N^p-operators and semi-Carleman operators

· By TIN KIN WONG in Detroit (Michigan, U.S.A.)

1. Let (X, μ) be a measure space, E a Banach space, and let p and p' be the usual conjugate numbers with 1 , that is <math>1/p + 1/p' = 1. Let $L^p(X, \mu; E)$ be the Banach space of all equivalent classes of μ -strongly measurable E-valued functions K such that $||K||^p = \int_X ||K(x)||^p d\mu < +\infty$.

Operators of the type $T: L^p(X, \mu) \to E$, which can be represented by a unique K in $L^{p'}(X, \mu; E)$ in the following way: $Tg = \int g(x)K(x)d\mu$ were considered by

A. PERSSON. In [3] he showed that these are operators of type N^p which are also known as right *p*-nuclear operators. (See [1], Théorème 6.) The author proved in [7] that if *E* is the strong dual of some Banach space *F* such that either *E* is separable or reflexive, then *T* is the adjoint of an operator $S: F \to L^{p'}(X, \mu)$ such that $|Sf(x)| \leq \gamma(x) ||f||$ a.e. for some non-negative γ in $L^{p'}(X, \mu)$. In section 2 of this note we give a new characterization of this class of N^p -operators without referring to their adjoints. A necessary and sufficient condition for *T* to be of this class is that $||Tg|| \leq \int_{X} \gamma(x) |f(x)| d\mu$ for some non-negative γ in $L^{p'}(X, \mu)$ and for all *g* in

 $L^p(X, \mu)$. In section 3, we apply our results to Hilbert spaces. We first give two characterizations of Hilbert—Schmidt class operators, and then obtain a characterization of the semi-Carleman operators introduced by M. SCHREIBER [4]. Finally, we show that the Korotkov theorem for Carleman operators ([2], Theorem 1) remains valid even in nonseparable Hilbert space.

2. Throughout this section, all operators are bounded.

Theorem 2.1. Let E be a Banach space such that either E has a separable strong dual E' or E is reflexive. For operators $T:L^p(X, \mu) \rightarrow E'$ with 1 the following are equivalent:

(i) There exists a unique K in $L^{p'}(X, \mu; E')$ such that $Tg = \int_{X} g(x)K(x)d\mu$ for all g in $L^{p}(X, \mu)$.

(ii) There exists some non-negative γ in $L^{p'}(X, \mu)$ such that $||Tg|| \leq \int_{X} \gamma(x)|g(x)|d\mu$. for all g in $L^{p}(X, \mu)$. Tin Kin Wong

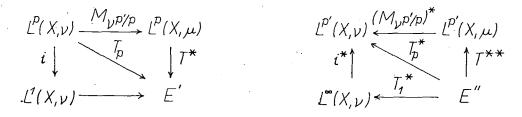
Note. The implication (i) \Rightarrow (ii) is trivial, as one may take $\gamma(x) = ||K(x)||$. Moreover, the uniqueness of K in (i) is clear. For if there were some K and K' in $L^{p'}(X, \mu; E')$ such that $Tg = \int_{X} g(x)K(x)d\mu = \int_{X} g(x)K'(x)d\mu$ for all g in $L^{p}(X, \mu)$, then, in particular, $\int_{A} K(x)d\mu = \int_{A} K'(x)d\mu$ for all measurable set A with finite measure. Because the supports of K and K' are σ -finite measurable sets, we have therefore K = K' in $L^{p}(X, \mu; E')$.

Theorem 2. 1 follows from Theorem 2 of [7] and the following lemma which may have some interest in its own right.

Lemma 2.1. Let E be a Banach space. Let $T^*: L^p(X, \mu) \to E'$ be the adjoint of $T: E \to L^p(X, \mu)$, and let $\gamma \in L^{p'}(X, \mu)$, $\gamma \ge 0$. Then the following are equivalent:

- (i) $|Tf(x)| \leq \gamma(x) ||f||$ a.e. for f in E.
- (ii) $||T^*g|| \leq \int_{Y} |g(x)|\gamma(x)d\mu \text{ for all } g \text{ in } L^p(X,\mu).$

Proof. Case 1: $\gamma(x) > 0$ a.e. Form the finite measure space (X, v) where $dv = \gamma^{p'}d\mu$. Let $M_{\gamma}: L^{p'}(X, v) \to L^{p'}(X, \mu)$, and $M_{\gamma^{p'/p}}: L^{p}(X, v) \to L^{p}(X, \mu)$ be the multiplication by γ and $\gamma^{p'/p}$, respectively. That is, $M_{\gamma}(g) = \gamma \cdot g$ and $M_{\gamma^{p'/p}}(h) = \gamma^{p'/p} \cdot h$ for g in $L^{p'}(X, v)$ and h in $L^{p}(X, v)$. Beause $\gamma(x) < 0$ a.e., M_{γ} and $M_{\gamma^{p'/p}}$ are linear isomorphisms (onto), and $M_{\gamma}^{-1} = M_{\gamma^{-1}}, (M_{\gamma^{p'/p}})^{-1} = M_{\gamma^{-p'/p}}$. A simple computation shows that $(M_{\gamma^{p'/p}})^* = (M_{\gamma})^{-1}$, hence $M_{\gamma}^* = M_{\gamma^{p'/p}}$. We now prove (ii) \Rightarrow (i). Write $T_p = T^* \circ M_{\gamma^{p'/p}}$. Then $T_p: L^p(X, v) \to E'$, and $||T_pf|| \leq \int_X |M_{\gamma^{p'/p}}(f)| \cdot \gamma d\mu$. Hence $||T_pf|| \leq \int_X |f(x)| dv = ||f||_1$, where $||\cdot||_1$ denotes the L^1 -norm of f. Since $L^p(X, v)$ is dense in $L^1(X, v)$, we can extend T_p to the whole of $L^1(X, v)$ without increasing its norm. Let $T_1: L^1(X, v) \to E'$ be the extension of T_p . Then $||T_1|| \leq 1$. We have the first one of the following commutative diagrams, from which the second one derives by taking adjoints:



Here *i* and i_{λ} are the natural embeddings, and $||T_1^*|| = ||T_1|| \le 1$. If *f* in *E*, then $T^{**}f = Tf$. (Here we have identified *E* with a subset of E^{**} via the natural embedding.)

Therefore $i^*T_1^*(f) = (M_{\gamma^{p'/p}})^*T(f) = M_{\gamma^{-1}}(Tf)$. Hence $||T_1^*f||_{\infty} \le ||f||$; it follows that $|T_1^*f(x)| \le ||f||$ a.e. But $T_1^*f(x) = M_{\gamma^{-1}}Tf(x) = \gamma^{-1}(x) \cdot Tf(x)$. Therefore $|\gamma^{-1}(x) \cdot Tf(x)| \le ||f||$ a.e. Hence $|Tf(x)| \le \gamma(x)||f||$ a.e. for f in E. This completes the proof of the implication (ii) \Rightarrow (i). The proof of (i) \Rightarrow (ii) is similar. We first consider the mapping $S_{p'}: E \to L^p(X, v)$ defined by $S_{p'} = M_{\gamma^{-1}} \circ T$. Then $|S_{p'}f(x)| \le ||f||$ a.e. Let $i: L^{\infty}(X, v) \to L^{p'}(X, v)$ be the injection. Then $S_{p'}$ factors as $S_{p'} = i \circ S_{\infty}'$ where $S_{\infty}: E \to L^{\infty}(X, v)$ and $||S_{\infty}f||_{\infty} \le ||f||$ where $||\cdot||_{\infty}$ denotes the L^{∞} -norm. Hence $||S_{\infty}|| \le 1$. Therefore $S_{\infty}^*: M(X, v) \to E'$ is also a contraction where M(X, v) is the dual of $L^{\infty}(X, v)$. It is clear that $i^*: L^p(X, v) \to M(X, v)$ is the natural injection which maps g into the finite measure (complex) gdv for g in $L^p(X, v)$. Hence $||S_{\infty}^* \circ i^*g|| \le ||i^*g||$, and $||i^*g|| = \int_{X} ||g|dv$ for g in $L^p(X, v)$. Moreover, since $i \circ S_{\infty} = S_{p'} = M_{\gamma^{-1}} \circ T$, then $S_{\infty}^* \circ i^* = S_{p'}^* = T^* \circ (M_{\gamma^{-1}})^* = T^* \circ M_{\gamma^{p'/p}}$. It follows that $||T^* \circ M_{\gamma^{p'/p}}g|| \le \int_{X} ||g|dv$ for g in $L^p(X, v)$. If g is in $L^p(X, \mu)$, write $g = M_{\gamma^{p'/p}}(M_{\gamma^{p'/p}}g)$. Then $||T^*g|| \le$ $\le \int_{X} |M_{\gamma^{-p'/p}}(g)|dv = \int_{X} \gamma(x)|g(x)|d\mu$. This proves (i) \Rightarrow (ii).

Case 2: γ vanishes on a set of positive measure. Let $Y = \{x; \gamma(x) > 0\}$, and let (Y, μ) be the measure space obtained by restricting μ to Y. Let $j: L^{p'}(Y, \mu) \to L^{p'}(X, \mu)$ be the natural embedding. Then $j^*: L^p(X, \mu) \to L^p(Y, \mu)$ is the projection $g \to \chi_Y g$ where χ_Y is the characteristic function of Y. Then the operator T factors as $E \xrightarrow{T_Y} L^p(Y, \mu) \xrightarrow{j} L^p(X, \mu)$ if and only if T^* factors as $L^{p'}(X, \mu) \xrightarrow{j^*} L^{p'}(Y, \mu) \xrightarrow{T^*} E'$. Now we apply the implication $(i) \Rightarrow (ii)$ to the operators T_Y and T^*_Y , and complete the proof.

Proof of Theorem 2.1. We only need to prove that (ii) implies (i). Let $S: E \to L^{p'}(X, \mu)$ be the restriction of $T^*: E'' \to L^{p'}(X, \mu)$ to E. Then $T = S^*$. By Lemma 2.1, we have $|Sf(x)| \leq \gamma(x) ||f||$ a.e. for f in E. By Theorem 2 of [7], we have $Tg = S^*g = \int K(x)g(x)d\mu$ for a unique K in $L^{p'}(X, \mu; E')$.

Remark. We note that, in Theorem 2.1, the existence of K does not depend upon the choice of those non-negative γ such that $||Tg|| \leq \int_{X} \gamma(x)|g(x)|d\mu$ for g in $L^{p}(X, \mu)$. The following lemma asserts that the function $||K(\cdot)||$ is the infimum of all those γ in the language of lattice theory. That is, $||K(\cdot)|| = \Lambda\{\gamma \in L^{p'}(X, \mu);$ $||Tg|| \leq \int \gamma(x)|g(x)|d\mu$ for all g in $L^{p}(X, \mu)\}$.

Lemma 2.2. Let E be a Banach space. Let K be in $L^{p'}(X, \mu; E)$ and let γ be non-negative element in $L^{p'}(X, \mu)$ such that $\left\| \int_{X} K(x)g(x)d\mu \right\| \leq \int_{X} \gamma(x)|g(x)|d\mu$ for all g in $L^{p}(X, \mu)$. Then $\|K(x)\| \leq \gamma(x)$ a.e.

Proof. Let $S: L^p(X, \mu) \to E$ be defined by $Sg = \int_X K(x)g(x)d\mu$. Then S is a bounded operator, and $S^*: E' \to L^{p'}(X, \mu)$ is given by $S^*f'(x) = \langle f', K(x) \rangle$ a.e. Furthermore, the proof for (ii) \Rightarrow (i) of Lemma 2. 1 proves that $|S^*f'(x)| \leq \gamma(x) ||f'||$. a.e. where the exceptional set of measure zero may depend upon f'. Hence $|\langle f', K(x) \rangle| \leq \gamma(x) ||f'||$ a.e. for f' in E'. Let N be the μ -null set such that $K(X \setminus N)$ is contained in a separable subset of E. Let $\{f_1, f_2, \dots, f_n, \dots\}$ be a countable dense subset of this subset of E. Let $\{f'_1, f'_2, \dots, f'_n, \dots\}$ be the subset of E' such that $||f'_j|| = 1$ and $|\langle f'_j, f_j \rangle| = ||f_j||$ for each j. Then, if x is not in N, we have ||K(x)|| = $= \sup_j |\langle f'_j, K(x) \rangle|$. Let N_j be the μ -null such that $|\langle f'_j, K(x) \rangle| \leq \gamma(x)$ for all x not in N_j . Let $A = N \cup \left(\bigcup_{j=1}^{\infty} N_j\right)$. Then A is also a μ -null, and $||K(x)|| \leq \gamma(x)$ for all x not in A. This proves the lemma.

3. Let *H* be a Hilbert space. Let $S: H \to L^2(X, \mu)$ be a Hilbert—Schmidt class operator. For any orthonormal basis $\{f_{\lambda}\}$ of *H*, $\sum_{\lambda} ||Sf_{\lambda}||^2$ is finite. There are at most countably many non-vanishing $||Sf_{\lambda}||^2$ in the above sum, say $Sf_{\lambda_j} \neq 0$ (j=1, 2, 3, ...). Hence $\sum_{j=1}^{\infty} |Sf_{\lambda_j}(x)|^2 < +\infty$ a.e. Let $K(x) = \sum_{j=1}^{\infty} Sf_{\lambda_j}(x)f_{\lambda_j}$. Then *K* is a strongly μ -measurable *H*-valued function such that $\int_{X} ||K(x)||^2 d\mu = \sum_{j=1}^{\infty} ||Sf_{\lambda_j}||^2 = \sum_{\lambda} ||Sf_{\lambda}||^2 = ||S||_2^2$, where $||S||_2$ denotes the Hilbert—Schmidt norm of *S*. Furthermore, $Sf_{\lambda_j}(x) = \langle f_{\lambda_j}, K(x) \rangle$ and hence $Sf(x) = \langle f, K(x) \rangle$ a.e. for *f* in *H*. Conversely, if *K* in $L^2(X, \mu; H)$ and $S: H \to L^2(X, \mu)$ is defined by $Sf(x) = \langle f, K(x) \rangle$ a. e. then it is clear that *S* is of Hilbert—Schmidt class with Hilbert—Schmidt norm ||K||. This shows that every Hilbert—Schmidt class operator $S: H \to L^2(X, \mu)$ is of the form $Sf(x) = \langle f, K(x) \rangle$ a.e. for a unique *K* in $L^2(X, \mu; H)$. The above argument can also be found, for example, in [6], 2. 2 (1); we include it here for a later reference. The following characterization for Hilbert—Schmidt class operators first appeared in PERSSON's article ([3], Theorem 3) as a special case of his main result. It is also included in ([7], Corollary 3 and its following remark).

However, the following version is due to WEIDMANN ([6], 2. 10. Korollar) for separable Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space. For a bounded operator T: $H \rightarrow L^2(X, \mu)$, the following are equivalent:

- (i) T is of Hilbert—Schmidt class.
- (ii) $|Tf(x)| \leq \gamma(x) ||f||$ a.e. for some non-negative γ in $L^2(X, \mu)$.
- (iii) $Tf(x) = \langle f, K(x) \rangle$ a.e. for a unique K in $L^2(X, \mu; H)$.

Moreover, $||T||_2 = ||K||$, where $||T||_2$ denotes the Hilbert—Schmidt norm of T, and ||K|| denotes the norm of K in $L^2(X, \mu; H)$.

N^p-operators and semi-Carleman operators

Proof. The argument given at the beginning of this section shows that (i) and (iii) are equivalent and $||T||_2 = ||K||$. By Theorem 1 of [7] we see that (ii) and (iii) are equivalent.

Dual to Theorem 3.1, we have the following

Theorem 3.2. Let H be a Hilbert space. For a bounded operator $S: L^2(X, \mu) \rightarrow H$ the following are equivalent:

(i) S is of Hilbert—Schmidt class.

(ii) $||Sg|| \leq \int \gamma(x) |g(x)| d\mu$ for some non-negative γ in $L^2(X, \mu)$.

(iii) $Sg = \int_{X} \hat{K}(x)g(x)d\mu$ for a unique K in $L^{2}(X, \mu; H)$. Moreover, $\|S\|_{2} = \|K\|$.

Proof. S is of Hilbert—Schmidt class if and only if $S^*: H \to L^2(X, \mu)$ is of Hilbert—Schmidt class. This is so if and only if $|S^*f(x)| \le \gamma(x) ||f||$ a.e. for some $\gamma \ge 0$ in $L^2(X, \mu)$. By Lemma 2. 1, the above inequality holds if and only if $||Sg|| \le$ $\le \int_X \gamma(x) |g(x)| d\mu$. Hence (i) and (ii) are equivalent. (ii) and (iii) are equivalent by Theorem 2. 1. Furthermore, from Theorem 3. 1, we have $||S^*||_2 = ||K||$, but $||S||_2 =$ $= ||S^*||_2$. Hence $||S||_2 = ||K||$.

We now turn our attention to operators defined on a linear manifold of Hilbert space. Let H be a Hilbert space, and let K be a strongly μ -measurable H-valued function defined almost everywhere on X. Let $\mathfrak{D} = \{f \in H; \langle f, K(\cdot) \rangle \in L^2(X, \mu)\}$. Then \mathfrak{D} is a linear manifold of H, but not necessarily dense in H. Let $\mathfrak{D} = \{g \in L^2(X, \mu): \int_X ||K(x)|| |g(x)| d\mu < +\infty\}$. Then \mathfrak{D} is a dense linear manifold of $L^2(X, \mu)$ (cf. [4]).

Notice that $\hat{\mathfrak{D}} = \{g \in L^2(X, \mu); gK \text{ is Bochner integrable}\}$. Moreover, if $\hat{\mathfrak{D}} = L^2(X, \mu)$, then K is necessary in $L^2(X, \mu; H)$.

Following J. WEIDMANN [6] we call an operator $T: \mathfrak{D}_T \to L^2(X, \mu)$ a Carleman operator, if its domain \mathfrak{D}_T is contained in \mathfrak{D} and it can be written as $Tf(x) = \langle f, K(x) \rangle$ a.e. for f in \mathfrak{D}_T . An operator $S: \mathfrak{\hat{D}}_S \to H$ is called a semi-Carleman operator, if its domain $\mathfrak{\hat{D}}_S$ is contained in $\mathfrak{\hat{D}}$ and it can be written as $Sg = \int_X g(x)K(x)d\mu$ for g in $\mathfrak{\hat{D}}_S$.

We note that, when (X, μ) is σ -finite, and $H = L^2(X, \mu)$, then our definitions for Carleman and semi-Carleman operations coincide with the classical ones ([2] and [4]). For a detailed discussion of this see ([6], Section 5) or ([2], Lemma 1).

Theorem 3.3. Let (X, μ) be a σ -finite measure space. Let $S: \hat{\mathfrak{D}}_S \to H$ be an operator with dense domain $\hat{\mathfrak{D}}_S$ in $L^2(X, \mu)$. The following are equivalent:

(i) S is a semi-Carleman operator.

(ii) There exists a measurable function γ such that $0 \leq \gamma(x) < +\infty$ a.e., $\hat{\mathbb{D}}_{S} \subset \{g \in L^{2}: \int_{X} \gamma(x) |g(x)| d\mu < +\infty\}, and ||Sg|| \leq \int_{X} \gamma(x) |g(x)| d\mu$ for all g in $\hat{\mathbb{D}}_{S}$.

Proof. The implication (i) \Rightarrow (ii) is clear. We now prove (ii) \Rightarrow (i). Write $X = \bigcup_{n=1}^{\infty} A_n$, $A_n \subset A_{n+1}$ and $\mu(A_n) < +\infty$ for all *n*. Let $X_n = \{x \in A_n; \gamma(x) \le n\}$ for n=1, 2, ...Then $X_n \subset X_{n+1}$, $\mu(X_n) < +\infty$ and $\mu(X \setminus \bigcup X_n) = 0$. Let μ_n be the restriction of μ to X_n , let $\hat{\mathfrak{D}}_n = \hat{\mathfrak{D}}_S \cap L^2(X_n, \mu_n)$, $\gamma_n = \chi_{X_n} \gamma$. Then γ_n is in $L^2(X_n, \mu_n)$, and $\hat{\mathfrak{D}}_n$ is dense in $L^2(X_n, \mu_n)$. Consider $S_n: \hat{\mathfrak{D}}_n \to H$; the restriction of S to $\hat{\mathfrak{D}}_n$. We have $||S_ng|| \leq 1$ $\leq \int \gamma_n(x) |g(x)| d\mu_n$ for g in $\hat{\mathfrak{D}}_n$. Then S_n admits a unique bounded extension to $L^{2}(X_{n}, \mu_{n})$ which is also denoted by S_{n} . Moreover, the inequality $||S_{n}g|| \leq 1$ $\leq \int \gamma_n(x) |g(x)| d\mu_n$ holds for all g in $L^2(X_n, \mu_n)$. Therefore, by Theorem 3.2 $S_n g =$ $= \int g(x)K_n(x)d\mu_n \text{ for a unique } K'_n \text{ in } L^2(X_n, \mu_n; H). \text{ By Lemma 2. 2 } \|K'_n(x)\| \leq \gamma_n(x)$ a.e. Note that S_{n+1} extends S_n , using the uniqueness assertion once more we have $K'_{n+1}(x) = K'_n(x)$ a.e. on X_n . We now define K_n almost everywhere on X by putting $K_n(x) = K'_n(x)$ a.e. on X_n and $K_n(x) = 0$ for x not in X_n . Then K_n is μ -strongly measurable. Since $K_{n+1}(x) = K_n(x)$ a.e. on X_n , then $\lim_{n \to \infty} K_n(x)$ exists almost everywhere. Let $K(x) = \lim K_n(x)$, then K is defined almost everywhere on X into H and K is also μ -strongly measurable. Moreover, $||K(x)|| = \lim_{n \to \infty} ||K_n(x)|| \le \lim_{n \to \infty} \gamma_n(x) = \gamma(x)$ a.e. Hence $\int_{V} |g(x)| \|K(x)\| d\mu \leq \int_{V} |g(x)|\gamma(x)d\mu < +\infty$ for all g in $\hat{\mathfrak{D}}_{S}$. Thus the integral $\int_{X} g(x)K(x)d\mu \text{ exists for } g \text{ in } \hat{\mathbb{D}}_{S}. \text{ We have } \hat{\mathbb{D}}_{S} \subset \{g \in L^{2}(X,\mu); \int |g(x)| \|K(x)\| d\mu < +\infty\}.$ We want to show that $Sg = \int g(x)K(x)d\mu$ for g in $\hat{\mathfrak{D}}_S$. To see this, we let $g_n = \chi_{X_n}g$. Then $g_n(x) \rightarrow g(x)$ a.e. and $g_n \in L^2(X_n, \mu_n)$. $||Sg - Sg_n|| \leq \int_{Y} \gamma(x) |g_n(x) - g(x)| d\mu \rightarrow 0$, by dominated convergence. But $Sg_n = S_ng_n = \int_X K_n(x)g_n(x)d\mu_n = \int_Y K(x)g_n(x)d\mu$. On the other hand $\left\| \int_{Y} K(x)g(x)d\mu - \int_{Y} K(x)g_n(x)d\mu \right\| \leq \int_{X} \|K(x)\| |g(x) - g_n(x)|d\mu \leq \int_{Y} \|K(x)\| |g(x) - g_n(x)|d\mu$ $\leq \int \gamma(x) |g(x) - g_n(x)| d\mu \to 0$. Therefore $Sg = \int g(x) K(x) d\mu$ for g in $\hat{\mathfrak{D}}_S$. This completes the proof.

In 1965, V. B KOROTKOV gave a characterization for a Carleman operator on separable L^2 -space which is what he called an integral operator of Carleman type (cf. [2], Theorem 1). His proof is based on the Dunford-Pettis Theorem. Recently, M. SCHREIBER and GY. TARGONSKI also obtained a new characterization for Carleman operators (cf. [5], Theorem 2. 1). However, J. P. WILLIAMS shows that the

N^p-operators and semi-Carleman operators

Schreiber—Targonski theorem is a consequence of the Korotkov theorem (private communication). (See also [6], Satz 2.11.) Using our result, we can prove that the Korotkov Theorem remains valid without the separability assumption on the Hilbert spaces.

Theorem 3.4 (KOROTKOV [2], Theorem 1). Let (X, μ) be a σ -finite measure space. Let $T: \mathfrak{D}_T \to L^2(X, \mu)$ be an operator with dense domain \mathfrak{D}_T in a Hilbert space H. The following are equivalent conditions:

(i) T is a Carleman operator.

(ii) There exists a non-negative measurable function γ such that $\gamma(x) < +\infty$ a.e. and $|Tf(x)| \leq \gamma(x) ||f||$ a.e. for f in \mathfrak{D}_T .

Proof. (i) clearly implies (ii). To prove (ii) \Rightarrow (i), we write $X = \bigcup_{n=1}^{\infty} A_n$, with $A_n \subset A_{n+1}$ and each A_n of finite measure. Let $X_n = \{x \in A_n; \gamma(x) \le n\}$. Then $\mu \left(X \setminus \bigcup_{n=1}^{\infty} X_n \right) = 0$, and $X_n \subset X_{n+1}$ and each X_n has finite measure. Let $E_n: L^2(X, \mu) \to L^2(X, \mu)$ be the projection on $L^2(X_n, \mu)$. Then $E_n \to 1$ strongly. Let $\gamma_n = \chi_{X_n} \gamma$, $\mu_n = \mu|_{X_n}$. Then γ_n in $L^2(X_n, \mu_n)$. Consider $E_n T: \mathfrak{D}_T \to L^2(X, \mu)$. Let $j: L^2(X_n, \mu_n) \to L^2(X, \mu)$ be the natural embedding. Then $E_n T$ factors as $\mathfrak{D}_T \xrightarrow{T_n} L^2(X_n, \mu_n) \xrightarrow{j} L^2(X, \mu)$ where $|T_n f(x)| \leq 1$ $\leq \gamma_n(x) \|f\|$ a. e. (μ_n) . T_n admits a unique bounded extension to H which is again. written as T_n . By a standard density argument one can show that the extension T_n also has the property that $|T_n f(x)| \leq \gamma_n(x) ||f||$ a.e. (μ_n) for f in H. By Theorem 3.1 T_n is of Hilbert—Schmidt class, and there is a unique K_n in $L^2(X_n, \mu_n; H)$ such that $T_n f(x) = \langle f, K'_n(x) \rangle$ a.e. By uniqueness again, we have $K'_{n+1}(x) = K'_n(x)$ a.e. on X_n . Let $K_n(x) = K'_n(x)$ a.e. on X_n and $K_n(x) = 0$ for x not in X_n . Then each K_n is strongly μ -measurable H-valued. Let $K(x) = \lim K_n(x)$ a.e. Then K defines almost everywhere on X and is μ -measurable. Moreover $K(x) = K_n(x)$ a.e. on X_n . If f in \mathfrak{D}_T , then $Tf = \lim_{n \to \infty} E_n Tf$. But $E_n Tf = j \cdot T_n f$, so $(E_n T) f(x) = (T_n f)(x) = f$, $K_n(x)$ a. e. Therefore $Tf(x) = \lim_{t \to \infty} E_{n_t} Tf(x) = \lim_{t \to \infty} \langle f, K_{n_t}(x) \rangle = \langle f, K(x) \rangle$ a.e. This completes the proof.

4. Concluding remark. In the definition of a semi-Carleman operator, if we enlarge the linear manifold $\hat{\mathfrak{D}}$ to the linear manifold of $L^2(X, \mu)$ consisting of all g such that the H-valued function $x \rightarrow g(x)K(x)$ is weakly integrable in the sense of Pettis, where K is a μ -strongly measurable H-valued function. We may call an operator $T:\hat{\mathfrak{D}}_T \rightarrow H$ a weak semi-Carleman operator, if its domain $\hat{\mathfrak{D}}_T$ is contained in $\hat{\mathfrak{D}}$ and it can be written as $Tg = \int_X g(x)K(x)d\mu$ for g in $\hat{\mathfrak{D}}_T$, where the integral is the weak integral in the sense of Pettis. It is easy to see that, if $A: H \rightarrow$ $\rightarrow L^2(X, \mu)$ is an everywhere defined Carleman operator (hence bounded), then $A^*: L^2(X, \mu) \to H$ is a weak semi-Carleman operator. More than this, one can easily show that the adjoint of a densely defined Carleman operator is a closed extension of a weak semi-Carleman operator. It follows that the conditions $|Af(x)| \leq \gamma(x) ||f||$ and $||A^*g|| \leq \int_X \gamma(x) |g(x)| d\mu$, for some nonnegative measurable γ are not equivalent for the Carleman operator A. It would be interesting to give a characterization for a weak semi-Carleman operator.

Using theory of semi-ordered spaces, S. I. ŽDANOV (cf. [8], proof of Theorem 1) proved that the Korotkov inequality $|Tf(x)| = \gamma(x) ||f||$ a.e. is equivalent to that T maps every null sequence of vectors $\{f_n\}_{n=1}^{\infty}$ in H into a sequence $\{Tf_n\}_{n=1}^{\infty}$ in $L^2(X, \mu)$ such that $Tf_n(x) \to 0$ a.e. For a complete elementary proof of this see WEIDMANN ([6], Satz 2. 12). We do not know the answer to the following question:

What is the condition corresponding to the Ždanov theorem for a semi-Carleman operator and a Carleman operator respectively?

The author is grateful to his colleague Dr. T. ITO for many helpful discussions, and to Dr. J. P. WILLIAMS for his communication on the subject.

References

- [1] S. CHEVET, Sur certains produits tensoriels topologiques d'espaces de Banach, Z. Wahrscheinlichkeitstheorie u. verw. Geb., 11 (1969), 120-138.
- [2] V. B. KOROTKOV, Integral operators with Carleman kernels, Soviet Math. Dokl., 6 (1965), 1496-1499.
- [3] A. PERSSON, On some properties of *p*-nuclear and *p*-integral operators, *Studia Math.*, 33 (1969), 213-222.

[4] M. SCHREIBER, Semi-Carleman operators, Acta Sci. Math., 24 (1963), 82-87.

[5] M. SCHREIBER and GY. TARGONSKI, Carleman and semi-Carleman operators, Proc. Amer. Math. Soc., 24 (1970), 293-299.

[6] J. WEIDMANN, Carlemanoperatoren (to appear in Manuscripta Math.).

[7] T. K. Wong, On a class of absolutely *p*-summing operators (to appear in *Studia Math.*).

[8] S. I. ŽDANOV, Operators of Carleman type, Siberian Math. J., 9 (1968), 616-621.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY DETROIT, MICHIGAN 48202, U.S.A.

(Received July 20, 1970)