
A metric characterization of homogeneous Riemannian manifolds 

By J. S Z E N T H E in Szeged 

Let M be a Riemannian manifold and g(x, y) the infimum of the length of 
those piecewise ^ - c u r v e s which join x, y in M. As well-known g is a distance function 
on M and the thus induced metric space [M, g] is so closely related to the Riemannian 
manifold that a considerable number of theorems about it can be formulated and 
proved merely in terms of [M, g]. This circumstance can be regarded as the starting 
point of the theories of H. BUSEMANN and W. RINOW where a metric space is the 
basic concept and some fundamental properties common to all metric spaces induced 
by Riemannian or Finsler manifolds are being postulated. Although these theories 
go beyond the scope of the standard one, e.g. as to differentiability conditions, 
their exact relation to it is not sufficiently clarified yet. In other words no adequate 
necessary and sufficient conditions are known which imply that a metric space 
should be induced by a Riemannian manifold. A partial solution of this problem 
is presented below, i.e. necessary and sufficient conditions are given for the case 
of metric spaces induced by homogeneous Riemannian manifolds. 

1. Basic concepts and the main result 

Some well-known fundamental facts concerning metric spaces induced by 
C°°-Riemannian manifolds are summarized here. (For a detailed presentation 
see [5].) 

A metric space is said to be finitely compact if any bounded infinite subset 
has a point of accumulation in it. Metric spaces induced by complete Riemannian 
manifolds are finitely compact. A locally distance preserving map of the real line 
into a metric space is called a geodesic. The geodesies of a Riemannian manifold 
which are parametrized in terms of arc length and geodesies of its induced metric 
space are the same. If a, b, c are distinct points of a metric space [7?, g] and g(a, c) + 
+ g(c,b) = g(a,b), then it is said that c lies between a and b, in notat ion: acb. 
If A c R and to any two different points a, b of A there is a c £ A with acb, then A 
is said to be convex. The induced space of a complete Riemannian manifold is 
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convex. A distance preserving map of a compact interval of the real line into a 
metric space is called a segment. If £?] is a finitely compact and convex metr ic 
space then any two points can be joined by a segment in it. The segments are said 
to be locally prolongable in a finitely compact convex metric space [/?, g] if to any 
p£R there is such a (>„>0 that to any two distinct points a, b in B(p, dp) = 
= {x:g(x,p) < Sp} there is a c£R with abc. It is said that the prolongation of 
segments is unique in [/?, g] if x,y, z', z"(LR, xyz', xyz' and g(x, z') = g(x, Z") imply 
z' = z". The above terminology is justified by the fact that the segments of a finitely 
compact convex metric space are uniquely extendable to geodesies if the preceding 
two conditions hold. The closed subset AaR is called strictly convex if it is convex 
and a,b,c£A, deb imply that c£ int A. The metric space £>] is called regular 
if to any p£R there are such xp, Ap>0 tha t the closed balls B(x, ¿j) are strictly 
convex if x£B{p,Xp) and 0 R i e m a n n i a n manifolds induce regular metr ic 
spaces. 

The induced metric space of a Finsler manifold can be defined analogously 
and the above facts generalize to their case as well; see [9]. A connection with the 
induced metric space peculiar to Riemannian manifolds can be expressed in te rms 
of the metric angle concept. Let a, b, c be points of a metric space then there 
are points A, B, C of the euclidean plane with g(a, b) = AB, g(b, c) = BC, g{c, a) = 
= CA. If a^b, c, then by the metric angle y(a; b, c) of the triple {a, b, c} at a the 
measure of <1BAC is meant. Let <p, i//:[0, y]^R be cont inuous curves with <p(0) = 
= i//(0) = x and with such a that cp(T), \j/(T)^X for If y{q>, i//) = 
= lim y(x; (p(?'), i K O ) exists, then this value is called the metric angle of co a n d 
\J/ at x. If <p, i¡J are differentiable curves of a Riemannian manifold then considered 
as curves of the induced metric space they have a metric angle which is equal to 
the one which they have as curves of the Riemannian manifold; see [7]. 

An isometric t ransformation of a Riemannian manifold is obviously a distance 
preserving t ransformation of its induced metric space. The converse of this assertion 
is a t h e o r e m d u e t o S. B . MYERS a n d N . STEENROD (see [6]). 

Let (fr-.R1 X S — S be a continuous 1-parameter group of t ransformat ions of 
the topological space S, then the continuous curve cp: R1 — S defined by (p ( t ) = <P (r, x) , 
T^R1 is called the orbit of 0 starting at x £ S. 

The main result of this paper is the following 

T h e o r e m 1. Let F'.GXR ^R be an effective and transitive transformation 
group, where R has a distance function o such that the elements of G are distance 
preserving transformations of [R, o]. Assume that 

\ 

1. [i?, o] is finitely compact, 
2. [7?, g] is convex, 
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3. the segments are locally prolongable in [/?, £>], 
4. the prolongation of segments is unique,. 
5. [R, g] is regular, 
6. the orbits of l-parameter groups of distance preserving transformations are 

rectifiable in [R, q], 
1. if two such orbits have a point in common then they have a metric angle there. 

Then G with the compact-open tolpogy is a topological group and T is a continuous 
transformation group. The identity component G0 of G is a Lie group and R has a 
unique differentiable manifold structure such that T0:G0XR^R, the restriction of 
T, is a transitive differentiable transformation group. There is a unique Riemannian 
manifold structure on R which has [R, g] as its induced metric space. 

Conditions 1—4 have been introduced by H. BUSEMANN [1] as the starting 
point for his theory of G-spaces. 

The proof of the above theorem is carried out in two steps: first a differentiable 
structure is introduced on R, secondly a Riemannian structure. These two steps 
are summarized in Theorem 2 and 3. Theorem 1 is a direct consequence of these 
two theorems. 

Conditions 1'—7 of Theorem 1 will be generally assumed to hold in what fol-
lows. Differentiability will mean C°°, unless it is not explicitely otherwise stated, 
although in some cases obviously less would suffice or more could be stated. 

2. The introduction of the differentiable structure 

The initial step in introducing the differentiable structure of R is the definition. 
of an appropriate topology in the group of distance preserving transformations. 
This can be done by an obvious application of standard methods (see [5]) by proving 

L e m m a 2 . 1 . Let [i?, o] be a finitely compact metric space and T.GXR-^R 
an effective transformation group where the elements of G are distance preserving 
transformations of [/?,£>], then with the compact-open topology G is a a-compact 
group and T a toplogical transformation group. 

The next step is to show that the identity component G0 of G is a Lie group. 
O w i n g t o a t h e o r e m o f A . GLEASON a n d H . YAMABE (see [3], [10]) i t suf f ices t o p r o v e 

that G has no small subgroups. But this is asserted in the following lemma which 
has been proved already elsewhere (see [8]): 

L e m m a 2 . 2 . Let T:GXR-*R be an effective transformation group where 
R has a distance function Q such that [i?, g] is a finitely compact convex and regular 



140 J. Szenthe 

metric space in which segments are locally and uniquely prolongable and the elements 
of G are distance preserving transformations of [/?, ,0]. If G is taken with the compact-
open topology then it has no small subgroups. 

The following facts are obvious consequences of well-known theorems. For 
any x£R the corresponding subgroup of stability Hx<zG is compact. Since f is 
transitive the elements of G which carry x into y£R form a subset ¥x(y) of G which 
is a left coset of Hx, and if the left coset space G)HX is endowed with the quotient 
topology then the map V'X:R-»G/HX thus defined is a homeomorphism. Let 
I1X:G ^G/Hx be the natural projection then 77(G0) is a component of GIHX. Since 
R is connected and homeomorphic to G\HX the identity component G0 is transitive 
on R. If H0 =HXC\G0 then since G0 is a Lie group the left coset space can be 
endowed with such a differentiable structure that the operation of G0 on GJH0 

x 

by left translations is differentiable. Taking into account the homeomorphism 
f o G 0 /H 0 defined analogously to the above assertions yield 

T h e o r e m 2. Let F.GXR^R be an effective and transitive transformation 
group and R have a distance function o such that [/?, g] is a finitely compact convex 
and regular metric space in which the segments are locally and uniquely prolongable 
and the elements of G are distance preserving transformation of [/?, o]. If G is 
taken with the compact-open topology then its identity component G0 is a Lie 
group and R can be endowed with such a differentiable structure that r0:G0XR^R 
the restriction of T to G0XR is a differentiable transformation group. 

For the sake of some of the subsequent and later arguments the main steps 
in ihe construction of the differentiable structure of R are summed up here. (For 
a detailed presentation see [4].) The tangent space TsH0x of H0x at the identity 
e is a subspace of TeG0. Let M be a subspace of TBG0 complementary to TcH0x. 
A neighborhood of Ox £ TeG0 is mapped diffeomorphically onto a neighborhood 
of £ by exp£: TeG0s — G0 and a neighborhood F o f Ox in M is mapped homeomor-
phically onto a neighborhood U of H0x in G0jH0x by IIx o exp£: M — G0/H0x. Let 
P.~1 be the restriction of IIx o exp£ to V, since M can be identified with R'" where 
m = dim M, a coordinate system y.x : U-*R"' of G0/H0x is obtained. If a £ G 0 the left 
translation LX:G0-*G0 defines a homeomorphism Lx:G0IH0x-*-G0/H0x and xxo Lx 

is a coordinate system on a neighborhood of a ~ 1 H 0 x . Thus a differentiable atlas 
{P.xoLx:a£G0} of G0/H0x is constructed and this defines a differentiable structure 
which does not depend on the particular choice of M. For any z£R the analogously 
defined differentiable manifold G0/H0z is dilfeomorphic to G0/H0x. Therefore the 
homeomorphism lF0x:R^G0/H0x defines a differentiable structure of R which 
does not depend on x. The coordinate system xx = xxolF0x'.Ux-*Rm of R will 
be called a canonical coordinate system of the first kind at x. 
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If y :Rl - G0 is a 1-parameter group a n d x £ / ? then the d i f fe ren t ia te curve 
(p:Rl-*R defined by (p(T) = y(Y)(x), r £ R l is called the orbit of y starting at x. 
Let xx:Ux-*R'" be a canonical coordinate system of the first kind at x and ¿/ the 
distance function of R'". If v£M'has length equal to 1 with respect to d and y is 
the 1-parameter group defined by yt(0) = v then the orbit cp of y starting at x will 
be called a fundamental orbit of the coordinate system xx. If z£ Ux and z ^ x then 
there is a unique fundamental orbit <p of xx with (p(r) = z where r = d(xx(z), xx(x)). 

Let x':U'-Rm, x"\U"-»Rm be coordinate systems of R with U'T) t/'V0 
and ||a,.,-(M)||/=, „ the Jacobian of the map x ' o / " 1 :x'(U')f\x"(JJ") -*Rm at 

x"fu) for u£U'C\U". Let X(x',x") be defined by 

X(x', x") = i(2m—\)m • sup {\<x,/u)\:u£ U ' f ) U", i,j= 1, ...,/»}. 

If v£TUR and (u" , . . . , v""),(v'n, ..., v"m) are its coordinates in the coordinate sys-
tems x\ x" then obviously 

2V')2 
1/2 

S X(x\ x") 2 ( v y 
1/2 

The following lemma will prove useful in later arguments. 

L e m m a 2. 3. Any x£R has a compact neighborhood W such that to every 
z£W there is a canonical coordinate sytem of the first kind x. \ Uz~+R" at z with the 
following properties: 

1. W<zUz for z£W; 
2. there is a bound C with ).(x., xx)^C for z£ W\ 
3. if S(z)(z T,R is the set of vectors which are tangent to a fundamental orbit 

of xz then U {S(z):z£ W) is a compact subset of TR. 

P r o o f . Let MCZTEG0 a subspace complementary to TEH0X be identified with 
R!" and xx\Ux-*R" the corresponding canonical coordinate system of the first 
kind at x. If Z£ R then H0Z = AH0XA~1 for any A£G0 with z =a(x), therefore T£H0Z = 
= LX>).RX_ U(TSH0X) = ad a^T^H^). This implies the existence of a neighborhood 
W' of x such that M is complementary to TEH0Z for z£ W'. Let x.\Uz — R'" be the 
canonical coordinate system of the first kind at z defined by M for Z£ W'. If y £ UX 

then there is a £ in the corresponding neighborhood of e such that y = £(x) and 
^xOO —exp~1(£H0x(~)M) where T0 = exp£(M). There is such a neighborhood W" 
of x and W of e that H0xf)Ma is a single point and e x p £

_ 1 { f / / q x . f l M a ) defines 
a coordinate system of R on the neighborhood W" for a £W. There is a neighbor-
hood W" of x such that for z£ W'" there is a unique a £ W with z — a(x) and 
a~y.H0x f l M. Then by exp£~1 ((cH0x f l Ma)yrl) a coordinate system of R is defined 
on W" for z 6 W'". But £H0x = &~ lH0za = rjH0za with r\ = la~1 and y = ( z ) , therefore 
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exp~'((cH0xr\Ma)a~ 1 ) = e x p ~ 1 (t]H0zD M) = xz(y). Let I f be a compact neigh-
borhood of x with WcWnW'f1 W'". Then Wa U, for W and the existence 
of the bound C follows f rom the differentiability of the coordinate systems and 
from the fact that a depends continuously on z, with a possible restriction of Uz 

to a compact neighborhood Uzcz W. Since S(z), z £ W is compact U {S(z) :z£ W} 
is compact as well. 

A field of canonical coordinate systems of the first kind * _: i/2 —/?"', z £ W 
defined according the preceding proof will be called normal. 

Let MaTfi0 be a subspace complementary to TcH0x and {it',, . . . , wm}czM 
m 

a base of M. Then v = 2rjL'vi is unique for v£M and by cr(V)=exp («'(;,) ...exp(a'"i;m) 
¡=1 

a map a:M — G0 is defined. With methods similar to those applied at the 
definition of canonical coordinates of the first kind (see [4]) it can be shown that 

= nxoa maps diffeomorphically a neighborhood of Oe in M onto a neigh-
borhood of H0x in G0/H0x. Thus x = xoty0x\t/ — R!" is a coordinate system of R 
which will be called a canonical coordinate system of the second kind at x. The proof 
of the following lemma is obvious. 

L e m m a 2. 4 . Let {u,, ..., u,„} be a base of TXR then there are l-parameter 
groups "h of Go with orbits r/5; starting at x and a canonical coordinate system of the 
second kind x.U^R'" at x such that <pit{fy = vi for i= 1, ..., m and z = y 1 ( z l ) o ... 
... o ym(z'")(x) for z £ U with Y.(Z) = (Z\ . . . , z'"). 

3. The introduction of the Riemannian metric 

Let <p :Rl-+R be the orbit of the l-parameter group y: R' -G0 starting at 
- • Q(q>(z), <p(0)) 

x£R, then in consequence of the fact that <p is rectifiable y (x)= lim — 

exists. This defines a function y*:R^Rl which is constant on the orbits of y, and 
it will be called the velocity function of y. The value cp* of y* on the orbit cp will be 
called the velocity of the orbit. An orbit is constant obviously if and only if its 
velocity is zero. 

Lemma 3. 1. The velocity function y* of a l-parameter group V: R1 ^ G0 is 
continuous. 

P r o o f . Let (p be the orbit of y starting at x£R and define f^.R^R1 for 
« = 1 , 2 , ... by / „ (x ) = 2"e((p(l/2"), q>(0)). The funct ions/„ are cont inuous , /„ + 1 (x)3r 
^ f n ( x ) and y*(x)= l im/„(*) hold for every x£R. These imply the assertion. n —• oo 

A closer relation of the distance function Q and the di f ferent ia te structure of 
R is expressed by 
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L e m m a 3 . 2 . If x:U—R'" is a coordinate system of R at x and d the distance-
function of R'" then there exist a neighborhood Vcz U of x and a 0 such that 
d(y.(a), x(b))is <5 • g(a,b) if a, b£V. 

P r o o f . Let y.:U — Rm be a canonical coordinate system of the second kind 
of R at x. There is a <5>0 such that d(x(a), x(b))^Sd(x(a), x(b)) for a,b£Uf] U. 
If J ••• > ym

 a r e the 1-parameter groups which define x, then by the preceding lemma 
there are a neighborhood Vcz UPi V of x and a K such that y\{z),..., y*n(z)^K 
for z<E V. If x(a) = (a1, ...,oc"!), x{b) = ( f i \ ,.., f f ) for a, bt V then 

e(a, b) = e{yy{a})o ... oym(a™)(*), y ^ o y ^ o . . . o s 

S 6{yd^) o y 2 ( « > ... oym(am)(x), y'da^oy^o ... oym(p*)(x)) + 

+ g(yi(a1)o y2(p2) 0...0 ym (p*)(x), y.ifi1) o y 2 OS2) O ... o ym (/?-») {X}) s 

m 
••• ^ K Z ^ i2mKd{x{d), x(b)). 

i = i 

Therefore the assertion of the lemma holds with = 
ilmK 

The length of the tangent vectors of a differentiable manifold is usually defined 
after the introduction of a Riemannian metric. Here the length of tangent vectors 
of R will be defined at first to be the basic tool in establishing the required Riemann-
ian metric. The velocity of orbits could be naturally considered as the length 
of their tangent vectors. The following lemma serves to prepare a general definition 
on this basis. 

L e m m a 3. 3. Let (p-.R1 -+R be an orbit starting at x£R and If 
i//: [0, y] — R is a curve differentiable at 0 and ijj(0) = x, (()) = /. • <p+(0), /. isO,. 

t -0 T 

P r o o f . There is a canonical coordinate system of the second kind x:U-+Rm 

at x with xo(p{x) = (t, 0, . . . , 0) for (p(z)£U by L e m m a 2 . 4 . Therefore 
d(xo <P(T),X(X)) 1 

lim — —^ = — and for a sufficiently small t ^ O there is a r > 0 such 
t-0 • Q((p(t), z(x) (P 

that x = d{xo(p{%), xix)) = d{xo\l/{x), x(x)) and r ^ O if f - ^ 0 . Hence 

e(<?( t),x) g(<p(i),'t//( f)) T T 
T ( I H T ) , X ) e(<p(T);x) i e(<p(r),i/t(i)) 
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J f x o 0 ( f ) = (iA'(f), ...;ipm(x)) and f — + 0 then 

2 „ _ M F = 
d(y.o(p{T),y.o(p(f)) 

lim sup — = lim sup 

= lim sup 

'Therefore 

Q(<P(T),\P(T)) 

2 1 1 - ^ d{xo4i(x),x(xj) 

1/2 

= 0. 

lim sup 
r 

s l i m s u p „ . i i m S u p ^ o y ( T ) ' x o - ^ M = 0 
d(y.Q(p(x),y.o\jj(z)) x 

jn consequence of the preceding lemma. This implies with respect to above ine-

-qualities that if T - + 0 then lim v = q>*. But then lim v _ = 

t),X) d(y. o ip(f). x(a)) . 
= lim — lim—^ : -=q> -A. 

x d(xo<p(x), x(x)) 

C o r o l l a r y . If <p,>p are orbits with 0) = ijj^(0) then cp* =ip*. 

On account of the above corollary a funct ion F:TR-<*Rl can be defined on 
the tangent bundle TR of R as follows: let F(v) for a v £ TR be the velocity cp* of 

.any orbit cp such that (pt (0) = v. This funct ion F will be called the length of tangent 
-vectors. Obviously F(v) = 0 if and only if for some x£R and in consequence 
of the preceding lemma F is positively homogeneous of order 1 on every tangent 

-space of R. In order to show the continuity of F some preliminaries are needed. 
These are provided by 

L e m m a 3. 4 . Let y^.R1 (/"=0, 1, .. .) be l-parameter groups with yo*(0) = 
= lim y,•*(()). If q>: is the orbit of y, starting at x, and x 0 = l i m x , then (p* = lim wf. 

/-* OO U J — OO 

P r o o f . It is suitable to consider the special case x,- = x 0 (/ = 1,2, .. .) separately. 
Let x:U-*R'" be a coordinate system of R at x 0 with x (x o ) = (0, 0, . . . , 0 ) . Since 

7 o ( T ) = l i m 7,(t) for x£Rl and F:G0XR-*R is cont inuous <p0(x) = lim <p,(r) for 
x £Rl. Therefore there is a ¿ > 0 and a N such that cpi(x)£U if | T | < 5 and / ' = 0 or 
JSN. Since (p; is differentiable y.oq>i(x) — (ajx + xsj (x), a"'x+ xe'"(x)) if | r |^c5 
and ( = 0 or /SAT, where £(!(t) = 0 ( t ) , for / = 1 , ...,m. Let /?,-(i), / = 0 , 1, . . . , x£Rl 

be defined by «* = ' ^ ^ ^ ^ + 1i(x) and »/¡(0) = 0.. In consequence of lem-
. M 

m a 3 .2 , there is a A" with K-d(xocp0(x), xcip^xj) ^ g((p0(x), q>i(x)) £ 



K 

Homogeneous Riemannian manifolds 145 

[ m ,11/2 
Z^o-ad2] + 

[m 11 /2 

2 ( 4 W - e i ( t ) ) 2 J and t - 0 yields 
m 1 1/2 

Z(ao-a'i) \ — l<Po-<P?l- B u t the coordinates of <p,*(0) are (a/, . . . , a'?) in 
Lf=i J 

the coordinate system x and <po*(0) = lim <p,*(0) by the continuity of the differential 
i — OS 

Tt:T(G0XR)^TR of T. Therefore the assertion of the lemma follows in the special 
case. 

In the general case to any preassigned there is a neighborhood V of x 0 
9 

with. |yS(x)-y$(x 0 ) | < — for x<E V by Lemma 3. 1. Let X0:R-~TR be the Killing 

vector field corresponding to y0 . In consequence of Lemma 2. 3 there is a normal 
field of canonical coordinate systems of the first kind xz:U,^-Rm on a compact 
neighborhood U of x 0 . Let ( a / , . . . , a'") respectively ( a / , . . . , a™) be the coordinates 
of r/>(> (0) and Xt(xi) for x ; 6 U in the coordinate system xXn: UXo — R'". Since 
lim <p.(0) = (p0+ (0) = X0(x0) = lim X0(xj, there is a neighborhood V c Ux of x 0 
I oo I -*- °o 0 [m

 , ,11/2 r m , ,11/2 r m , , 1 !/2 9 
+ = where c is 

the upper bound given in Lemma 2. 3 and K is an upper bound guaranteed by 
Lemma 3. 2 for the coordinate system XXQ. Let (£?, . . . , c"') respectively (Sf, . . . , I f ) 
be the coordinates of <pi1t(0) and X0(Xi) in the coordinate system xx and Kx an 
upper bound given by Lemma 3. 2 for xx in case of U. Then 

\<pf~<pt\ = Itf (*,)•-7o(*o)l ^ |yrC*i) — Vo(*i>l + IVoC f̂) — yoC*o)l S 

1 / 2 9 
+ j = KXi -k(xXi, xXo) 

1/2 Q 

+ 2 Z ( « ! - « I)2 

• = i 

]2/ ^ S 

if x^VDV. 

L e m m a 3 . 5 . The function F: TR —Rl is continuous. 

P r o o f . Let v,£TxR, i—0, 1, ... be such that t>0 = limu ; . In order to prove j—oo 
F(o0) = lim F(Vj) it suffices, on account of the preceding lemma, to show the 

I - M 

existence of 1-parameter groups y( such that if cp{ is the orbit of starting at x ; 

then v—tpui0) and y0* (0) = lim y,* (0). Let i l / 0 x o :R-»G 0 /H 0 x o be the diffeomorphism 
defined at the introduction of the d i f ferent ia te structure of R and MczTEG0 

a subspace such that J7Xooexp£: M-~G0/H0xo is diffeomorphic on a neigh-
borhood V of Ot in M. Then a neighborhood V of x 0 exists on which 

10 A 
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0 = (exp£o(ilXooexp£)"i oip0x^~1 :V is diffeomorphic. Put = 
Vi=<P*(.Vj) and Vi=Rxr '* (vd for x ^ K ' . Let yl be the 1-parameter g roup with 

(0) — Vj and (pi the orbit of starting at xt for / with x,ÇV'. Then t;0 = lim 
I —oo 

by the continuity of <P and £50= l im/?^- '* D,= l i m D ~ u 0 by the s imultaneous 
¡ — oo I i— OO 

continuity of Rx* in its argument and in x. Hence yO;(t(0) = lim But x - j c . - ^ o ) 
therefore <pi(r) = yi(z)-xi(Lx0) for sufficiently small |T|. Thus cpi = 4>~1 O R x . o yt 

and (0) = 1 o RXt + (0)) = 0;'RXi * (C;) = o, if £ V'. 
What has been proved up to now concerning F can be summarized by stating 

that the d i f fe ren t ia te manifold R with the length of tangent vectors F- fo rms a 
C'-Finsler manifold [/?, F], The induced metric space of [/?, F] can be defined as 
generally it is done in case of any C'-Finsler manifold (See [2]) on the following 

p 
way: If tp: [a, /?] — R is a piecewise C'-curve of R then i f f ( i p ) = j F(\p^(r))dT 

is called the F-length of tp. Let gF(x, y) be the infimum of thé /"-length of piecewise 
C'-curves joining x,y£R, then gF is a distance function on R. The metric space 
[R, oF] is called the induced metric space of [/?, F], In order to prove [/?, = [/?, !?] 
some preliminaries are needed. In what follows these are provided. 

If ip : [a, P] — R is a continuous curve and it is rectifiable in the metric space 
[/?, g] then its length i f e ( ip) will be called its g-Iength. The following lemma can 
be proved on essentially the same lines as an other one formulated for the case 
of symmetric manifolds (see [8]). 

L e m m a 3 . 6 . If \p:[a, /?] — R is a piecewise C1-curve of the differentiable 
manifold R then it is rectifiable in the metric space [/?, and 3'e(ip) = ^CF(ip). 

Since the metric space [/?, g] is finitely compact and convex this lemma has 
the following obvious consequence: 

L e m m a 3 . 7 . If x,y£R then g(x, y)^gF(x, y). 

.If the 
continuous curve \ p [ ¡ ] R is rectifiable in the metric space [/?, 

then its length i f e F (i/0 is called its gF-length. In the case when \p is a piecewise 
C'-curve then evidently i f (ip) ^ i f f (1p), where according to a result of H. BUSE-
MANN and W. MAYER (see [1], [2]) the equality holds for any piccewise Q - c u r v e 
1p if and only if F has convex indicatrix in each tangent space TXR of R. But by 
L e m m a 3. 6 and 3. 7 ¿¡?F(ip) =ife(i/*)sife (i/O for any such curve ip. These imply L e 

m m a 3. 8. The function F\ TR R1 has convex indicatrix in every tangent 
space of R. 

The proof of the assertion that gF(x, y)Sg(x, y) for x,y£R requires some 
technicalities. These are given in the following 
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L e m m a 3 . 9 . If y.'.U—is a coordinate system of R at x and d the distance 
function of R'n then there is a neighborhood V of x and a K such that d{x (a), x (b)) 25 
^ KQ (a, b) if a, b d V. 

P r o o f . For the sake of an indirect argument let it be assumed that to any N 
and in arbitrary neighborhood of x there , are points a, b with d(x(a), x(b))^ 
S N g ( a , b). Let further Uz-~Rm be a normal field of canonical coordinate systems 
on a neighborhood U' of x given according to Lemma 2. 3 and C the corresponding 
upper bound. Then 

d(x(a), x(b)) ^ A(x, xx)-A(xx, xa)d(xja), xa(b)) ^ A(x, xx) • Cd(xa(a), xjb)) 

for a,b£Ur\U'. Let <p:RlR be the fundamental orbit of the coordinate 
uu A A * e(<p(P),<pW)^c-Ux,xx) , system xa passing through b and (p(li) = b then — s — — . Therefore 

a sequence <pi7 i—1,2,... of fundamental orbits of . the coordinate systems 
. Q(q>i(Pi),(Pi(0)) 

of the above field can be given with lim = 0 where \imB, — 0. In 
\Pi\ 

consequence of Lemma 2. 3 there is no loss of generality by assuming the existence 
of a fundamental orbit q>0 with <p0(T) = lim<p;(r), t£R\ Let ^¡(t) be defined by 

(P* <P'(Q)V>/,-(T) and ^¡(0) = 0 for / = 0 , 1, ... and T£R1. If 3 > 0 is given 
M • 

9 9 
then there is such a ¿ > 0 that f)0(T) — "y M —^ a n c* a ^ oC^)i S — 

for i^L. But obviously ^¡(t) is decreasing for T < 0 and increasing for T > 0 , there-
fore rh(T) ^ //,(<5) S |/7,(<5) —>7o(^)l+'?o(<5)) if M=<5 an<3 ¡ ' S i . Therefore in con-
sequence of Lemma 2 .3 and 3. 4 the equality q>%= lim(p* = 0 holds in contradiction 
with the fact that (p0 is a fundamental orbit. 

L e m m a 3 . 1 0 . If x,y£R then Q{X, y)^gF(x, y). 

P r o o f . It suffices to prove the inequality for the case when x,y and a metric 
segment joining them are in the coordinate neighborhood U of a coordinate system 
x:U^R'" and bounds <5, K of Lemma 3. 2 and 3. 9 exist for U. Let (p\[ct, /?] — R 
be a segment of [7?, g] with (p(a) = x and (p(fi)=y. In consequence of the preceding 
lemma xocp:[a, /?] — R'n is a rectifiable curve of R'" and therefore F(<p^(T)) = 1 for 

i> 
almost every t £ [ a , ySJ by Lemma 3. 3. Hence n(x ,>') = f F((p:i!(T))^T- Let a sequence 

a 
of subdivisions of [a, /?] be given by a = r0ti<rl ¡ < — _ u i < z n j = ft (i— 1, 2, ...), 
where the / t h subdivision is a refinement of the (i— l ) t h with 

' lim max { t m — t , _ , _ • : / = 1, . . . ,«,.} = 0 

10' 
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and y.o<p is d i f f e ren t i a t e at r M for / = 1, . . . , ( / = 1 , 2 , . . . ) . If / is large 
enough then the coordinate polygon inscribed in xocp corresponding to the / th 
subdivision exists, i.e. there is a map f f ] — Rm where i ^ , ( t ) = xo<p(zj,) + 

T — T • • 
+ (y.o<p(zj+Ui)-y.o(p(r,,)) for t € [ t j V , t j + 1 , , ] , 7 = 0 , 1, . . . , 77,-1. The 

F-length JSfF(iA,) of is Z f F U ^ i ^ d z . But obviously < P + ( R ) = lim ^ ( T ) if 

t = t j t i for some i j and therefore F(<p+(i)) = 1 = . l i m F ( i j j ^ ( z ) ) for such 

T by Lemma 3. 5. L e t / : [ a , J ? ] - / ? 1 be defined by f { z ) = F(\l/U(z)) for TG[Tj ; , T j + 1 i ( ] , 
7 = 0 , 1, ...,77,—1 and sufficiently large /'. Then F(cpJf{z)) = l im/OO for almost every 
t£[oc, J?]"and the functions f are uniformly bounded since 

= ltm — S 

Q^Pii^ll/iiZj ;)) . d(yO\jji{z),XO\jji{zj d) 
lim sup — j — r — — ^ • lim sup = 
t- t j i l .+o d(xoil/i(z), y.oipiizj ,) t - t j V + 0 T - T ^ i 

.. tityM, *Ai(Tj,i)) d(xoil/l(zJ+l i),y-oil/i(Zj i)) 1 
^ lim sup -j-, —— — — ^ r = ~ F K < 

z~zj,i+od{xo\j/i(z),xoil/i(zj!,)) T j + l , ' - T J , i 3 

where ¿ > 0 and K are bounds given by Lemma 3. 2 and 3. 9. Therefore by Lebes-

gue's theorem i?(x, lim / f,(z)dz. But if a $ > 0 is given then 
a 

I ^ f O / O - j ' M r ) d z \ '"z /"|F(i/>,>.(<)) -F(jjilr{zj ^)\dz < 9 

TJ,, 

if /' is large enough on account of Lemma 3. 5 and of the fact that the F{if/ ii(z j i)) 

are uniformly bounded. Thus g(x,y)= limSfF(<j/^S'QP(x, y). 
The above lemma and its previous counterpart give 

L e m m a 3 . 1 1 . [/?, g]. 
The next' step is to show that what F defines on R is actually a Riemannian 

metric. In proving this the following lemma is essential. 

L e m m a 3 . 1 2 . If v,, u2£ TXR are linearly independent and cp2'-Rl "R 
Q(<PI O r . ) , <P•>(?•>)) are orbits starting at x with <pr, (0) = v:, i= 1, 2 then lim v - = 1. 

F(zlVl-z2v2) 

P r o o f . In fact this is a special case of a result of H . B U S E M A N N and W . M A Y E R 

in a changed form. To show this let x:U-*RM be a canonical coordinate system of 
the second kind at X with X 0 * ^ ( 1 , ) = ( T J , 0 , 0, . . . , 0) and xo<p2(z2) = ( 0 , R 2 , 0 , . . . ,0) 
F O R ^ C T J ) , < P 2 ( T 2 ) € E / . If V£TZR, Z£U and x(z) = (z1, ..., zm), V=(vl, ..., vm) then 
F(v) is given by Fx(zl, ...,zm; v1, ..., vm) in the coordinate system Let ^ : [0 , 1] — U 
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be defined by xoi / i ( t ) = xo(p2(z2) + r(xo<pi(Tl) — xoip2(z2)) for sufficiently small 
T , , T 2 , then I /^(T) = ( T , , — T 2 , 0 , . . . , 0 ) . Therefore 

F(t{vA -x2v2) = F(0, . . . , 0 ; t , , - t 2 ) 0 , . . . , 0 ) = 

i 
= F FX(0, . . . , 0; t 1 ; — t 2 , 0, . . . , 0)dr = M ( f ) 

o 

w h i c h is a q u a n t i t y i n t r o d u c e d b y H . BUSEMANN a n d W . MAYER, a n d a c c o r d i n g 

; 0(<PI(ti),<P2(T2)) 
" - — 1 if T , , T 2 — 0 (see [2]). to their result 

M(<A) 
The length of tangent vectors F . T R ^ R 1 defines a norm in each tangent space 

of R and the Finsler manifold [7?, F] is Riemannian if and only if all these norms 
are euclidean. Therefore to prove that [/?, F ] is Riemannian it suffices to show 
that in the tangent spaces normed by F t h e metric angle of segments exist (see [7]). 
In doing this the same methods are used as applied by W. RINOW in analogous 
questions (see [7]). 

L e m m a 3 . 1 3 . In the tangent spaces TXR of R normed by F the metric angle 
of segments exists. 

P r o o f . - Let VUV2£TXR be linearly independent with F(u , ) = F(t;2) = l and 
(pu (p2 orbits starting at x with q>l*(0) = vi, i= 1, 2. Then 

<«(TI ,T 2 )= | c o s y ( x ; (PiC^), <P2(T2)) —cosy(0^; xlvl, T2y2)| = 

Q{X, (p,(T,))2 + e(x , <P2(II))2-E{<Pi(T:i), <P2(?2))2 T2
1+T$-F(TiV1-T2V2)2 

2Q(X, <P,(T,))-E(X, (P2(T2)) LZLX2 

If //,(f), T tR1, i = l , 2 are the functions introduced in Lemma 3 . 4 then 

(t! + Tt >?! (Tt))2 +(T2 + T2 >?2(T2))2 + g(<P i (t,), (p2( T2))2 

2(T! + Tj 111 C O ) • ( r 2 + T2 n2{T2)) 
Ci)(r1; T2) = 

IF +'T%-F(TIVI -T2V2)2 

21^2 

+e(<Pi(Ti), < p 2 ( 0 ) 2 

T?(l +f?i(Ti)) 2 + t l ( l +» / 2 ( t 2 ) ) 2 T? + t i 
2r1T2(l+>li(ri))(l+^2(r2)) 2Z1T2 

1 

+ 

2TiT2 2 x ^ 2 ( 1 + f / 1 ( T 1 ) j ( l + > ? 2 ( T 2 ) ) + 

+ &(</>! C O . < P 2 ( 0 ) 2 l + ft(*,) } , l + > h ( o , 
2 t l T 2 ~2[T2 1+12(T2) T, l + > h ( o 

+ 

2t !T 2 

l + > 7 l ( 0 , T 2 l + f ? 2 ( r 2 ) 

+ 

T2 l+ ' i i 2 (T 2 ) Ti l + > h ( 0 

1 f T l I T 2 I 2I f l I 
U 2 J ( F(T,W,-T2I;2) J 

+ 2 • (r l l (T ,) + n2 (T2) +17, (T ,) r\2 (T2)) + 

Q(<Pi(Q, <P2(T2)) 
F( T,V,~T2V2) 1-
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Since the orbits have a metric angle lim cos (т,), (р2(т2)) exists. In con-

sequence of the preceding lemma and the above inequalities ш ( т , , т 2 ) - » 0 if — is 
in-

fixed and т , , т 2 - * 0 . The function F as a norm defines a Minkowskian geometry 

in TXR therefore the limit of 7 ( 0 ^ ; T j D j , T2U2) exists if — is fixed and т 1 ; т2 — 0. 

These imply that lim y(0,; t1v,,t2
v2) exists. Tltr2—0 

What have been proved till now yield that [Л, F] is a C^-Riemannian manifold. 
With respect to anomalies of such manifolds the following lemma is essential. 

L e m m a 3. 14. The function F:TR-~Rl defines a C°°-Riemannian manifold 
on R. 

P r o o f . For <x£G0 let : 77? — TR be its differential. If v£T2R and <x^(v) = v' 
then there is an orbit cp starting at z with <рД0) = v. Since q>' — а о (p is a differentiable 
curve (0) = (0)) = v'. But then F(v) = F(u') in consequence of the fact that 
a is a distance preserving transformation of [7?, g] and of Lemma 3. 3. Therefore 
a is an isometric transformation of [7?, F], Let t>,, . . . , vm£TxR be an orthonormal 
system and x:U —7?m a canonical coordinate system of the second kind at x defined 
by orbits <pt, ..., (pm with (pi*(0) = vi, i= 1, . . . , m according to Lemma 2. 4. There-
fore if z£ U and x(z) = (z\ ,.,,zm) then z = y ^ z ^ o ••• о ym(zm)(x) where is the 
1-parameter group which defines сри i= 1, ...,m. Let gij(zl, . . . ,z" !), i,j= 1, ...,m 
be the components of the Riemannian tensor defined by F with respect to the 
coordinate system for z£U. But у,*(0), i=\,...,m are linearly independent 
therefore 1-parameter groups ym+1, . . . , y„ exist which define a canonical coordinate 
system of the second kind x:U -*R" of G0 at e. Thus г" = Г'(a1, . . . , a"; z1 , . . . , z"!), 
i=l,...,m if a£U, x(a) = (aL, . . . , a"), z£U, a(z) = z'£U. The functions Г' are 
C°° since Г:(70Х/?—7? is a C°°-map. In consequence of the special choice of the 
coordinate systems и'=Г'(и1, ..., и'", 0, . . . , 0; 0, . . . , 0), / = 1, . . . , m for //£ U. Since 
the elements of G0 are isometric transformations 

gij(Q, •••> 0) = Sij = 

дГк(и1,...,ит,0, . . . , 0 ; 0 , . . . , 0 ) дГ,(и\ ...,um, 0, . . . , 0 ; 0 , . . . , 0 ) 
dz> dzJ 

for i, j=\, ...,m, which considered as a system of equations for the guiu1', ..., um), 
k, 1=1, . . . , m must have a unique solution. This together with the fact that the 
Г' are C°°-functions yield that the gkl are as well, what obviously implies the 
assertion of the lemma. 

It is to be noted that contrary to the circumstance that Lemmas 3. 1-12 do not 
assume the existence of the metric angle of orbits for the last one this is essential. 

= Zgiaiu 
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In fact Lemma 3. 14 cannot have an analogue in the case of Finsler manifolds as 
obvious examples of Minkowskian geometries show. 

Results of this section are summed up in 

T h e o r e m 3. Let T:GXR R be a differentiüble transformation group and 
the differentiable manifold R have a distance function Q such that the metric space 
[/?, <?] is finitely compact and convex. If the elements of G0 are distance preserving 
transformations of[R, o] and the orbits of the 1 -parameter groups of G0 are rectifiabie 
and have metric angle in [/?, o] then there is a unique Riemannian metric on R such 
that its induced metric space is [R, o]. 
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