Products of contractions in Hilbert space

By C. APOSTOL in Bucharest (Romania)

The aim of this Note is to study the convergence of some infinite products of contractions acting on a Hilbert space. We extend the results of I. Halperin ([4], Th. 1) and F. Browder ([1], Lemma 3) concerning products of projections to a larger class of operators.

Throughout this Note, H will denote a Hilbert space, $\mathscr{S}(H)$ the unit ball of the algebra of all bounded linear operators acting on H, and I the identity operator on H. The set of all natural numbers is denoted by N and if $T_{j} \in \mathscr{P}(H)(j \in N)$ we set $T_{n} T_{n-1} \cdots T_{1}=I_{j=1}^{n} T_{j}$. We also set for $\varepsilon \geqq 0$ and $T \in \mathscr{S}(H)$:

$$
\varphi_{T}(\varepsilon)=\sup _{\substack{\|x\|=1 \\\|x\|-\|T x\| \leqq \varepsilon}}\|x-T x\| \text {, and } \mathscr{S}_{\varphi}(H)=\left\{T \in \mathscr{S}(H): \lim _{\varepsilon \rightarrow 0} \varphi_{T}(\varepsilon)=0\right\} .
$$

For any $T \in \mathscr{\mathscr { P }}(H)$ the function φ_{T} is increasing and if $\|x\| \leqq 1$ we have

$$
\|x-T x\| \leqq \sup \{\|y-T y\|:\|y\| \leqq 1,\|y\|-\|T y\| \leqq\|x\|-\|T x\|\}=\varphi_{T}(\|x\|-\|T x\|)
$$

Definition. A map ψ defined on N and valued in an arbitrary set is called permissible if for any $k \in N$ there is an $r_{k} \in N$ such that $\psi(k)$ belongs to the image by ψ of each block of r_{k} successive natural numbers (see [1], Def. 6).

Lemma 1. Let $T, S \in \mathscr{S}_{\varphi}(H)$. We have $T S \in \mathscr{S}_{\varphi}(H), \quad \operatorname{Ker}(I-T S)=$ $=\operatorname{Ker}(I-T) \cap \operatorname{Ker}(I-S)$.

Proof. For any $x \in H$ such that $\|x\| \leqq 1,\|x-T S x\| \leqq \varepsilon$ we have

$$
\begin{gathered}
\|x-T S x\| \leqq\|x-T x\|+\|T x-T S x\| \leqq\|x-T x\|+\|x-S x\| \leqq \varphi_{r}(\|x\|-\|T x\|)+ \\
+\varphi_{S}(\|x\|-\|S x\|)
\end{gathered}
$$

Using the inequalities $\|T S x\| \leqq\|S x\|,\|T S x\| \leqq\|T(S x-x)\|+\|T x\|$ we also obtain

$$
\begin{gathered}
\|x\|-\|S x\| \leqq\|x\|-\|T S x\| \leqq \varepsilon, \\
\|x\|-\|T x\| \leqq\|T(x-S x)\|+\|x\|-\|T S x\| \leqq \varphi_{S}(\varepsilon)+\varepsilon
\end{gathered}
$$

It results $\varphi_{T S}(\varepsilon) \leqq \varphi_{T}\left(\varphi_{S}(\varepsilon)+\varepsilon\right)+\varphi_{S}(\varepsilon)$, which implies $\lim \varphi_{T S}(\varepsilon)=0$ as $\varepsilon \rightarrow 0$, and $T S \in \mathscr{S}_{\varphi}(H)$.

Now if $x=T S x,\|x\| \leqq 1$ we have $\|x\|=\|S x\|,\|x-S x\|=\lim _{\varepsilon=0} \varphi_{S}(\varepsilon)=0$, thus $x=S x=T x, \operatorname{Ker}(I-T S) \subset \operatorname{Ker}(I-T) \cap \operatorname{Ker}(I-S)$. The opposite inclusion is evident.

Lemma 2. Let $\mathscr{A} \subset \mathscr{S}_{\varphi}(H)$ such that $\lim _{\varepsilon \rightarrow 0} \sup _{T \in \mathscr{A}} \varphi_{T}(\varepsilon)=0$. Then for any sequence $\left\{T_{j}\right\}_{j \in N}$ we have $\lim _{n \rightarrow \infty}\left\|\left(\prod_{j=1}^{n} T_{j}-\prod_{j=1}^{n+1} T_{j}\right) x\right\|=0$.

Proof. Let $x \in H,\|x\| \leqq 1$. Since $\left\{\left\|\prod_{j=1}^{n} T_{j} x\right\|\right\}_{n \in \mathcal{N}}$ is a convergent sequence one obtains

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\left(\prod_{j=1}^{n} T_{j}-\prod_{j=1}^{n+1} T_{j}\right) x\right\| \leqq & \lim _{n \rightarrow \infty} \varphi_{T}\left(\left\|\prod_{j=1}^{n} T_{j} x\right\|-\left\|\prod_{j=1}^{n+1} T_{j} x\right\|\right) \leqq \\
& \leqq \lim _{n \rightarrow \infty} \sup _{T \in A} \varphi_{T}\left(\left\|\prod_{j=1}^{n} T_{j} x\right\|-\left\|\prod_{j=1}^{n+1} T_{j} x\right\|\right)=0 .
\end{aligned}
$$

Theorem 1. Let \mathscr{A} be a commutative subset of $\mathscr{S}_{\varphi}(H)$ and $\psi: N \rightarrow \mathscr{A}$ such that $\psi^{-1}(\psi(k))$ is an infinite set for any $k \in N$. Then $\left\{\prod_{j=1}^{n} T_{j}\right\}_{n \in N}$ converges strongly to the orthogonal projection P of H onto $\bigcap_{k=1}^{\infty} \operatorname{Ker}(I-\psi(k))$.

Proof. For simplicity we introduce the notation $T_{n}=\prod_{j=1}^{n} \psi(j), N_{k}=\psi^{-1}(\psi(k))$. We have $\left\langle T_{n+1}^{*} T_{n+1} x, x\right\rangle=\left\langle T_{n}^{*} \psi(n+1)^{*} \psi(n+1) T_{n} x, x\right\rangle \leqq\left\langle T_{n}^{*} T_{n} x, x\right\rangle$, thus by [6], Sec. 104 (p. 261) the sequence $\left\{T_{n}^{*} T_{n}\right\}_{n \in N}$ converges strongly to a positive operator A.

Let $y \in H,\|y\| \leqq 1$. We have

$$
\begin{aligned}
& \lim _{n+1 \in N_{k}} \|\left(I-\psi(k) T_{n} y \| \leqq \lim _{n+1 \in N_{k}} \varphi_{\psi(k)}\left(\left\|T_{n} y\right\|-\left\|\psi(k) T_{n} y\right\|\right)=\right. \\
&=\lim _{n+1 \in N_{k}} \varphi_{\psi(k)}\left(\left\|T_{n} y\right\|\left\|^{\prime}-\right\| T_{n+1} y \|\right)=0,
\end{aligned}
$$

consequently

$$
\begin{aligned}
&\left\langle\left(I-\psi(k)^{*}\right) A x, y\right\rangle=\lim _{n+1 \in N_{k}}\left\langle\left(I-\psi(k)^{*}\right) T_{n}^{*} T_{n} x, y\right\rangle= \\
&=\lim _{n+1 \in N_{k}}\left\langle T_{n} x,(I-\psi(k)) T_{n} y\right\rangle=0 .
\end{aligned}
$$

Because the kernels of $I-\psi(k)$ and $I-\psi(k)^{*}$ coincide (see [5], Sec. I. 3.1) we infer.

$$
\left(I-\psi(k) A=\left(I-\psi \cdot(k)^{*}\right) A=0, T_{n}^{*} T_{n} A=A\right.
$$

which shows that A is a projection and $A \leqq P$. But we have also $\langle P x, x\rangle=\left\langle T_{n}^{*} P T_{n} x, x\right\rangle$ $\leqq\left\langle T_{n}^{*} T_{n} x, x\right\rangle$ thus $P \leqq A$. It follows $P=A$ and

$$
\lim _{n \rightarrow \infty}\left\|T_{n} x-P \dot{x}\right\|^{2}=\lim _{n \rightarrow \infty}\left\langle T_{n}^{*} T_{n} x-P x, x\right\rangle=\langle A x-P x, x\rangle=0
$$

which concludes the proof.
Corollary 1. Let $T_{j} \in \mathscr{S}_{\varphi}(H), j=1,2, \ldots, m$ and put $T=T_{1}, T_{2}, \ldots, T_{m}$. Then $\left\{T^{n}\right\}_{n \in N}$ converges strongly to the orthogonal projection of H onto $\bigcap_{j=1}^{m} \operatorname{Ker}\left(I-T_{j}\right)$.

Proof. By lemma 1 we have $T \in \mathscr{S}_{\varphi}(H), \operatorname{Ker}(I-T)=\bigcap_{j=1}^{m} \operatorname{Ker}\left(I-T_{j}\right)$. Set $\mathscr{A}=\{T\}, \psi(j)=T$. We have $T^{n}=\prod_{j=1}^{n} \psi(j)$ thus we can apply Th. 1.

Theorem, 2. Let $\mathscr{A} \in \mathscr{S}_{\varphi}(H)$ such that $\lim _{\varepsilon \rightarrow 0} \sup _{T \in \mathscr{A}} \varphi_{T}(\varepsilon)=0$ and let $\psi: N \rightarrow \mathscr{A}$ be a permissible map. Then $\left\{\prod_{j=1}^{n} \psi(j)\right\}_{n} \in_{N}$ converges weakly to the orthogonal projection of H onto $\bigcap_{j=1}^{\infty} \operatorname{Ker}(I-\psi(j))$.

Proof. Let P be the orthogonal projection of H onto $\bigcap_{j=1}^{\infty} \operatorname{Ker}(I-\psi(j))$. We have $\psi(j) P=P, \psi(j)^{*} P=P$, thus $\prod_{j=1}^{n} \psi(j) P=P \prod_{j=1}^{n} \psi(j)=P$ and

$$
\lim _{n \rightarrow \infty}\left\langle\left(\prod_{j=1}^{n} \psi(j)-P\right) x, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle(I-P) \prod_{j=1}^{n} \psi(j) x, y\right\rangle .
$$

Suppose the subsequence $\left\{\prod_{j=1}^{m_{n}} \psi(j) x\right\}_{n \in N}$ converges weakly to z and take $k \in N$. By the definition of ψ there is $r_{k} \in N$ and $s_{n} \in N$ such that $\psi\left(s_{n}\right)=\psi(k), r_{k} \geqq m_{n}-s_{n} \geqq 0$. Using Lemma 2 we get

$$
z=\lim _{n \rightarrow \infty} \prod_{j=1}^{m_{n}} \psi(j) x=\lim _{n \rightarrow \infty} \prod_{j=1}^{s_{n}-1} \psi(j) x=\lim _{n \rightarrow \infty} \prod_{j=1}^{s} \psi(j) x=\psi(k) z
$$

consequently $\cdot P z=z$.
Now if $\left\{\prod_{j=1}^{n} \psi(j)\right\}$ does not converge weakly to P we can find $x, y \in H$ and a subsequence $\left\{m_{n}\right\}_{n \in N}$ such that $\lim _{n \rightarrow \infty}\left\langle\left(\prod_{j=1}^{m_{n}} \psi(j)-P\right) x, y\right\rangle=\dot{a} \neq 0$.

But we may suppose that $\left\{\prod_{j=1}^{m_{n}} \psi(j) x\right\}_{n \in N}$ converges weakly to $z=P z$ because balls in H are weakly compact and we get a contradiction:

$$
0 \neq a=\operatorname{im}_{n \rightarrow \infty}\left\langle(I-P) \prod_{j=1}^{m_{n}} \psi(j) x, y\right\rangle=\langle(I-P) z, y\rangle=0 .
$$

Remark. The set of all orthogonal projections in H is contained in $\mathscr{S}_{\varphi}(H)$. If $P\left(=P^{*}\right)$ is a projection we have $\varphi_{P}(\varepsilon) \leqq \sqrt{2 \varepsilon}$ thus Cor. 1 and Th. 1. are. equally applicable to projection operators (results of I. Halperin and F. Browder). Let σ be a closed set in the complex plane included in the unit disc D and such that $\sigma \cap\{\lambda:|\lambda|=1\}$ contains at most the point 1 . If T is a normal operator, $\sigma(T) \subset \sigma$, with the spectral measure $E(\cdot)$, let us put $\sigma_{\varepsilon}=\{\lambda \in \sigma:|\lambda| \equiv \sqrt{1-\sqrt{\varepsilon}}\}, E\left(\sigma_{\varepsilon}\right)=P_{\varepsilon}$, $I-E\left(\sigma_{\varepsilon}\right)=Q_{\varepsilon}$. For any $x \in H,\|x\| \leqq 1,\|x\|-\|T x\| \leqq \varepsilon$ we have

$$
\begin{gathered}
2 \varepsilon \cong\|x\|^{2}-\|T x\|^{2}=\left\|P_{\varepsilon} x\right\|^{2}-\left\|T P_{\varepsilon} x\right\|^{2}+\left\|Q_{\varepsilon} x\right\|^{2}-\left\|T Q_{\varepsilon} x\right\|^{2} \geqq\left\|P_{\varepsilon} x\right\|^{2}- \\
-\left\|T P_{\varepsilon} x\right\|^{2} \geqq \sqrt{\varepsilon}\left\|P_{\varepsilon} x\right\|^{2}
\end{gathered}
$$

thus $\left\|P_{\varepsilon} x\right\| \leqq \sqrt{2 \sqrt{\varepsilon}}$ and $\|x-T x\| \leqq 2 \sqrt{2 \sqrt{\varepsilon}}+\left\|Q_{\varepsilon} x-T Q_{\varepsilon} x\right\| \leqq 2 \sqrt{2 \sqrt{\bar{\varepsilon}}}+\left\|\left(T \mid Q_{\varepsilon} H\right)\right\|$. It follows $\varphi_{T}(\varepsilon) \leqq \sqrt{2 \sqrt{\varepsilon}}+\sup _{\lambda \in \sigma-\sigma_{c}}|1-\lambda|$ thus $T \in \mathscr{S}_{\varphi}(H)$. In fact we showed that Th. 2 is applicable to the set $\mathscr{A}=\{T \in \mathscr{S}(H) ; T$ normal, $\sigma(T) \subset \sigma\}$.

References

[1] F. Browder, On some approximations method for solutions of Dirichlet problems for linear elliptic equations of arbitrary order, J. Math. Mech., 7 (1958), 69-70.
[2] N. Dunford and J. T. Schwartz, Linear Operators. Part I (New York, 1958).
[3] P. R. Halmos, Introduction to Hilbert space and the theory of multiplicity (New York, 1951).
[4] I. Halperin, The product of projection operators, Acta. Sci. Math., 23 (1962), 96-99.
[5] B. Sz.-Nagy et C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest, 1967).
[6] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle (Budapest, 1952).
(Received October 30, 1970)

