On a certain class of representations of function algèbras

By DUMITRU GAŞPAR in Timişoara (S. R. Romania)

1. Introduction. In [4] B. Sz.-NAGY and C. FoIAş have introduced the class. \mathscr{C}_{ϱ} of all bounded linear operators T on the Hilbert space H, which admit a representation of the form:

$$
\begin{equation*}
T^{n}=\varrho P_{H} U^{n} \mid H \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

where U is a unitary operator on a Hilbert space K, containing H as a subspace and P_{H} is the orthogonal projection of K onto H. In [3] they have proved that any T belonging to some class \mathscr{C}_{ϱ} is similar to a contraction.

The definition of the class \mathscr{C}_{ϱ} has a natural correspondent for operator valued. representations on Hilbert spaces. For this let X be a compact Hausdorff space, $C(X)$ the Banach algebra of all complex-valued continuous functions on X, A a. function algebra on X (i. e. a closed subalgebra of X, which contains the constants. and separates the points of X), and M_{A} the maximal ideal space of A (i.e. the set of all complex homomorphisms of A). For any $\Phi \in M_{A}$ there exists a positive measure m on X such that

$$
\Phi(f)=\int f d m \quad(f \in A)
$$

Sụch a measure is called a representing measure for Φ (see [6]). As usual we write: A_{Φ} for the kernel of Φ.

By a representation of A on H we shall mean an algebraic homomorphism. $f \rightarrow T_{f}$ of A in $\mathscr{B}(H)$ (the algebra of all bounded linear operators on H) satisfying. $T_{1}=I$ (the identical operator on H) and

$$
\left\|T_{f}\right\| \leqq k\|f\| \quad(f \in A)
$$

If. $k=1, f \rightarrow T_{f}$ is called a contractive representation of A on H.
Let $\varrho>0$. A (contractive) representation $\varphi \rightarrow U_{\varphi}$ of $C(X)$ on a Hilbert spaceK, where K contains H as a subspace, will be called a spectral ϱ-dilation of $f \rightarrow T_{f^{-}}$ with respect to $\Phi \in M_{A}$, if

$$
\begin{equation*}
T_{f}=\varrho P_{H} U_{f} \mid H \quad\left(f \in A_{\Phi}\right) . \tag{2}
\end{equation*}
$$

We say that a representation of A on H is of class $\mathscr{C}_{\varrho}(A, H)$ if it has a spectral ϱ-dilation. If $\varrho=1$, the spectral ϱ-dilation of $f \rightarrow T_{f}$ means simply the spectral dilation of $f \rightarrow T_{f}$ (see [2]). A contractive representation for which there exists a spectral dilation is called a dilatable representation.

The purpose of this note is to prove the analog of the result in [3], in the context of representations of function algebras. This is contained in the following

Theorem. Let $f \rightarrow T_{f}$ be a representation of class $\mathscr{C}_{\rho}(A, H)$ with respect to $\Phi \in M_{A}$. Then there exists a Hilbert space H^{\prime}, an affinity X of H^{\prime} onto H, and a contractive representation $f \rightarrow T_{f}^{\prime}$ of A on H^{\prime} such that

$$
T_{f} X=X T_{f}^{\prime} \quad(f \in A)
$$

Moreover, $f \rightarrow T_{f}^{\prime}$ is a dilatable representation, and the spectral @-dilation of $f \rightarrow T_{f}$ is a spectral dilation of $f \rightarrow T_{f}^{\prime}$.
2. Firstly we get a caracterization of the classes $\mathscr{C}_{\varrho}(A, H)$ and the monotonity of these classes. For this aim let $f \rightarrow T_{f}$ be a representation of class $\mathscr{C}_{e}(A, H)$ and $\varphi \rightarrow U_{\varphi}$ its spectral ϱ-dilation. If $f \in A$, relation (2) implies:

$$
\varrho P_{H} U_{f}\left|H=\varrho P_{H} U_{f-\Phi\left(j_{j}\right)}\right| H+\varrho \Phi(f) I=T_{f}+(\varrho-1) \Phi(f) I
$$

that is,

$$
\begin{equation*}
\left.\frac{1}{\varrho} T_{f}+\left(1-\frac{1}{\varrho}\right) \Phi(f) I=P_{H} U_{f} \right\rvert\, H \quad(f \in A) \tag{3}
\end{equation*}
$$

Now $\varphi \rightarrow S_{\varphi}=\dot{P}_{H} U_{\varphi} \mid H(\varphi \in C(X))$ is a positive map of $C(X)$ into $\mathscr{B}(H)$ (see [[1]) for which the spectral dilation is exactly $\varphi \rightarrow U_{\varphi}$. Now T_{f} has the form:

$$
T_{f}=\varrho S_{f}+(1-\varrho) \Phi(f) I=\varrho S_{f}+(1-\varrho)\left(\int f d m\right) I
$$

where m is a fixed representing measure for Φ.
If we put

$$
\tilde{T}_{\varphi}=\varrho S_{\varphi}+(1-\varrho)\left(\int \varphi d m\right) I \quad(\varphi \in C(X))
$$

we obtain a linear map $\varphi \rightarrow \widetilde{T}_{\varphi}$ of $C(X)$ into $\mathscr{B}(H)$, which extends the given representation. and satisfies

$$
\frac{1}{\varrho} \tilde{T}_{\varphi}+\left(1-\frac{1}{\varrho}\right)\left(\int \varphi d m\right) I \geqq 0 \quad(\varphi \geqq 0, \varphi \in C(X))
$$

The last condition is equivalent to

$$
\begin{equation*}
(\varrho-1)\left(\int \varphi d m\right) I+\tilde{T}_{\varphi} \geqq 0 \quad(\varphi \geqq 0, \varphi \in C(X)) \tag{4}
\end{equation*}
$$

Conversely if we are given a representation $f \rightarrow T_{f}$ of A on H, which admits an extension $\varphi \rightarrow \tilde{T}_{\varphi}$ to $C(X)$ satisfying (4), then

$$
S_{\varphi}=\frac{1}{\varrho} \tilde{T}_{\varphi}+\left(1-\frac{1}{\varrho}\right)\left(\int \varphi d m\right) I
$$

defines a positive map $\varphi \rightarrow S_{\varphi}$ of $C(X)$ into $\mathscr{B}(H)$. Let $\varphi \rightarrow U_{\varphi}$ be the spectral dilation of $\varphi \rightarrow S_{\varphi}$ (see [1]). It is immediate that $\varphi \rightarrow U_{\varphi}$ is a spectral ϱ-dilation of $f \rightarrow T_{f}$, and consequently the given representation is of class $\mathscr{C}_{\varrho}(A ; H)$. In this manner we have proved the following

Proposition. The representation $f \rightarrow T_{f}$ of A on H is of the class $\mathscr{C}_{e}(A, H)$ if and only if it admits a linear extension $\varphi \rightarrow \widetilde{T}_{\varphi}$ to $C(X)$ satisfying (4).

Corollary. If $\varrho \leqq \varrho^{\prime}$ then $\mathscr{C}_{Q}(A, H) \subseteq \mathscr{C}_{Q^{\prime}}(A, H)$.
Proof. Let $f \rightarrow T_{f}$ be a representation of the class $\mathscr{C}_{\varrho}(A, H)$. Then, by the proposition, it has an extension $\varphi \rightarrow \widetilde{T}_{\varphi}$ to $C(X)$ which satiṣfies (4). But if $\varphi \in C(X)$, $\varphi \geqq 0$, then for $\varrho^{\prime} \geqq \varrho$ we have $\left(\varrho^{\prime}-1\right)\left(\int \varphi d m\right) I+\widetilde{T}_{\varphi} \geqq(\varrho-1)\left(\int \varphi d m\right) I+\widetilde{T}_{\varphi} \geqq 0$, that is, condition (4) is satisfied, with ϱ^{\prime} instead of ϱ. According to the above proposition, $f \rightarrow T_{f}$ is of the class $\mathscr{C}_{e^{\prime}}(A, H)$, and the corollary is proved.
3. Now we are able to prove the theorem. This proof is modelled on that in [3]. In the sequel m will be a fixed representing measure for Φ.

We suppose that $f \rightarrow T_{f}$ is of class $\mathscr{C}_{r}(A, H)$. Then, by the corollary, it is also of. class $\mathscr{C}_{\varrho}(A, H)$ for $\varrho \geqq r$. Let $\varphi \rightarrow U_{\varphi}$ be the spectral ϱ-dilation of $f \rightarrow T_{f}$, and $K_{\boldsymbol{e}}$ the ϱ-dilation space. We set

$$
\begin{equation*}
M_{\varrho}=\bigvee_{f \in A_{\Phi}, g \in A} U_{g}^{*}\left(U_{f}^{*}-T_{f}^{*}\right) H \tag{5}
\end{equation*}
$$

and $t_{e}=\left\|P_{M_{e}} \mid H\right\|$, where $P_{M_{e}}$ is the orthogonal projection of K_{e} on M_{ϱ}. It is obvious that $t_{\boldsymbol{e}} \leqq 1$. Moreover, $\boldsymbol{t}_{\boldsymbol{a}}$ is the smallest positive number for which the inequality

$$
\begin{equation*}
\left|\left(h, m_{\varrho}\right)\right| \leqq t_{\varrho}\|h\|\left\|m_{e}\right\| \tag{6}
\end{equation*}
$$

holds for any $h \in H$ and $m_{\varrho} \in M_{\varrho}$ of the form:

$$
\begin{equation*}
m_{e}=\sum_{g, f} U_{g}^{*}\left(U_{f}^{*}-T_{f}^{*}\right) h_{g}^{f} \tag{7}
\end{equation*}
$$

where the family $\left\{h_{g}^{f}: g \in A, f \in A_{\Phi}\right\}$ has a finite number of elements.
Using (3) we obtain by a simple computation:

$$
\left(h, m_{\varrho}\right)=\left(h, \sum_{g, f}(\delta-1) \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right)
$$

where $\delta=\frac{1}{\varrho}$. Consequently, relation (6) is equivalent to

$$
\begin{equation*}
(\delta-1)^{2}\left\|\sum_{g, f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2} \leqq t_{e}^{2}\left\|m_{e}\right\|^{2} \tag{8}
\end{equation*}
$$

Now we compute the norm of m_{e} :

$$
\begin{aligned}
& \left\|m_{\mathfrak{g}}\right\|^{2}=\sum_{g, g^{\prime}}\left(U_{g^{\prime} \bar{g}} \sum_{f}\left(U_{f}^{*}-T_{f}^{*}\right) h_{g}^{f}, \sum_{f^{\prime}}\left(U_{f^{\prime}}^{*}-T_{f^{\prime}}^{*}\right) h_{g^{\prime}}^{f^{\prime}}\right)= \\
& =\sum_{g, g^{\prime}}\left[\sum_{f, f^{\prime}}\left(U_{f^{\prime} g^{\prime} \bar{g} \bar{f}} h_{g}^{f}, h_{g^{\prime}}^{f^{\prime}}\right)-\sum_{f, f^{\prime}}\left(T_{f}^{*} h_{g}^{f}, U_{g g^{\prime} \bar{f}^{\prime}} h_{g^{\prime}}^{f^{\prime}}\right)-\right. \\
& \\
& \left.\quad-\sum_{f, f^{\prime}}\left(U_{g^{\prime} \bar{g} \overline{f^{\prime}}} h_{g}^{f}, T_{f^{\prime}}^{*} h_{g^{\prime}}^{f^{\prime}}\right)+\sum_{f, f^{\prime}}^{\sum_{g}}\left(U_{g^{\prime} \bar{g}} T_{f}^{*} h_{g}^{f}, T_{f^{\prime}}^{*} h_{g^{\prime}}^{f^{\prime}}\right)\right]= \\
& =\sum_{\substack{g, g^{\prime} \\
f, f^{\prime}}}\left(h_{g}^{f}, h_{g^{\prime}}^{f^{\prime}}\right) \int f^{\prime} g^{\prime} \bar{f} \bar{g} d m-2 \operatorname{Re} \sum_{g, g^{\prime}}\left(T_{f}^{*} h_{g}^{f}, h_{g^{\prime}}^{f^{\prime}}\right) \int f^{\prime} g^{\prime} \bar{g} d m+ \\
&
\end{aligned}
$$

In this calculus we have used:

$$
\left(U_{\varphi} h, h^{\prime}\right)=\left(h, h^{\prime}\right) \int \varphi d m+\frac{1}{\varrho}\left[\left(\tilde{T}_{\varphi \varphi} h, h^{\prime}\right)-\left(h, h^{\prime}\right) \int \varphi d m\right] \quad\left(h, h^{\prime} \in H ; \varphi \in C(X)\right)
$$

and we have denoted by $\frac{1}{\varrho} \Sigma$ the term which contains $\frac{1}{\varrho}$ as a factor.
By introducing the scalar products under the integral and interchanging the sum with the integral it follows

$$
\begin{gathered}
\left\|m_{e}\right\|^{2}=\int\left\{\left\|\sum_{g, f} \bar{f} \bar{g} h_{g}^{f}\right\|^{2}-2 \operatorname{Re}\left(\sum_{g, f} \bar{g} T_{f}^{*} h_{g}^{f}, \sum_{g^{\prime}, f^{\prime}} \bar{g}^{\prime} f^{\prime} h_{g^{\prime}}^{f^{\prime}}\right)+\left\|\sum_{g, f} \bar{g} T_{f}^{*} h_{g}^{f}\right\|^{2}\right\} d m+\frac{1}{\varrho} \sum= \\
\int\left\|\sum_{g, f} \bar{f} \bar{g} h_{g}^{f}-\sum_{a, f} \bar{g} T_{f}^{*} h_{h}^{f}\right\|^{2} d m+\frac{1}{\varrho} \sum
\end{gathered}
$$

Now writing $m_{r} \in M_{r}$ as in (7) we obtain

$$
\begin{equation*}
\varrho\left\|m_{e}\right\|^{2}-r\left\|m_{r}\right\|^{2}=(\varrho-r) \int\left\|\sum_{g, f} \cdot \bar{f} \bar{g} h_{g}^{f}-\sum_{g, f} \bar{g} T_{f}^{*} h_{g}^{f}\right\|^{2} d m \tag{9}
\end{equation*}
$$

By (9) and by a simple evaluation of the integral of the vector-valued continuous functions we deduce

$$
\begin{aligned}
& \varrho\left\|m_{\varrho}\right\|^{2} \geqq r\left\|m_{r}\right\|^{2}+(\varrho-r)\left\|\int \sum_{\cdot g, f}\left(\bar{f} \bar{g} h_{g}^{f}-\bar{g} T_{f}^{*} h_{g}^{f}\right) d m\right\|^{2}= \\
& =r\left\|m_{r}\right\|^{2}+(\varrho-r)\left\|\sum_{g, f}\left(\int \bar{g} d m\right) T_{f}^{*} h_{g}^{f}\right\|^{2}
\end{aligned}
$$

For the last equality we have used

$$
\int \bar{f} \bar{g} h_{g}^{f} d m=\left(\int \bar{f} \bar{g} d m\right) h_{g}^{f}=\overline{\Phi(f)} \overline{\Phi(g)} h_{g}^{f}=0
$$

Because (8) remains true if $\varrho=r$, with 1 instead of t_{r} we have

$$
\begin{aligned}
\varrho\left\|m_{e}\right\|^{2} \geqq\left[r\left(\frac{1}{r}-1\right)^{2}+(\varrho-r)\right]\left\|\sum_{g, f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2} & = \\
& =\left(\varrho-2+\frac{1}{r}\right)\left\|\sum_{g, f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2}
\end{aligned}
$$

Now by multiplying with $\left(\frac{1}{\varrho}-1\right)^{2}$, a simple computation shows that

$$
\left(1-\frac{1}{\varrho}\right)^{2}\left\|\sum_{g, f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2} \leqq \frac{\varrho-2+\frac{1}{\varrho}}{\varrho-2+\frac{1}{r}}\left\|m_{e}\right\|^{2}
$$

Comparing this inequality with (8) we conclude that $t_{e}<1$ for $\varrho>r$.
The rest of the proof proceeds exactly the same way as in [3], with the only remark that $k \in N_{\varrho}=K_{\varrho} \ominus M_{\varrho}(\varrho>r)$ if and only if

$$
T_{j} P_{H} U_{g} k=P_{H} U_{g f} k \quad\left(g \in A, f \in A_{\Phi}\right)
$$

The desired space in the theorem is $H^{\prime}=P_{N_{Q}} H$, the affinity is $X=\overline{P_{H} \mid H^{\prime}}$, and finally $T_{f}^{\prime}=P_{H^{\prime}} U_{f} \mid H^{\prime}(f \in A)$.

References

[1] C. Foiaş, Măsuri spectrale şi semispectrale, Studii cerc. mat., 18 (1966), 7—56.
[2] C. Foiaş and I. Suciu, Szegö measures and spectral theory in Hilbert spaces, Rev. Roum. Math. pures et appl., 11 (1966), 147-159:
[3] B. Sz.-NaGy et C. Foiaş, Similitude des opérateurs de classe C_{e} à des contractions, C. R. Acád. Sci. Paris, 264 (1967), 1063-1065.
[4] B. Sz.-Nagy and C. FoIaş, On certain class of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17-26.
[5] B. Sz.-Nagy et C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert (Paris et Budapest, 1967).
[6] I. Suciu, Algebre de funcții (Bucureşti, 1969).
(Received November 2, 1970)

