On a certain class of representations of function algebras

By DUMITRU GAŞPAR in Timişoara (S. R. Romania)

1. Introduction. In [4] B. Sz.-NAGY and C. FOIAS have introduced the class \mathscr{C}_{ϱ} of all bounded linear operators T on the Hilbert space H, which admit a representation of the form:

(1)
$$T^n = \varrho P_H U^n | H$$
 $(n = 1, 2, ...),$

where U is a unitary operator on a Hilbert space K, containing H as a subspace and P_H is the orthogonal projection of K onto H. In [3] they have proved that any T belonging to some class \mathscr{C}_{ϱ} is similar to a contraction.

The definition of the class \mathscr{C}_{a} has a natural correspondent for operator valued representations on Hilbert spaces. For this let X be a compact Hausdorff space, C(X) the Banach algebra of all complex-valued continuous functions on X, A a function algebra on X (i. e. a closed subalgebra of X, which contains the constants and separates the points of X), and M_A the maximal ideal space of A (i.e. the set of all complex homomorphisms of A). For any $\Phi \in M_A$ there exists a positive measure m on X such that

$$\Phi(f) = \int f \, dm \qquad (f \in A).$$

Such a measure is called a representing measure for Φ (see [6]). As usual we write A_{ϕ} for the kernel of Φ .

By a representation of A on H we shall mean an algebraic homomorphism. $f \rightarrow T_f$ of A in $\mathcal{B}(H)$ (the algebra of all bounded linear operators on H) satisfying $T_1 = I$ (the identical operator on H) and

$$||T_f|| \le k ||f|| \qquad (f \in A).$$

If $k=1, f \rightarrow T_f$ is called a *contractive representation* of A on H.

Let $\varrho > 0$. A (contractive) representation $\varphi \to U_{\varphi}$ of C(X) on a Hilbert space K, where K contains H as a subspace, will be called a spectral ϱ -dilation of $f \to T_f$ with respect to $\Phi \in M_A$, if

(2)
$$T_f = \varrho P_H U_f | H \qquad (f \in A_{\phi}).$$

D. Gaşpar

We say that a representation of A on H is of class $\mathscr{C}_{\varrho}(A, H)$ if it has a spectral ϱ -dilation. If $\varrho = 1$, the spectral ϱ -dilation of $f \to T_f$ means simply the spectral dilation of $f \to T_f$ (see [2]). A contractive representation for which there exists a spectral dilation is called a *dilatable representation*.

The purpose of this note is to prove the analog of the result in [3], in the context of representations of function algebras. This is contained in the following

Theorem. Let $f \to T_f$ be a representation of class $\mathscr{C}_{\varrho}(A, H)$ with respect to $\Phi \in M_A$. Then there exists a Hilbert space H', an affinity X of H' onto H, and a contractive representation $f \to T'_f$ of A on H' such that

$$T_f X = X T'_f \qquad (f \in A).$$

Moreover, $f \rightarrow T'_f$ is a dilatable representation, and the spectral ϱ -dilation of $f \rightarrow T_f$ is a spectral dilation of $f \rightarrow T'_f$.

2. Firstly we get a caracterization of the classes $\mathscr{C}_{\varrho}(A, H)$ and the monotonity of these classes. For this aim let $f \to T_f$ be a representation of class $\mathscr{C}_{\varrho}(A, H)$ and $\varphi \to U_{\varphi}$ its spectral ϱ -dilation. If $f \in A$, relation (2) implies:

$$\varrho P_H U_f | H = \varrho P_H U_{f-\Phi(f)} | H + \varrho \Phi(f) I = T_f + (\varrho - 1) \Phi(f) I,$$

that is,

(3)
$$\frac{1}{\varrho}T_f + \left(1 - \frac{1}{\varrho}\right)\Phi(f)I = P_H U_f | H \qquad (f \in A).$$

Now $\varphi \to S_{\varphi} = P_H U_{\varphi} | H (\varphi \in C(X))$ is a positive map of C(X) into $\mathscr{B}(H)$ (see [[1]) for which the spectral dilation is exactly $\varphi \to U_{\varphi}$. Now T_f has the form:

$$T_f = \varrho S_f + (1-\varrho) \Phi(f) I = \varrho S_f + (1-\varrho) \left(\int f \, dm \right) I,$$

where m is a fixed representing measure for Φ .

If we put

$$\tilde{T}_{\varphi} = \varrho S_{\varphi} + (1 - \varrho) \left(\int \varphi \, dm \right) I \qquad \left(\varphi \in C(X) \right)$$

we obtain a linear map $\varphi \to \tilde{T}_{\varphi}$ of C(X) into $\mathscr{B}(H)$, which extends the given representation and satisfies

$$\frac{1}{\varrho}\,\widehat{T}_{\varphi} + \left(1 - \frac{1}{\varrho}\right) \left(\int \varphi \,dm\right) I \ge 0 \qquad (\varphi \ge 0, \ \varphi \in C(X)).$$

The last condition is equivalent to

(4)
$$(\varrho-1)\left(\int \varphi \, dm\right)I + \tilde{T}_{\varphi} \ge 0 \qquad (\varphi \ge 0, \ \varphi \in C(X)).$$

Conversely if we are given a representation $f \rightarrow T_f$ of A on H, which admits an extension $\varphi \rightarrow \tilde{T}_{\varphi}$ to C(X) satisfying (4), then

$$S_{\varphi} = \frac{1}{\varrho} \, \tilde{T}_{\varphi} + \left(1 - \frac{1}{\varrho}\right) \left(\int \varphi \, dm\right) I$$

defines a positive map $\varphi \to S_{\varphi}$ of C(X) into $\mathscr{B}(H)$. Let $\varphi \to U_{\varphi}$ be the spectral dilation of $\varphi \to S_{\varphi}$ (see [1]). It is immediate that $\varphi \to U_{\varphi}$ is a spectral ϱ -dilation of $f \to T_f$, and consequently the given representation is of class $\mathscr{C}_{\varrho}(A, H)$. In this manner we have proved the following

Proposition. The representation $f \to T_f$ of A on H is of the class $\mathscr{C}_{\varrho}(A, H)$ if and only if it admits a linear extension $\varphi \to \tilde{T}_{\varphi}$ to C(X) satisfying (4).

Corollary. If $\varrho \leq \varrho'$ then $\mathscr{C}_{\varrho}(A, H) \subseteq \mathscr{C}_{\varrho'}(A, H)$.

Proof. Let $f \to T_f$ be a representation of the class $\mathscr{C}_{\varrho}(A, H)$. Then, by the proposition, it has an extension $\varphi \to \tilde{T}_{\varphi}$ to C(X) which satisfies (4). But if $\varphi \in C(X)$, $\varphi \ge 0$, then for $\varrho' \ge \varrho$ we have $(\varrho'-1) (\int \varphi \, dm)I + \tilde{T}_{\varphi} \ge (\varrho-1) (\int \varphi \, dm)I + \tilde{T}_{\varphi} \ge 0$, that is, condition (4) is satisfied, with ϱ' instead of ϱ . According to the above proposition, $f \to T_f$ is of the class $\mathscr{C}_{\varrho}(A, H)$, and the corollary is proved.

3. Now we are able to prove the theorem. This proof is modelled on that in [3]. In the sequel m will be a fixed representing measure for Φ .

We suppose that $f \to T_f$ is of class $\mathscr{C}_r(A, H)$. Then, by the corollary, it is also of class $\mathscr{C}_{\varrho}(A, H)$ for $\varrho \ge r$. Let $\varphi \to U_{\varphi}$ be the spectral ϱ -dilation of $f \to T_f$, and K_{ϱ} the ϱ -dilation space. We set

(5)
$$M_{\varrho} = \bigvee_{f \in A_{\varphi}, g \in A} U_g^* (U_f^* - T_f^*) H$$

and $t_e = ||P_{M_e}|H||$, where P_{M_e} is the orthogonal projection of K_e on M_e . It is obvious that $t_e \leq 1$. Moreover, t_e is the smallest positive number for which the inequality

(6)
$$|(h, m_o)| \leq t_o ||h|| ||m_o||$$

holds for any $h \in H$ and $m_{\rho} \in M_{\rho}$ of the form:

(7)
$$m_{\varrho} = \sum_{g,f} U_{g}^{*} (U_{f}^{*} - T_{f}^{*}) h_{g}^{f},$$

where the family $\{h_{\sigma}^{f}: g \in A, f \in A_{\phi}\}$ has a finite number of elements.

Using (3) we obtain by a simple computation:

$$(h, m_{\varrho}) = \left(h, \sum_{g,f} (\delta - 1) \overline{\Phi(g)} T_f^* h_g^f\right),$$

7 A

where $\delta = \frac{1}{\rho}$. Consequently, relation (6) is equivalent to

(8)
$$(\delta-1)^2 \left\| \sum_{g,f} \overline{\Phi(g)} T_f^* h_g^f \right\|^2 \leq t_\varrho^2 \|m_\varrho\|^2.$$

Now we compute the norm of m_{ρ} :

$$\begin{split} \|m_{\varrho}\|^{2} &= \sum_{g,g'} \left(U_{g'\bar{g}} \sum_{f} (U_{f}^{*} - T_{f}^{*}) h_{g}^{f}, \sum_{f'} (U_{f'}^{*} - T_{f'}^{*}) h_{g'}^{f'} \right) = \\ &= \sum_{g,g'} \left[\sum_{f,f'} (U_{f'g'\bar{g}\bar{f}} h_{g}^{f}, h_{g'}^{f'}) - \sum_{f,f'} (T_{f}^{*} h_{g}^{f}, U_{g\bar{g}\bar{f}} f_{g}^{f}, h_{g'}^{f'}) + \sum_{f,f'} (U_{g'\bar{g}} T_{f}^{*} h_{g}^{f}, T_{f'}^{*} h_{g'}^{f'}) \right] = \\ &= \sum_{g,g'} (h_{g}^{f}, h_{g'}^{f'}) \int f'g' \bar{f}\bar{g} \, dm - 2 \operatorname{Re} \sum_{g,g'} (T_{f}^{*} h_{g}^{f}, h_{g'}^{f'}) \int f'g' \bar{g} \, dm + \\ &+ \sum_{g,g'} (T_{f}^{*} h_{g}^{f}, T_{f'}^{*} h_{g'}^{f'}) \int g' \bar{g} \, dm + \frac{1}{\varrho} \sum . \end{split}$$

In this calculus we have used:

$$(U_{\varphi}h,h') = (h,h')\int\varphi\,dm + \frac{1}{\varrho}\left[(\tilde{T}_{\varphi}h,h') - (h,h')\int\varphi\,dm\right] \qquad (h,h'\in H; \ \varphi\in C(X))$$

and we have denoted by $\frac{1}{\varrho}\Sigma$ the term which contains $\frac{1}{\varrho}$ as a factor.

By introducing the scalar products under the integral and interchanging the sum with the integral it follows

$$\|m_{\varrho}\|^{2} = \int \{ \|\sum_{g,f} \bar{f}\bar{g}h_{g}^{f}\|^{2} - 2\operatorname{Re}\left(\sum_{g,f} \bar{g}T_{f}^{*}h_{g}^{f}, \sum_{g',f'} \bar{g}'\bar{f}'h_{g'}^{f}\right) + \|\sum_{g,f} \bar{g}T_{f}^{*}h_{g}^{f}\|^{2} \} dm + \frac{1}{\varrho} \sum = \int \|\sum_{g,f} \bar{f}\bar{g}h_{g}^{f} - \sum_{g,f} \bar{g}T_{f}^{*}h_{h}^{f}\|^{2} dm + \frac{1}{\varrho} \sum.$$

Now writing $m_r \in M_r$ as in (7) we obtain

(9)
$$\varrho \|m_{\varrho}\|^{2} - r \|m_{r}\|^{2} = (\varrho - r) \int \left\|\sum_{g,f} \bar{f}\bar{g}h_{g}^{f} - \sum_{g,f} \bar{g}T_{f}^{*}h_{g}^{f}\right\|^{2} dm.$$

By (9) and by a simple evaluation of the integral of the vector-valued continuous functions we deduce

$$\begin{split} \varrho \|m_{\varrho}\|^{2} &\geq r \|m_{r}\|^{2} + (\varrho - r) \left\| \int \sum_{g,f} (\bar{f}\bar{g}h_{g}^{f} - \bar{g}T_{f}^{*}h_{g}^{f}) dm \right\|^{2} = \\ &= r \|m_{r}\|^{2} + (\varrho - r) \left\| \sum_{g,f} \left(\int \bar{g} dm \right) T_{f}^{*}h_{g}^{f} \right\|^{2}. \end{split}$$

For the last equality we have used

$$\int \bar{f}\bar{g}h_g^f dm = \left(\int \bar{f}\bar{g}\,dm\right)h_g^f = \overline{\Phi(f)}\,\overline{\Phi(g)}h_g^f = 0.$$

Because (8) remains true if $\rho = r$, with 1 instead of t_r we have

$$\begin{split} \varrho \|m_{\varrho}\|^{2} &\geq \left[r\left(\frac{1}{r}-1\right)^{2}+(\varrho-r)\right] \left\|\sum_{g,f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2} = \\ &= \left(\varrho-2+\frac{1}{r}\right) \left\|\sum_{g,f} \overline{\Phi(g)} T_{f}^{*} h_{g}^{f}\right\|^{2}. \end{split}$$

Now by multiplying with $\left(\frac{1}{\varrho}-1\right)^2$, a simple computation shows that

$$\left(1-\frac{1}{\varrho}\right)^2 \left\|\sum_{g,f} \overline{\Phi(g)} T_f^* h_g^f\right\|^2 \leq \frac{\varrho-2+\frac{1}{\varrho}}{\varrho-2+\frac{1}{r}} \|m_\varrho\|^2.$$

Comparing this inequality with (8) we conclude that $t_{\rho} < 1$ for $\rho > r$.

The rest of the proof proceeds exactly the same way as in [3], with the only remark that $k \in N_{\varrho} = K_{\varrho} \ominus M_{\varrho}$ ($\varrho > r$) if and only if

$$T_f P_H U_g k = P_H U_{gf} k \qquad (g \in A, f \in A_{\phi}).$$

The desired space in the theorem is $H' = P_{N_e} H$, the affinity is $X = \overline{P_H} | \overline{H'}$, and finally $T'_f = P_{H'} U_f | H' \ (f \in A)$.

References

- [1] C. FOIAŞ, Măsuri spectrale și semispectrale, Studii cerc. mat., 18 (1966), 7-56.
- [2] C. FOIAŞ and I. SUCIU, Szegő measures and spectral theory in Hilbert spaces, Rev. Roum. Math. pures et appl., 11 (1966), 147–159.
- [3] B. Sz.-NAGY et C. FOIAŞ, Similitude des opérateurs de classe C_e à des contractions, C. R. Acàd. Sci. Paris, 264 (1967), 1063—1065.
- [4] B. Sz.-NAGY and C. FOIAŞ, On certain class of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17-26.
- [5] B. Sz.-NAGY et C. FOIAS, Analyse harmonique des opérateurs de l'espace de Hilbert (Paris et Budapest, 1967).

[6] I. SUCIU, Algebre de funcții (București, 1969).

(Received November 2, 1970)