The infimum of two projections

By W. N. ANDERSON, Jr. and M. SCHREIBER in New York (N.Y., U.S.A.)

1. The purpose of this note is to give a closed formula for the infimum of two projections in Hilbert space. Heretofore, this infimum has been expressed by an iterative scheme as follows: ${ }^{1}$) If P and Q are projections on closed subspaces M and N, then the projection $P \wedge Q$ on $M \cap N$ is given by

$$
\begin{equation*}
P \wedge Q=\lim _{n \rightarrow \infty} P(Q P)^{n} \tag{1}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
P \wedge Q=2 P(P+Q)^{+} Q \tag{2}
\end{equation*}
$$

if $M+N$ is closed, where $(P+Q)^{+}$denotes the inverse of $P+Q$ restricted to its range. This formula is exactly that given by Anderson and DuFfin [2] for matrices, and the result of this note is that it generalizes to infinite dimensions as stated. We also give an apparently heretofore unstated necessary and sufficient condition for $M+N$ to be closed (namely, that M and N make a positive angle modulo $M \cap N$).

The combination $A(A+B)^{+} B$, introduced in [2]; is called the parallel sum, so named because of its origin in and application to electrical network theory $\left(\left(r_{1}^{-1}+r_{2}^{-1}\right)^{-1}=r_{1}\left(r_{1}+r_{2}\right)^{-1} r_{2}\right.$ is the resistance arising from resistors r_{1} and r_{2} in parallel). A second formulation of the parallel sum in finite dimensions is given by Anderson [1].

We shall use the following notations: P_{M} for the projection on $M, R(A)$ and $N(A)$ for range and nullity, M^{-}and M^{\perp} for closure and orthocomplement, $A \mid M$ for restriction.
2. We begin by noting some facts about non-negative bounded operators.

For hermitian operators generally one knows that $R(A)=A \overline{R(A)}$, that A is one-one on $\overline{R(A)}$, and A is invertible on $R(A)$ if and only if $R(A)=\overline{R(A)}$ (closed graph theorem).

[^0]Hence for non-negative operators we have
(i) $R(A)$ closed if and only if A is bounded away from 0 on $R(A)$.

It follows that $R(A)$ is closed if and only if $R\left(A^{\frac{1}{2}}\right)$ is closed. Since $N(A)=N\left(A^{\frac{1}{2}}\right)$ (because by positivity ($A x, x$) $=0$ if and only if $x=0$), and therefore $\overline{R(A)}=\bar{R} \overline{\left(A^{\left.\frac{1}{2}\right)}\right.}$, we have
(ii) $R(A)$ closed implies $R(A)=R\left(A^{\frac{1}{2}}\right)$.
T. Crimmins has shown that $R(S)+R(T)=\left(S S^{*}+T T^{*}\right)^{\frac{1}{2}}$ for any bounded operators S and T^{2}) From this we get
(iii) If $R(A), R(B)$, and $R(A+B)$ are closed, then

$$
\begin{equation*}
R(A)+R(B)=R(A+B) \tag{3}
\end{equation*}
$$

for $R(A)+R(B)=R\left(A^{\frac{1}{2}}\right)+R\left(B^{\frac{1}{2}}\right)=R\left((A+B)^{\frac{1}{2}}\right)=R(A+B)$.
As it follows from the preceding computation that $R(A)+R(B)$ is closed if and only if $R\left((A+B)^{\frac{1}{2}}\right)$ is closed, we have
(iv) If $R(A)$ and $R(B)$ are closed, a necessary and sufficient condition that $R(A+B)$ be closed is that $R(A)+R(B)$ be closed.

Next, we introduce a generalized inverse (see [3] for background) and the parallel sum. If A has closed range; define A^{+}by

$$
\begin{equation*}
A^{+}\left|R=(A \mid R)^{-1}, \quad A^{+}\right| N=0 \tag{4}
\end{equation*}
$$

If $A+B$ has closed range, define the parallel sum $A: B$ by

$$
\begin{equation*}
A: B=A(A+B)^{+} B \tag{5}
\end{equation*}
$$

This operation satisfies

$$
\begin{equation*}
A: B=B: A=(A: B)^{*},: R(A: B)=R(A) \cap R(B) \tag{6}
\end{equation*}
$$

if $R(A)$ and $R(B)$ are closed, as we shall presently show. The equations $R(A+B)=$ $=R(A)+R(B)$ and $R(A: B)=R(A) \cap R(B)$, valid when $R(A)+R(B)$ is closed, show that the set of $A \geqq 0$ with closed range is almost a lattice, in the sense that the sup and inf, inherited from the lattice of subspaces, exist whenever the sum of the ranges is closed. If \rightarrow we now think of projections P and Q in this context and ask what significance attaches to their sup and inf, we are led the following theorem:

[^1]Theorem. If P and Q are projections such that $R(P)+R(Q)$ is closed, then $2 P: Q=P \wedge Q$.

Note that by (iv) the hypothesis is equivalent to assuming $R(P+Q)$ closed.
To prove the theorem, we first prove the identities (6) (following [2]). By (iii) we have $R(A), R(B) \subset R(A+B)$. Hence $B(\dot{A}+B)^{+}(A+B)=B,(A+B)^{+}(A+B) A=A$ (because $(A+B)^{+}(A+B)$ is the projection on $R(A+B)$). Then $A: B=A(\dot{A}+B)^{+} B=$ $\rightleftharpoons(A+B-B)(A+B)^{+}(A+B-A)$ easily reduces to $B(A+B)^{+} A=B$: A. Since $(A: B)^{*}=B: A$, we have $(A: B)^{*}=A: B$. By the commutativity again we have $R(A: B) \subset R(A) \cap R(B)$. If $x \in R(A) \cap R(B)$, then

$$
\begin{aligned}
& (A: B)\left(A^{+}+B^{+}\right) x=A(A+B)^{+} B B^{+} x+B(A+B)^{+} A A^{+} x= \\
& \quad=\left(A(A+B)^{+}+B(A+B)^{+}\right) x=P_{R(A+B)} x=x
\end{aligned}
$$

Hence $R(A: B)=R(A) \cap R(B)$. This last computation simplifies, if A and B are projections P and Q, to $2 P(P+Q)+Q x=2(P: Q) x=x$ for $x \in R(P) \cap R(Q)$. Thus $2(P: Q)$ is a hermitian idempotent with range $R(P) \cap R(Q)$; and this proves the theorem. .
3. We conclude by showing that $R(P)+R(Q)$ is closed if and only if $R(P)$ and $R(Q)$ make a positive angle modulo $R(P) \cap R(Q)$. To establish this, we first consider the case when the two subspaces, which we denote by M and N, are disjoint. Then the assertion is that $M+N$ is closed if and only if

$$
\begin{equation*}
|(x, \dot{y})| \leqq\|x\|\|\dot{y}\|(1-\dot{\delta}) \quad(\dot{\delta}>0) \tag{7}
\end{equation*}
$$

for all $x \in M, y \in N$.
Suppose (7) holds, and consider a Cauchy sequence $u_{n}=x_{n}+y_{n}$ in $M+N$. Write $u_{n m} \equiv u_{n}-u_{m}$, etc. Then

$$
\begin{aligned}
\left\|u_{n m}\right\|^{2}=\left\|x_{n m}\right\|^{2} & +\left\|y_{n m}\right\|^{2}+2 \operatorname{Re}\left(x_{n m}, y_{n m}\right) \geqq\left\|x_{n m}\right\|^{2}+\left\|y_{n m}\right\|^{2}- \\
& -2(1-\delta)\left\|x_{n m}\right\|\left\|y_{n m}\right\|=\left\{\left\|x_{n m}\right\|-\left\|y_{n m}\right\|\right\}^{2}+2 \delta\left\|x_{n m}\right\|\left\|y_{n m}\right\|
\end{aligned}
$$

It follows that $u_{n m} \rightarrow 0$ implies $x_{n m} \rightarrow 0, y_{n m} \rightarrow 0$, and therefore that \dot{u}_{n} converges in $M+N .^{3}$)

Conversely, suppose $M+N$ is closed. It then follows that the "coordinate" map $T: M+N \rightarrow M$ given by $T(x+y)=x$ is continuous. The proof consists in verifying that T has closed graph and then applying the closed graph theorem. This argument is due to Kober [5], and as the verification is simple we omit it. Since T is bounded, we have

$$
\|x\| \leqq A\|x \pm y\|
$$

${ }^{3}$) This formulation of the argument is due to B. Glickfeld.
for all $x \in M, y \in N$. Taking $\|x\|=\|y\|=1$ and squaring, we get

$$
1 \leqq A^{2}(2 \pm 2 \operatorname{Re}(x, y))
$$

whence $|\operatorname{Re}(x, y)| \leqq 1-\frac{1}{2 A^{2}}$, and (7) follows from this immediately.
If $M \cap N=I \neq\{0\}$, we pass to the quotient space H / I. If $M+N$ is closed, so is $(M+N) / I=M / I+N / I$ and so M and N make a positive angle modulo I. Conversely, if M / I and N / I make a positive angle H / I, then $M / I+N / I$ is closed, whence so is $M+N$.

References

[1] W. N. Anderson, Jr., Shorted Operators, to appear in SIAM J. Applied Math.
[2] W. N. Anderson, Jr. and R. J. Duffin, Series and Parallel Addition of Matrices, J. Math. Anal. Appl., 26 (1969), 576-594.
[3] A. ben Isreal and A. Charnes, Contributions to the Theory of Generalized Inverses, J. Indust. Appl. Math., 11 (1963), 667-699.
[4] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, 1967).
[5] H. Kober, A Theorem on Banach Space, Comp. Math., 7 (1939), 135-140.

ROCKEFELLER UNIVERSITY
NEW YORK, NEW YORK 10021
(Received January 15, 1971)

[^0]: ${ }^{1}$) See [4] for background.

[^1]: ${ }^{2}$) The result is unpublished and was told to us by J. P. Williams. Proof: Write $A=\left(\begin{array}{rr}S & -T \\ O & O\end{array}\right)$ on $H \oplus \boldsymbol{H}$. Then $\{R(S)+R(T)\} \oplus\{0\}=R(A)=R\left(\left(A A^{*}\right)\right)^{\frac{1}{2}}=R\left(\left(S S^{*}+T \bar{T}^{*}\right)\right)^{\frac{1}{*}} \oplus\{0\}$.

