  are suitable positive

integers satisfying  $u_0^2 - Dv_0^2 = 4$ . Hence  $\varepsilon_0 > \frac{\sqrt[4]{D}}{2}$  and we can assume that  $\alpha_n = \alpha_0 \varepsilon^n$ .

Using that  $x_n \le z$  and that by (2. 1)  $y_n \le \sqrt{\frac{C+z^2}{D}} \le \frac{Cz}{D}$ , we have  $\alpha_n \le (C+1)z$   $(n=0,\ldots,M)$ . On the other hand, by  $\alpha_0 \beta_0 = C$ ,  $0 < \beta_0 < \alpha_0$  we have  $\alpha_0 > 1$ . Hence  $\varepsilon^n < (C+1)z$ , whence  $M \le \frac{\log(C+1)z}{\log \varepsilon_0} \le c_1 \log 2Cz$  follows. This completes the proof of Lemma 1.

Corollary. For positive integers A, B, C let N(z; A, B, C) denote the number of solutions of

$$(2.3) Ax^2 - By^2 = C$$

in positive integers  $x, y, x \le z$ . Then

$$N(z; A, B, C) \le N(Az; AB, AC) \le c_1 d(A^2 C^2) \log 2A^2 Bz.$$

This is obvious. If (x, y) is a solution of (2.3) then (Ax, y) is a solution of  $X^2 - ABY^2 = AC$  which proves the Corollary.

Lemma 2. (Borel—Cantelli) Let  $A_1, A_2, ...$  be an infinite sequence of sets in  $(\Omega, A, P)$  and let  $\sum_{j=1}^{\infty} P(A_j) < \infty$ . Then almost all  $\omega$  in  $\Omega$  are belonging to finitely many  $A_i$  only.

Proof of Theorem 1. Let  $0 < i_1 < i_2 < \cdots < i_k$  be arbitrary but fixed integers. For a general integer n let  $\bar{n} = (n+i_1)...(n+i_k)$ . Let us introduce the notation

(2.4)-(2.5) 
$$\eta_N(\omega) = \sum_{n=1}^N f(\bar{n}, \omega); \quad M_{l,N} = \int_{\Omega} (\eta_N(\omega))^l dP.$$

First we give a non-trivial estimation for  $M_{4,N}$ , whence by using the Borel—Cantelli lemma we deduce that  $\lim_{N\to\infty} \eta_N(\omega)/N = 0$  for almost all  $\omega \in \Omega$ .

It is obvious, that

$$M_{4,N} = \sum_{n_1, n_2, n_3, n_4} \int_{\Omega} f(\bar{n}_1 \bar{n}_2 \bar{n}_3 \bar{n}_4; \omega) dP,$$

where in the sum  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_4$  run independently over the values 1, 2, ..., N. Using  $\int_{\Omega} f(m; \omega) dP = 1$  or 0 according to m is a square-number, or not, we have that  $M_{4,N}$  is equal to the number of solutions of the equation

$$(2.6) \bar{n}_1 \, \bar{n}_2 \, \bar{n}_3 \, \bar{n}_4 = X^2$$

in unknowns  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_4$ , X, satisfying  $1 \le n_i \le N$  (i = 1, 2, 3, 4).

84 I. Kátai

For a fixed square-free integer E(>0) let H(E) denote the number of solutions of the equation

$$\bar{n}_1 \bar{n}_2 = EY^2; \quad 1 \le n_1 \le N, \quad 1 \le n_2 \le N$$

in unknowns  $n_1$ ,  $n_2$ , Y.

It is obvious that if  $n_1$ ,  $n_2$ ,  $n_3$ ,  $n_4$  is a solution of (2.6) then the square-free parts of the numbers  $\bar{n}_1\bar{n}_2$ ,  $\bar{n}_3\bar{n}_4$  are the same. Hence we have

$$M_{4,N} = \sum_E H^2(E),$$

and consequently

(2.7) 
$$M_{4,N} \leq (\max_{E} H(E)) \sum_{E} H(E).$$

Observing that  $\sum_{E} H(E) = N^2$  (since the number of the choice of all pairs  $n_1$ ,  $n_2$ ,  $1 \le n_i \le N$  is  $N^2$ ) we have

(2.8) 
$$M_{4,N} \leq N^2 \max_E H(E)$$
.

Now we estimate H(E). For a general positive square-free A let G(A) denote the number of  $n \le N$  which can be written in the form

$$(2.9) \bar{n} = AZ^2,$$

where Z is a suitable integer. Then we have

(2.10) 
$$H(E) \leq \sum_{E_1E_2=E} \sum_{U} G(E_1U)G(E_2U),$$

where in the right hand side  $E_1$  runs over the divisors of E and U over the set of all square-free integers coprime to E.

For k=1 we evidently have  $G(A) \le \sqrt{N/A}$ . Consequently by (2. 10)

$$H(E) \leq \sum_{E_1 E_2 = E} \frac{N}{\sqrt{E}} \cdot \sum_{U \leq N} \frac{1}{U} \leq \frac{N \log N}{\sqrt{E}} d(E) \leq c N \log N,$$

and hence by (2.8)

$$(2.11) M_{4,N} \le cN^3 \log N.$$

Assume now that  $k \ge 2$ . Consider the solutions of  $\bar{n} = AZ^2$ . Since the numbers  $n+i_{j_1}$ ,  $n+i_{j_2}$  have no common prime-divisors greater than  $i_{j_2}-i_{j_1}$  if  $j_1 \ne j_2$ , for an n satisfying (2.9) we have

$$(2.12) n+i_j=R_jC_jZ_j^2 (j=1,2,...,k),$$

where  $R_j$ ,  $C_j$  are square-free numbers, the prime factors of  $R_j$  are not greater than

 $i_k - i_1$  and the prime factors of  $C_j$  are greater than  $i_k - i_1$  and  $\prod_{j=1}^k C_j | A$ . If n is a solution of (2.12), then

$$(2.13) i_2 - i_1 = R_2 C_2 Z_2^2 - R_1 C_1 Z_1^2$$

holds with suitable  $Z_1$ ,  $Z_2 \le N$ . Using the Corollary to Lemma 1 we have that the number of solutions of (2. 13) with  $Z_1$ ,  $Z_2 \le N$  is at most  $c_1 d((R_1 C_1(i_2 - i_1))^2) \log N \le c_1 N^{c_1}$ .

The number of all possible pairs of  $R_1$ ,  $R_2$  occurring in (2. 12) is bounded for fixed  $i_1, i_2, ..., i_k$ . The number of couples  $(R_1, R_2)$  is at most  $d^2(A) \le cN^{\epsilon_2}$ , since  $C_1C_2|A$ . Therefore

$$(2.14) G(A) \leq cN^{\varepsilon}.$$

Using (2. 10) and the fact that the number of those A which occur as the square-free part of a number  $\bar{n}$  for some  $n \le N$  is at most N, we have

$$H(E) \leq cN^{1+\varepsilon}$$

Hence by (2.8)

$$(2.15) M_{4,N} \leq c N^{3+\varepsilon}$$

follows.

Using (2.11) or (2.15) according as k=1 or  $k \ge 2$ , we have

(2.16) 
$$P(|\eta_N| > N^x) \le \int_{\Omega} \frac{|\eta_N|^4}{N^{4\alpha}} dP < cN^{3-4\alpha+\epsilon}.$$

Let  $N_m = m^5$  and  $\alpha = \frac{4}{5} + \varepsilon$ . By (2. 16) we have

$$\sum_{m=1}^{\infty} P(|\eta_{N_m}| > N_m^{\frac{4}{5}+\varepsilon}) \leq c \sum_{m=1}^{\infty} m^{-1-\varepsilon} < \infty.$$

Consequently by Lemma 2 we have

(2.17) 
$$\lim_{m \to \infty} \frac{\eta_{Nm}(\omega)}{\frac{4}{N_{\infty}^{5} + 2\varepsilon}} = 0$$

for all fixed  $\varepsilon > 0$  and for almost all  $\omega \in \Omega$ . Since for  $N_m \leq N < N_{m+1}$ 

$$(2.18) |\eta_N - \eta_{N_m}| \le N - N_m \le N_{m+1} - N_m \le cm^4 \le cN_m^{\frac{4}{5}} < cN^{\frac{4}{5}},$$

therefore by (2.17)

$$\lim_{N\to\infty}\frac{\eta_N(\omega)}{\frac{4}{N^{\frac{1}{5}+2\varepsilon}}}=0$$

for all  $\varepsilon > 0$  and almost all  $\omega \in \Omega$ .

86 Î. Kátai

Finally we remark, that a function  $f(n) \in \mathscr{F}$  is of normal type if and only if  $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\bar{n}) = 0$  for all choice of k = 1, 2, ... and of  $(i_1, ..., i_k)$ . This completes the proof of the theorem.

3. Theorem 2. Let f(n) be a completely multiplicative function, all values of which are +1 or -1. Assume that there exist at least two primes  $p_1$ ,  $p_2$  for which  $f(p_1)=f(p_2)=-1$ . Then for arbitrary  $\varepsilon_1$ ,  $\varepsilon_2$  ( $\varepsilon_1=\pm 1$ ,  $\varepsilon_2=\pm 1$ ) there exist infinitely many n satisfying  $f(n)=\varepsilon_1$ ,  $f(n+1)=\varepsilon_2$ .

For  $(\varepsilon_1, \varepsilon_2) = (+1, +1)$  or (-1, 1) we can prove a stronger assertion. This is stated in Theorems 3 and 4.

Theorem 3. Assuming that the series

(3.1) 
$$\sum_{f(p)=-1} \frac{1}{p}$$

diverges we have

(3.2) 
$$\liminf_{x\to\infty} x^{-1} N_f(x,1,1) \ge \frac{1}{12},$$

(3.3) 
$$\liminf_{x \to \infty} x^{-1} N_f(x, -1, -1) \ge \frac{1}{12},$$

where  $N_f(x, \varepsilon_1, \varepsilon_2)$  denotes the number of those n not exceeding x for which  $f(n)=\varepsilon_1$ ,  $f(n+1)=\varepsilon_2$ . Consequently

(3.4) 
$$\liminf_{x\to\infty}\frac{1}{x}\sum_{n\leq x}f(n)f(n+1)\geq -\frac{5}{6}.$$

Let  $\mathcal{P}$  be the set of those primes p for which f(p) = -1.

Theorem 4. Suppose that  $\mathcal{P}$  contains at least two elements and that the series  $\sum_{p \in \mathcal{P}} \frac{1}{p}$  converges. Then for both values  $\varepsilon = 1, -1$  we have

(3.5) 
$$\lim_{x\to\infty} x^{-1} N_f(x,\varepsilon,\varepsilon) = \frac{1}{4} \left( 1 + 2\varepsilon \prod_{p\in\mathscr{P}} \frac{p-1}{p+1} + \prod_{p\in\mathscr{P}} \frac{p-3}{p+1} \right) \stackrel{\text{(def}}{=} A).$$

The number standing on the right-hand side of (3.5) is positive.

Proof of Theorems 2, 3, and 4. First we prove Theorem 2 for  $(\varepsilon_1, \varepsilon_2) = (1, -1)$  and (-1, 1). The remaining two cases will follow from Theorems 3 and 4. The assertion of Theorem 2 for  $(\varepsilon_1, \varepsilon_2) = (1, -1)$  and (-1, 1) is equivalent to saying that f(n) assumes both of the values +1 and -1 infinitely many times. For

+1 this is true since  $f(n^2) = +1$  for all n. To show this for -1 let p be a prime for which f(p) = -1. Then  $f(p^{2k+1}) = -1$  for all k.

To prove Theorem 3 we need a theorem due to E. WIRSING [1], which we state as

LEMMA 3. If  $f(n) = \pm 1$  and the series (3.1) diverges, then

(3.6) 
$$x^{-1} \sum_{x \le x} f(n) \to 0 \quad as \quad x \to \infty.$$

Let  $n_1 < n_2 < \cdots < n_L \le x$  be the sequence of those integers for which  $f(n_i) = -1$ . Let  $m_1 < m_2 < \cdots < m_R \le x$  denote the complementary sequence, i.e. for which  $f(m_i) = +1$ . Let  $\varrho_k(x)$  denote the number of those  $n_i$  for which  $n_{i+1} - n_i = k$ ,  $n_i \le x$ . Similarly, let  $\tau_k(x)$  denote the number of m's satisfying  $m_{i+1} - m_i = k$ ,  $m_i \le x$ . From (3. 6) we easily deduce

(3.7) 
$$L + O(1) = \sum_{k=1}^{\infty} \varrho_k(x) = \frac{x}{2} + o(x), \quad R + O(1) = \sum_{k=1}^{\infty} \tau_k(x) = \frac{x}{2} + o(x)$$

(3.8) 
$$\sum_{k=1}^{\infty} k \varrho_k(x) = x + o(x), \quad \sum_{k=1}^{\infty} k \tau_k(x) = x + o(x).$$

Hence

(3.9) 
$$\sum_{k=3}^{\infty} (k-2)\varrho_k(x) = \varrho_1(x) + o(x), \qquad \sum_{k=3}^{\infty} (k-2)\tau_k(x) = \tau_1(x) + o(x)$$

follow. Consequently

We distinguish two cases.

(3.11) 
$$\sum_{k \neq 2} \varrho_k(x) \leq 2\varrho_1(x) + o(x), \quad \sum_{k \neq 2} \tau_k(x) \leq 2\tau_1(x) + o(x).$$

Now we prove that  $\lim_{x\to\infty}\inf x^{-1}\varrho_1(x) \ge \frac{1}{12}$ . The proof of the relation  $\lim_{x\to\infty}\inf x^{-1}\tau_1(x) \ge \frac{1}{12}$  is similar, and so we omit it. Since from (3.6)

$$\frac{1}{x} \sum_{2n \le x} f(2n) \to 0$$

follows, among the *n*'s the number of even numbers is  $\frac{x}{4} + o(x)$ . Hence by (3. 11) we have that there are at least  $\frac{x}{4} - 2\varrho_1(x) - o(x)$  even *n*'s satisfying  $n_{i+1} - n_i = 2$ . Let  $\mathscr S$  denote the set of these *n*'s.

Case a). f(2) = 1. Then for  $n_i \in \mathcal{S}$  the integers  $n_i/2$  and  $n_{i+1}/2$  are consecutive numbers, and furthermore  $f\left(\frac{n_i}{2}\right) = f\left(\frac{n_{i+1}}{2}\right) = -1$ ,  $\frac{n_i}{2} \le \frac{x}{2}$ . Thus we have

$$\varrho_1\left(\frac{x}{2}\right) \ge \frac{x}{4} - 2\varrho_1(x) - o(x),$$

whence  $3\varrho_1(x) \ge \frac{x}{4} - o(x)$ , i.e.  $\liminf \frac{\varrho_1(x)}{x} \ge \frac{1}{12}$ , follows.

Case b). f(2) = -1. Then, for  $n_i \in \mathcal{S}, \frac{n_i}{2}$  and  $\frac{n_{i+1}}{2}$  are consecutive integers, and moreover  $f(\frac{n_i}{2}) = f(\frac{n_{i+1}}{2}) = +1$ ,  $\frac{n_i}{2} \le \frac{x}{2}$ . Consequently

$$\tau_1\left(\frac{x}{2}\right) \ge \frac{x}{4} - 2\varrho_1(x) + o(x).$$

Since the interval  $[m_i, m_{i+1}]$  for  $m_{i+1} - m_i = k$ ,  $k \ge 3$  contains (k-1) elements from among the n's, we deduce that

$$\varrho_1(x) \ge \sum_{k=3}^{\infty} (k-2)\tau_k(x);$$

Ċ

hence by (3. 12)

$$\varrho_1(x) \ge \tau_1(x) + o(x)$$

follows. From here by (3.12) we obtain

$$3\varrho_1(x) \ge \frac{x}{4} + o(x),$$

i.e. 
$$\lim_{x \to \infty} x^{-1} \varrho_1(x) \ge \frac{1}{12}.$$

Now we prove Theorem 4. For this we need the following

Lemma 4. [2] If h(n) is a complex-valued completely multiplicative function satisfying the conditions: a)  $|h(n)| \le 1 (n = 1, 2, ...)$ , and b)  $\sum_{p} \frac{h(p)-1}{p}$  converges, then

$$\lim_{x \to \infty} x^{-1} \sum_{n \le x} h(n)h(n+1) = \prod_{p} \left( 1 + 2 \sum_{\alpha=1}^{\infty} \frac{h(p^{\alpha}) - h(p^{\alpha-1})}{p^{\alpha}} \right),$$

$$\lim_{x \to \infty} x^{-1} \sum_{n \le x} h(n) = \prod_{\alpha=1}^{\infty} \left( 1 + \sum_{\alpha=1}^{\infty} \frac{h(p^{\alpha}) - h(p^{\alpha-1})}{p^{\alpha}} \right).$$

Observing that the conditions of Lemma 4 are satisfied for h(n) = f(n) and that

$$4N(x,\varepsilon,\varepsilon) = \sum_{n \leq x} (f(n) + \varepsilon) (f(n+1) + \varepsilon) = \sum_{n \leq x} f(n) f(n+1) + 2\varepsilon \sum_{n \leq x} f(n) + x + 0(1),$$

by Lemma 4 we obtain (3.5).

Finally we prove the positivity of A. If  $3 \in \mathcal{P}$ , then

$$A \ge \frac{1}{4} \left( 1 - 2 \cdot \frac{2}{4} \prod_{p \in \mathscr{D}, p \neq 3} \frac{p-1}{p+1} \right).$$

Since  $\prod_{\substack{p \in \mathcal{P} \\ p \neq 3}}$  is not an empty product, it must be smaller than 1; so indeed A > 0. If

 $3 \notin P, 2 \in \mathscr{P}$ , then

$$A \ge \frac{1}{4} \left( 1 - \frac{2}{3} \prod_{p \in \mathscr{D}, p > 3} \frac{p-1}{p+1} - \frac{1}{3} \prod_{p \in \mathscr{D}, p > 3} \frac{p-3}{p+1} \right).$$

Using the fact that the products on the right hand side are not empty, we again have A > 0. If 2, 3 are not belonging to  $\mathcal{P}$ , then

$$A \ge \frac{1}{4} \left( 1 - 2 \prod_{p \in \mathscr{D}, p > 3} \frac{p-1}{p+1} + \prod_{p > 3} \frac{p-3}{p+1} \right).$$

Using the relation  $\frac{p-3}{p+1} < \left(\frac{p-1}{p+1}\right)^2$  for  $p \ge 3$ ,

$$A \ge \frac{1}{4} \left( 1 - \prod_{p \in \mathscr{D}} \frac{p-1}{p+1} \right)^2 > 0$$

also in this case.

## References

- [1] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hung., 18 (1967), 411—467.
- [2] I. KATAI, On the distribution of arithmetical functions, ibidem (to appear).

(Received January 20, 1969)