
TV"-operators and semi-Carleman operators 

By TIN K I N W O N G in Detroit (Michigan, U.S.A.) 

1. Let (X, n) be a measure space, E a Banach space, and let p and p' be the 
usual conjugate numbers with 1 < p < that is l/p+ijp' = 1. Let Lp(X, p; E) 
be the Banach space of all equivalent classes of ¿¿-strongly measurable £"-valued' 

functions K such that ||A"||P = f\\K(x)\\pdn <+<*>. 
x 

Operators of the type T:LP(X, / i)—£, which can be represented by a unique 
K in Lp'(X,fi;E) in the following way: Tg = Jg(x)K(x)dp were considered by 

x 
A. PERSSON. In [3] he showed that these are operators of type Np which are also-
known as right /)-nuclear operators. (See [1], Théorème 6.) The author proved 
in [7] that if E is the strong dual of some Banach space F such that either E is. 
separable or reflexive, then T is the adjoint of an operator S:F-*LP'(X, ¡î) such 
that |5 / (x) ]Sy(x) | | / | | a.e. for some non-negative y in L"'(X, n). In section 2 of this, 
note we give a new characterization of this class of JV-operators without referring, 
to their adjoints. A necessary and sufficient condition for T to be of this class is. 
that | | 7g | |S J y(x)\f(x)\dii for some non-negative y in L"'(X, ¡J) and for all g in 

x 
L"(X, n). In section 3, we apply our results to Hilbert spaces. We first give two 
characterizations of Hilbert—Schmidt class operators, and then obtain a charac-
terization of the semi-Carleman operators introduced by M. SCHREIBER [4]. Finally, 
we show that the Korotkov theorem for Carleman operators ([2], Theorem 1)-
remains valid even in nonseparable Hilbert space. 

2. Throughout this section, all operators are bounded. 

T h e o r e m 2. 1. Let E be a Banach space such that either E has a separable 
strong dual E' or E is reflexive. For operators T: LP(X, n) — £' with 1 < p <+»=>. 
the. following are equivalent: 

(i) There exists a unique K in LP (X, ¡.i; E') such that Tg— Jg(x)K(x)dfi for 
all g in LP(X, /<)• -v 

(ii) There exists some non-negative y in Lp'(X,n) such that ¡1 Tg\\ =i J y(x)\g(x)\dn: 
for all g in LP{X, fi). x 



106 Tin Kin Wong 

N o t e . The implication (i)=>(ii) is trivial, as one may take y(x) = ||A'(x)||. 
Moreover, the uniqueness of K in (i) is clear. For if there were some K and K' in 
Lp'(X,n\ £') such that Tg= f g(x)K(x)dp = fg(x)K'{x)dp for all g in L"(X,p), 

x x 
then, in particular, f K{x)dp = JK'(x)dp for all measurable set A with finite measure. 

A A 

Because the supports of K and K' are c-finite measurable sets, we have therefore 
K=K' in L"(X,p; £"). 

Theorem 2. 1 follows f rom Theorem 2 of [7] and the following lemma which 
may have some interest in its own right. 

L e m m a 2. 1. Let E be a Banach space. Let T*:LP(X, p)-*-E' be the adjoint 
•of T: E-~L"(X, p), and let y£Lp (X, p), y = 0. Then the following are equivalent: 

(i) \Tf(x)\^y{x)\\f\\ a.e. for f in E. 

(ii) || r ; g | | s / |g (x) |y(x)dp for all g in Lp(X, p). 
x 

P r o o f . Case 1: -;'(x)>0 a.e. Form the finite measure space (X, v) where 
•dv = yp dp. Let My:Lp'(X, v) ^LP'(X, pi and MyP.IP:L"(X, v) -L"(X, p) be the 
multiplication by y and y"'lp, respectively. That is, My(g) = y - g and Myp-jp(h) = 
= yp'Sp -h for g in Lp (X, v) and h in L"(X, v). Beause y (x )<0 a.e., My and MyV-,p 
are linear isomorphisms (onto), and M~1 = My-i, (MyP-ip)~l=My-P'iP. A simple com-
putation shows that (MyP'ip)* = (My)~1, hence M* = MyPnP. We now prove (ii)-=>(i). 

Write Tp=T*oMyP-,P. Then Tp:L"(X, v ) - £ " , and \\Tpf\\S f\MyP.,p(f)\.ydp. 
x 

Hence || Tpf\\ S f \f{x)\dv = | | / | | j , where|| • || t denotes the Z^-norm o f / . Since Lp(X, v) 
x 

is dense in Ll(X, v), we can extend Tp to the whole of L\X, v) without increasing 
its norm. Let T^.L^X, v)-E' be the extension of Tp. Then | | 7 " j | | I . We have 
the first one of the following commutative diagrams, f rom which the second one 
derives by taking adjoints: 

LPlXy). M v p № , LPIXtM) Lp'!Xtv)<M»p,/pr e 

t T* 

C ( X l V ) E H X , » ) « - 1 • E 

LH-(X,JJ.) 

T 

Here i and ik are the natural embeddings, and || Till = 11^11 S I. If / in £ , then 
-T**f=Tf. (Here we have identified £"with a subset of E** via the natural embedding.) 
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Therefore i*T*(f) = (MyP'iP)*T(f) = My-i(Tf). Hence \\T*f\\„ S | | / | | ; it follows 
that | r i y ( x ) | =5 H/ll a.e. But T*f(x) = My^Tf(x) = y~l{x)- Tf(x). Therefore 
\y-\x)-Tf(x)\ =S ll/H a.e. Hence \Tf(x)\Sy(x)\\f\\ a.e. for / i n E. This completes 
the proof of the implication (ii)=>(i). The proof of (i)=>(ii) is similar. We first 
consider the mapping Sp:E-^Lp(X, v) defined by S p . = M r , o T. Then | 5 p . / ( x ) | s | | / | i 
a.e. Let i:L°°(X, v)-+LP'(X, v) be the injection. Then Sp. factors as ¿y --io Sm 

where S„:E^Lm(X, v) and I I S ^ / L ^ U / H where | | - | L denotes the L~-norm. Hence 
| | S J | ^ 1 . Therefore S* :M(X, v) — E' is also a contraction where M(X, v) is the^ 
dual of L°°(X, v). It is clear that i*:Lp(X, v) — M(X, v) is the natural injection which 
maps g into the finite measure (complex) gdv for g in LP(X, v). Hence || S* o/*g| |S | | /*g| | , 

and ||/*g|| = J \g\dv for g i n LP(X, v). Moreover, since io Soa = Sp. = My-io T, then 
x 

Stoi* = S*p,= T*o(My-1)* = T*oMyP',P. It follows that \\T* o MyP'IPg\\ ^ f \g\dv 
x 

for g in L"(X,v). If g is in Lp(X,n), write g=MyP-,P(MyP'IPg). Then | | r * g | | S -

g J \My-P'ip(g)\dv= f y(x)\g(x)\dn. This proves (i)=>(ii); 
x . x 

Case 2: y vanishes on a set of positive measure. Let Y={x\ y(x)>0}, and let 
(Y , n) be the measure space obtained by restricting n to Y. Let j:Lp(Y, p) -+Lp'(X, n) 
be the natural embedding. Then j*:Lp(X, n) ~LP(Y, n) is the projection g — / y g 
where %Y is the characteristic funct ion of Y. Then the operator T factors as 
E —-* Lp(Y, /0 LP(X, fi) if and only if T* factors as LP\X, /() -~LP'(Y, /<) — £'. 
Now we apply the implication (/)=>•(») to the operators TY and , and complete 
the proof. 

P r o o f of T h e o r e m 2. 1. We only need to p rove . tha t (ii) implies (i). Let 
S: E ->-Lp (X, ¡a) be the restriction of T* :E" ^LP'(X, ¡i) to E. Then T=S*. By 
Lemma 2. 1, we have | 5 / ( x ) | S y ( x ) | | / | | a.e. for / i n E. By Theorem 2 of [7], we 
have Tg=S*g= JK(x)g(x)dn for a unique K in LP\X, n; E'). 

X 

R e m a r k . We note that, in Theorem 2. 1, the existence of K does not depend 

upon the choice of those non-negative y such that ||!Tg||S f y(x)\g(x)\di.i for g i n 
x 

LP(X, fi). The following lemma asserts that the function | | • )|| is the infimum of 
all those y in the language of lattice theory. That is, ||AT(0II = A{y € L"(X, /t); 

\\Tg\\S f y(x)\g(x)\dp fo r all g in L"(X, /<)}• 
x 

L e m m a 2. 2. Let E be a Banach space. Let K be in LP'(X, p; E) and let y 

be non-negative element in L" (X, fi) such that || f K(x)g(x)cl^ S j y(x)\g(x)\dj.i for 
x x 

all g in L"(X,'n). Then | [A"(x) | |^y(x) a.e. 
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P r o o f . Let S-.L\X,n)-E be defined by Sg= f K{x)g(x)dp. Then 5 is a 
x 

bounded operator, and S*:E'-LP\X, p) is given by S*f'(x)=(f, K(x)) a.e. 
Furthermore, the proof for (ii)=>(i) of Lemma 2. 1 proves that y(x)[|/ ' | | . 
a.e. where the exceptional set of measure zero may depend upon f . Hence 
!</', a.e. for f in £ ' . Let N be the /«-null set such that K(X\N) 
is contained in a separable subset of E. Let {/ , , / 2 , . . . , / „ , ...} be a countable dense 
subset of this subset of E. Let { / i , / 2 , • •. ,/„ ' , . . .} be the subset of E' such that 
| |/; | | = 1 and \(/;jJ)\ = \\fJ\\ for each j. Then, if x is not in N, we have ||/T(x)|| = 
= s u p ¡ ( / ; , K(x))\. Let Nj be the p-nuU such that \(f;,K(x)))Sy(x) for all x not 

j 

in Nj. Let =A^U ^ j • Then A is also a ¿«-null, and ||A:(JC>|| Sy(x) for all x not 

in A. This proves the lemma. 

3. Let H be a Hilbert space. Let S\H^L2(X, p) be a Hilbert—Schmidt class 
operator. For any orthonormal basis { / } of H, 2 II^/AII2 ¡ s finite. There are at most 

A 

counfably many non-vanishing | |S£| |2 in the above sum, say S f x ?*0 (j=l, 2, 3, ...). 

Hence j ? I s / ; ( * ) l 2 < + < ~ a.e. Let K{x)= 2 S f , (x)fx . Then ^ is a strongly j= i 1 J = l J L 
/¿-measurable//-valued function such that f\\K(x)\\2dp = 2\\Sfx ||2 = 2WJ2=l|S|l2> 

x J = i 
where | |S| |2 denotes the Hilbert—Schmidt norm of S. Furthermore, S f x (x) = 
— (fx,,.K(x)) and hence Sf(x) = ( f K(x)) a.e. for / . i n H. Conversely, if K in 
L2(x[n; H) and S:H-L2(X, p) is defined by Sf{x) = ( f K(x)) a. e. then it is clear 
that S is of Hilbert—Schmidt class with Hilbert—Schmidt norm || A"||. This shows 
that every Hilbert—Schmidt class operator S:H^L2(X, p) is of the form Sf(x) = 
= (-f K(x)) a.e. for a unique AT in L2(X, p; H). The above argument can also be 
found, for example, in [6], 2. 2 (1); we include it here for a later reference. The fol-
lowing characterization for Hilbert—Schmidt class operators first appeared in 
PERSSON'S article ([3], Theorem 3) as a special case of his main result. It is also 
included in ([7], Corollary 3 and its following remark). 

However, the following version is due to WEIDMANN ([6], 2. 10. Korollar) for 
separable Hilbert spaces. 

T h e o r e m 3 . 1 . Let H be a Hilbert space. For a bounded operator T: // — 
-*L2(X, p), the following are equivalent: 

(i) T is of Hilbert—Schmidt class. 
(ii) |7 / (x) |^y(x) | | / | | a.e. for some non-negative y in L2(X, p). 
(iii) Tf(x) — ( f K(x)) a.e. for a unique K in L2(X, p; H). 

Moreover, ||r||2 = ||^||, where \\T\\2 denotes the Hilbert—Schmidt norm of T, 
and ||Af|| denotes the norm of K in L2{X, p; H). 
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P r o o f . The argument given at the beginning of this section shows that (i) 
and (iii) are equivalent and || r | | 2 = || K ||. By Theorem 1 of [7] we see that- (ii) and 
(iii) are equivalent. 

Dual to Theorem 3 .1 , we have the following 

T h e o r e m 3. 2. Let H be a Hilbert space. For a bounded operator S:L2(X, /<) — H 
the following are equivalent: 

(i) S is of Hilbert—Schmidt class. 

(ii) II S&li = f y(x) \g(x)\dp for some non-negative y in L2(X, /(). 
x 

(iii) Sg== F'K(x)g(x)dp for a unique K in L2(X, n; H). 
x 

Moreover, | |S | |2 = P 1 - . 

P r o o f . S is of Hilbert—Schmidt class if and only if S*:H-~L\X, y) is of 
Hilbert—Schmidt class. This is so if and only if |S*/( j t ) | sy( jc) | | / | | a.e. for some 
ySO in L2(X, p). By Lemma 2. 1, the above inequality holds if and only.if ||Sg|| S 

^ f y(x)\g(x)Hence (i) and (ii) are equivalent, (ii) and (iii) are equivalent by 
x 

Theorem 2. 1. Furthermore, f r o m t h e o r e m 3. 1, we have ||S*||.2 = | | tf | | , but | |S| |2 = 
= | |S*| |2 . Hence | |S | |2 = ||/C||. 

We now turn our attention to operators defined on a linear manifold of Hilbert 
space. Let H be a Hilbert space, and let K be a strongly /i-measurable / /-valued 
function defined almost everywhere on X. Let T> = {f£H; ( f K( •)) £L\X, ¿¿)}. 
Then S is a linear manifold of H, but not necessarily dense in H. Let 
t={g£L2(X,p): f\\K(x)\\ \g(x)\dn< +<*=}. Then t is a dense linear manifold of 

L\X,N) (cf. [4]).V ^ 

Notice that t> = {g 6 L2(X, p); gK is Bochner integrable). Moreover, if 
t>=L\X, n), then K is necessary in L2(X, ¡i; H). 

Fol lowing J . WEIDMANN [6] we call an o p e r a t o r T:T>T -+L2{X, P) a C a r l e m a n 
operator, if its domain D r is contained in D and it can be written as Tf(x) = ( f , K(x)) 
a.e. fo r / i n 35T. An operator S : f > s ^ - H is called a semi-Carleman operator, if 
its domain $>s is contained in t> and it can be written as Sg= f g(x)K(x)d¡i for 
g in t>s. x 

We note that, when ( X , p) is «r-finite, and H=L2(X, p), then our definitions 
for Carleman and semi-Carleman operations coincide with the classical ones ([2] 
and [4]). For a detailed discussion of this see ([6], Section 5) or ([2], Lemma 1). 

T h e o r e m 3 . 3 . Let (X, fi) be a o-finite measure space. Let S:i>s -+H be an 
operator with dense domain T>s in L2(X, ¡i). The following are equivalent: 
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(i) S is a semi-Carleman operator. 
(ii) There exists a measurable function y such that 0 S y ( i ) < + « > a.e., 

§sa{giL2:fy(x)\g(x)\dfi^+~}, and \\Sg\\^fy(x) \g(x)\dp for all g in 
x x 

P r o o f . The implication (i)=>(ii) isclear. We now prove (ii)=>(i). Write X— U A„, 
n= 1 

A„cA„+l and p(A„)<+°= for all n. Let Xn={x€An; y(x)^n) for n= 1 , 2 , . . . . 

Then XnczXn+,, n(Xn) < + » and / < ( * \ U X n ) = 0. Let pn be the restriction of p. n 
to let t ^ t s D L 2 ^ , ^ ) , yn = x x j . Then yn is in L2(Xn, pn), and £ „ is dense 
in L2(Xn, //„). Consider S„:t)„-*H; the restriction of S to £>„. We have ||S„g|| S 
= f yn(x)\s(x)\dp„ for g in t>„. Then Sn admits a unique bounded extension to 

L2(X„, pn) which is also denoted by S„. Moreover, the inequality H^gH^ 

S f y„(x)\g(x)\dpn holds for all g in L2(Xn, pn). Therefore, by Theorem 3.2 S„g= 
x 

= f g(x)Kn(x)dp„ for a unique K'n in L2(Xn, pn; H). By Lemma 2. 2 Sy„(x) 
x 

a.e. Note that S n + 1 extends Sn, using the uniqueness assertion once more we have 
K'n+l(x)=K'n(x) a.e. on Xn. We now define Kn almost everywhere on X by putting 
Kn(x) = K'n(x) a.e. on Xn and Kn(x) = 0 for x not in Xn. Then Kn is //-strongly meas-
urable. Since Kn+1(x) = K„(x) a.e. on Xn, then lim Kn(x) exists almost everywhere. 

rt-. CO 

Let K(x)= lim Kn(x), then K is defined almost everywhere on X into H and K is 
n— CO 

also /¿-strongly measurable. Moreover, lim||^Tn(x)||Slimv„(x) = )'(x) a.e. 
n oo H-* oo 

Hence / j g(x) \ \\K(x)\\dp^ f \g(x)\y(x)dp < + « . for all g in f ) s . Thus the integral 
x x 

f g(x)K(x)dp exists for gin £>s. Wehave ts<z{g£L2(X,p);f \g(x)\\\K(x)\\dp< + 
x. 
We want to show that Sg— Jg(x)K{x)dp for g in X)s. To see this, we let g„ = Xx 8-

x 
Then a.e. and gn£L2(Xn, //„). | | S g - S g J S f y ( x ) \dp-0, 

x 
by dominated convergence. But Sg„ = S„g„= f Kn(x)gn(x)dp„ = f K(x)gn(x)dp. On 

xn x 
the other hand \\J K(x)g(x)dp- JK(x)gn(x)d^ S f\\K(x)\\ \g(x)-gn(x)\dp S 

X X X 

— f y(x) !•?(*) ~Sn(x) \dp — 0. Therefore Sg= f g(x)K(x)dp for g in X>s. This com-
x x 

pletes the proof. 
In 1965, V. B KOROTKOV gave a characterization for a Carleman operator on 

separable L2-space which is what he called an integral operator of Carleman type 
(cf. [2], Theorem 1). His proof is based on the Dunford-Pettis Theorem. Recently, 
M. SCHREIBER and GY. TARGONSKI also obtained a new characterization for Car-
leman operators (cf. [5], Theorem 2. 1). However, J. P. WILLIAMS shows that the 
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Schreiber—Targonski theorem is a consequence of the Korotkov theorem (pri-
vate communication). (See also [6], Satz 2. 11.) Using our result, we can prove^ 
that the Korotkov Theorem remains valid without the separability assumption 
on the Hilbert spaces. 

T h e o r e m 3. 4 (KOROTKOV [2], Theorem l). Let (X, ¡i) be a o-finite measure 
space. Let T:T>r -*L2(X, /<) be an operator with dense domain T>r in a Hilbert space 
H. The following are equivalent conditions: 

(i) T is a Carleman operator. 
(ii) There exists a non-negative measurable function y such that y(x) < + »• 

a.e. and | r / ( x ) | S y ( x ) | | / | | a.e. for f in 2>T. 

P r o o f . (i) clearly implies (ii). To prove (ii) =>(')>we write X= |J An, with AnczAn+l 
n= i 

and each A„ of finite measure. Let Xn={x£An; y(x)s=/i}. Then / í | V \ 1J X „ j = 0 , 

and Xn(zXn+l and each Xn has finite measure. Let E„: L2(X, //) — L2 (X, /() be the 
projection on L2(Xn, /<). Then £„ — 1 strongly. Let yn=zx y, /'„ = /'|,Y • Then y„. 
i n L2(XN, ju„). C o n s i d e r E„T\T)T^L2(X, p). L e t j:L2(XN, ¡iN)-*L2(X,]T) b e t h e 

natural embedding. Then £„Tfactors as D r - " L2(Xn,pn)L2(X, /;) where \T„f(x)\^ 
— VnWII/ll a- e- (/O- T„ admits a unique bounded extension to H which is again 
written as T„. By a standard density argument one can show that the extension 
T„ also has the property that \Tnf{x)\^yn(x)\\f\\ a.e. (//„) for / i n H. By Theorem 
3. 1 T„ is of Hilbert—Schmidt class, and there is a unique Kn in L2(X„, //„; H) 
such that T„f(x) = ( f K'n(x)) a.e. By uniqueness again, we have K'„+ l(x) = K'n{x) 
a.e. on XN. Let Kn(x) = K'„(x) a.e. on XN and Kn(x)=0 for x not in XN. Then each 
Kn is strongly //-measurable //-valued. Let K(x)= limA"„(x) a.e. Then K defines 

CO 

almost everywhere on X and is /¿-measurable. Moreover K(x) = K„(x) a.e. on Xn. 
I f / i n I V , then Tf= I i m E n T f . But E„Tf = j- TJ, so (EnT)f(x) = {TJ){x)=f K„(x) 
a. e. Therefore Tf(x)= )imE„ Tf(x)=\im(f K„(x)) = ( f K(x)) a.e. This completes co t i -*• oo i 
the proof. 

4. C o n c l u d i n g r e m a r k . In the definition of a semi-Carleman operator, 
if we enlarge the linear manifold Í) to the linear manifold of L2(X, p) consisting, 
of all g such that the //-valued function x -^g(x)K(x) is weakly integrable in the 
sense of Pettis, where K is a /(-strongly measurable //-valued function. We may 
call an operator T:T>T-+H a weak semi-Carleman operator, if its domain £>r is 

contained in T> and it can be written as Tg— f g(x)K(x)d¡Á for g in X>T, where the 
x 

integral is the weak integral in the sense of Pettis. It is easy to see that, if A :H-+ 
—L2(X,p) is an everywhere defined Carleman operator (hence bounded), then 



112 Tin Kin Wong: /V-opera tors and semi-Carleman operators 

A*: L2(X, n)-~H is a weak semi-Carleman operator. More than this, one can easily 
show that the adjoint of a densely defined Carleman operator is a closed extension 
of a weak semi-Carleman operator. It follows that the conditions |4 / (x) | = y(x)[|/| | 
and \\A*g\\^ f y(x)\g(x)\d{i, for some nonnegative measurable y are not equivalent 

for the Carleman operator A. It would be interesting to give a characterization 
for a weak semi-Carleman operator. 

Using theory of semi-ordered spaces, S. I. ZDANOV (cf. [8], proof of T h e o r e m 1) 
proved that the Korotkov inequality |77(x) |^)>(x) | | / | | a.e. is equivalent to that 
T maps every null sequence of vectors {/,}"= t in H into a sequence {Tfn}™=, in 
L2(X, n) such that Tfn(x) —0 a.e. For a complete elementary proof of this see 
WEIDMANN ([6], Satz 2. 12). W e d o no t know the answer to the fol lowing ques t i on : 

What is the condition corresponding to the Zdanov theorem for a semi-
Carleman operator and a Carleman operator respectively? 

* 

The author is grateful to his colleague Dr . T. ITO for many helpful discussions, 
a n d t o D r . J . P . WILLIAMS f o r h i s c o m m u n i c a t i o n o n t h e s u b j e c t . 
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