Some theorems on unitary ϱ-dilations of Sz.-Nagy and Foiaș

By TAKAYUKI FURUTA in Hitachi (Japan)

Introduction. Sz.-NAGY and FoIAs introduced, for each fixed $\varrho>0$, the class C_{ϱ} of operators T on a given complex Hilbert space H for which there exist a Hilbert space K containing H as a subspace and a unitary operator U on K satisfying the following relation:

$$
\begin{equation*}
T^{n}=\varrho \cdot P U^{n} \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

where P is the orthogonal projection of K on H; this unitary operator U is called a unitary ϱ-dilation of T.

It is well known that $C_{1}=\{T:\|T\| \leqq 1\}$ ([7]) and that $C_{2}=\{T: w(T) \leqq 1\}$ ([1]), where $w(T)$ denotes the numerical radius of T i.e.

$$
\begin{equation*}
w(T)=\sup |(T h, h)| \quad \text { for } \quad h \in H,\|h\|=1 \tag{2}
\end{equation*}
$$

Sz.-NAGY and FoIAş have characterized C_{ϱ} for general $\varrho>0$. One of their results is:
Theorem A ([8]). An operator T on H belongs to the class $C_{e}(\varrho \geqq 2)$ if and only if it satisfies the following conditions:

$$
\left\|(\mu I-T)^{-1}\right\| \leqq \frac{1}{|\mu|-1}\left\{\begin{array}{ll}
\text { for } & 1<|\mu|<\infty \tag{*}
\end{array} \text { if } \varrho=2, ~ f o r ~ 1<|\mu| \leqq \frac{\varrho-1}{\varrho-2} \quad \text { if } \varrho>2, ~\right.
$$

(* ${ }^{*}$) $\quad T$ has its spectrum in the closed unit disc.
In [6] J. A. R. Holbrook introduced the functions $w_{e}(T)$ defined on the space $B(H)$ of all operators on H as follows

$$
\begin{equation*}
\dot{w}_{\varrho}(T)=\inf \left\{u: u>0, \frac{1}{u} T \in C_{e}\right\} \tag{3}
\end{equation*}
$$

in particular, we have $w_{2}(T)=w(T), w_{1}(T)=\|T\|$, and

$$
\begin{equation*}
C_{e}=\left\{T: w_{e}(T) \leqq 1\right\} \tag{4}
\end{equation*}
$$

The following theorem holds:

Theorem $\mathrm{B}([6]) . w_{e}(T)$ has the following properties:
(i) $w_{e}(T)<\infty$;
(ii) $w_{e}(T)<\infty$, $\quad w_{e}(T)>0$ unless $T=0$, in fact $w_{e}(T) \geqq \frac{1}{\varrho}\|T\|$; \quad (iii) $w^{\prime}(z T)=|z| w_{\varrho}(T)$;
(iii) $w_{e}(z T)=|z| w_{e}(T)$;
(iv) $w_{\varrho}(T)$ is a norm whenever $0<\varrho \leqq 2$;
(v) $w_{\varrho}(T)$ is continuous and non-increasing as a function of ϱ; moreover, $r(T) \leqq w_{\varrho}(T)$ for $\varrho>0$ and $\lim _{\varrho \rightarrow \infty} w_{\varrho}(T)=r(T)$, where $r(T)$ is the spectral radius of T;
(vi) the "power inequality" holds: $w_{Q}\left(T^{k}\right) \leqq\left(w_{Q}(T)\right)^{k} \quad(k=1,2, \ldots)$.

In [2] and [8] there are given examples of power bounded operators which are not contained in any of the classes C_{ρ}.

1. The theorems and their corollaries

Theorem 1. If $T^{2}=T$ and $T \in C_{e}$, then T is a projection.
Theorem 2. If $T^{k}=T$ for some positive integer $k \geqq 2$ and $T \in C_{e}$, then T is the direct sum of a zero operator and of a unitary operator, i.e. T is normal and partially isometric.

Corollary 1 ([4]). If T is an idempotent. operator that satisfies any of the following conditions
(i) T is a contraction;
(ii) T is a numerical radius contraction $(w(T) \leqq 1)$,
(iii) T has equal norm and spectral radius (normaloid [5]),
(iv) T has equal numerical and spectral radius (spectraloid [5]), then T is an orthogonal projection.

Corollary 2 ([4]). If $T^{k}=T$ for some positive integer $k \geqq 2$ and satisfies any of the conditions (i)-(iv) in Corollary 1, then T is the direct sum of a zero operator and of a unitary operator, i.e. T is normal and partially isometric.

Corollary 3. If $T^{k}=T$ for some positive integer $k \geqq 2$ and $\|T\|>1$, then T is not contained in any of the classes C_{e}.

Corollary 3 gives another simple examples of power bounded operators which are not contained in any of the classes C_{e}.

Proof of Theorem 1. By the idempotency of $T, R(T)$ (the range of T) coincides with null space of $I-T$, so that $R(T)$ is a closed subspace of H. Let ${ }^{\prime} P_{1}$ and P_{2} denote the orthogonal projections of H onto $R(T)$ and $R(T)^{\perp}$, respectively.

We consider the matrix of T with respect to the decomposition $H=R(T) \oplus R(T)^{\perp}$ i.e.

$$
T=\left(\begin{array}{ll}
P_{1} T P_{1} & P_{1} T P_{2} \\
P_{2} T P_{1} & P_{2} T P_{2}
\end{array}\right)=\left(\begin{array}{ll}
I & S \\
O & O
\end{array}\right), \quad(\mu I-T)^{-1}=\left(\begin{array}{cc}
\frac{1}{\mu-1} I & \frac{1}{\mu(\mu-1)} S \\
O & \frac{1}{\mu} I
\end{array}\right)
$$

We suppose that T is not a projection, that is, $S \neq 0$. Then

$$
\left\|(\mu I-T)^{-1}\right\|=\sqrt{\frac{1}{|\mu-1|^{2}}+\frac{\|S\|^{2}}{|\mu(\mu-1)|^{2}}}>\frac{1}{|\mu-1|}
$$

by taking μ real with $1<\mu \leqq \frac{\varrho-1}{\varrho-2}$; we obtain

$$
\left\|(\mu I-T)^{-1}\right\|>\frac{1}{|\mu-1|}=\frac{1}{|\mu|-1}
$$

Hence T does not satisfy condition (*) for any $\varrho \geqq 2$. Since C_{ϱ} is a non-decreasing function of ϱ, we have $T \notin C_{\varrho}$ for any $\varrho>0$. This contradiction proves Theorem 1.

Theorem 3. If $T^{k}=T$ for some postive integer $k \geqq 2$ and $T \in C_{e}$, then T^{k-1} is a projection.

Proof. We have $T^{2(k-1)}=T^{k-2} T^{k}=T^{k-2} T^{1}=T^{k-1}$, which implies that T^{k-1} is an idempotent operator. Hence by (4) and the power inequality for $w_{\varrho}(T)$ we have $w_{\varrho}\left(T^{k-1}\right) \leqq\left(w_{\varrho}(T)\right)^{k-1} \leqq 1$ so that $T^{k-1} \in C_{\varrho}$; thus T^{k-1} is a projection by Theorem 1 .

Proof of Theorem 2. It is sufficient to consider the case that $T^{k}=T$ and $T \in C_{e}$, where $k \geqq 2$ and $\varrho \geqq 1$. By Theorem $3, P=T^{k-1}$ is a projection. Set $M=R(P)$. The relation $T=T P=P T$ implies that M reduces T and that T is zero on M^{\perp}.

On the other hand, $T_{1}=T \mid M$ satisfies $T_{1}^{k-1}=P \mid M=I_{M}$ and $w_{e}\left(T_{1}\right) \leqq 1$. Thus we have $T_{1}^{-1}=T_{1}^{k-2}$. By the power inequality for $w_{\rho}(T)$

$$
w_{e}\left(T_{1}^{-1}\right)=w_{e}\left(T_{1}^{k-2}\right) \leqq\left(w_{e}\left(T_{1}\right)\right)^{k-2} \leqq 1
$$

whence we have $w_{\varrho}\left(T_{1}\right) \leqq 1$ and $w_{e}\left(T_{1}^{-1}\right) \leqq 1$ for $\varrho \geqq 1$, therefore T_{1} is unitary ([9]). Consequently T is the direct sum of zero operator and of a unitary operator, that is to say, T is normal and partially isometric.

Corollaries 1 and 2 follow from Theorems 1 and 2 and from the fact that $w_{e}(T)$ is a continuous and non-increasing function of ϱ. Corollary 3 is obvious by Theorem 2 .

If $T^{2}=I$ and $T \in C_{e}$, then T is unitary ([9]). Hence we remark that if $T^{2}=I$ and $\|T\|>1$, then $T \notin C_{\varrho}$ for any ϱ, in fact there are given two concrete examples in [2] and [8], which satisfy $T^{2}=I$ and $T \notin C_{\varrho}$ for any ϱ.

2. " Q-oid" operators

Definition 1 ([3]). An operator T will be called " ϱ-oid"' if

$$
w_{e}\left(T^{k}\right)=\left(w_{e}(T)\right)^{k} \quad(k=1,2, \ldots) ;
$$

1 -oid and 2 -oid operators are normaloid and spactraloid, respectively ([5]).
Theorem C ([3]), For each $\varrho \geqq 1$,

$$
w_{e}(T)=r(T) \text { if and only if } w_{e}\left(T^{k}\right)=\left(w_{e}(T)\right)^{k} \quad(k=1,2, \ldots)
$$

For each $0<\varrho<1$ there exists no non-zero " ϱ-oid" operator which is included in the class of normaloids ([3]).

By the power inequality $w_{\varrho}\left(T^{k}\right) \leqq\left(w_{\varrho}(T)\right)^{k}(k=1,2, \ldots)$, Theorems 1 and 2 , we have the following corollaries.

Corollary 4. If T is " ϱ-oid" and $T^{2}=T$, then T is a projection.
Corollary 5. If T is " ϱ-oid "and $T^{k}=T$ for some positive integer $k \geqq 2$, then T is the direct sum of zero and a unitary operator, that is to say, T is normal and partially isometric.

I should like to express here my appreciation to Professors M. Nakamura, Z. Takeda and R. Nakamoto for their kind suggestions in the preparation. of this paper.

References

[1] C. A. Berger, A strange dilation theorem, Notices Amer. Math. Soc., 12 (1965), 590.
[2] C. A. Berger and J. G. Stampfli, Norm relations and skew dilations, Acta Sci. Math., 28 (1967), 191-195.
[3] T. Furuta, A note on two inequalities correlated to unitary e-dilations, Proc. Japan Acad., 45 (1969), 561-564.
[4] T. Furuta and R. Nakamoto, Certain numerical radius contraction operators, Proc. Amer. Math. Soc., 29 (1971), 521-524.
[5] P. R. Halmos, Hilbert Space Problem Book (Princeton, 1967).
[6] J. Holbrook, On the power-bounded operators of Sz.-Nagy and Foiaş, Acta Sci. Math., 29 (1968), 299-310.
[7] B. Sz.-Nagy, Sur contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87-92.
[8] B. Sz.-Nagy and C. Foraş, On certain classes of power bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17-25.
[9] J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis, 4 (1969), 1-10.

