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Introduction. The first four sections of this paper are essentially a survey of 
what is known about the nature of the spectrum of a coset in the Calkin algebra. 
In these sections we show that, a great deal of information can be obtained f rom a 
simple but not very well known theorem of F. W O L F [ 1 8 ] . That result (Theorem ( 1 . 1 ) ) 

gives several characterizations of those cosets that have a left inverse. 
In section 2 we use Wolf 's theorem to exhibit the relations between the spectrum 

and two different essential spectra of bounded operator. 
Wolf ' s theorem immediately suggests introduction of the left essential spectrum 

of an operator A. This set turns out to coincide with the collection of Weyl limit 
points of the spectrum of A. It is thus of interest to know that it is non-empty as 
we show in section 3. In that section we also indicate the relations between the left 
essential spectrum, the boundary of the spectrum, and the approximate point spectrum 
of an operator. 

In section 4 we use Wolf 's theorem to obtain a description of the essential 
spectrum of a hyponormal coset in terms of eigenvalues. 

In section 5 we obtain an analogue of Wolf 's theorem for the numerical range 
of a coset. This result yields several new characterizations of the essential numerical, 
range of an operator introduced in [17]. 

Finally, in section 6 we use the techniques of § 3 to show that the non-cyclic 
operators are norm-dense in 9 3 ( 5 ) . This answers a question raised by H A L M O S 

in [8]. 

Notation. In the following § will denote a complex separable infinite-dimensional 
Hilbert space, © (§) denotes the algebra of all bounded linear operators on and 
St denotes the ideal of compact operators on We shall let v denote the canonical 
homomorphism from 23 (¡5) onto the Calkin algebra (See-[2].) The range, 

*) The authors gratefully acknowledge the support of the National Science Foundation. 
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null space, and spectrum of an operator A are denoted by ar>d a (.A) 
respectively. 

If © is a complex Banach algebra with an identity of norm 1 then a state on 
(5 is by definition a linear f u n c t i o n a l / o n (5 with the p r o p e r t y / ( 1 ) = 1 = | | / | | . States 
always separate points of (5 and if © is a C*-algebra then every state on © is positive, 
i.e., / ( ¡ c*x)SO for all x £ ® . 

1. Operators with closed range. Let T be a closed linear t ransformat ion with 
domain X)R dense in F. WOLF [18] has shown that the following four condit ions 
are equivalent: 

(1) There exists a sequence {x„} of unit vectors in ® r such that x„->0 weakly 
and 7 x n — 0 strongly. 

(2) There exists an or thonormal sequence {en} in t)T such that Ten —0 strongly. 
(3) £"[0, c5]fj is infinite-dimensional for all ¿ > 0 , where E is the spectral resolu-

tion of (T* T f - . 
(4) Either the range 9 \ ( T ) of T is non-closed, or the null-space is infinite 

dimensional. 
Consider the fur ther conditions: 
(5) Either 9 l ( r ) is infinite dimensional or 0 is a cluster point of a((T*T)*). 
(6) There exists an infinite-dimensional projection P such that P$>cz1)T and 

TP is compact. 
(7) There does not exists X(i 33(§) such that XT—I is compact. 
(8) For every <5>0 there exists a closed infinite-dimensional subspace 9 J l a c T ) r 

such that || 7x|| ==<5 ||x|| for all x€SH*. 

T h e o r e m (1. 1). Conditions (1)—(8) are equivalent.1) 

P r o o f . That (1) implies (3) results f rom the following computat ion of WOLF'S: 

| | x n - £ [ 0 , < 5 ] * J 2 = fd(E(t)xn,x„) = f(t/d)2d(E(t)xn,xn)^ 
6 6 

(1 ¡d)2 J t2d{E(t)xn,xn) ^ (\/5)2\\(T*T)ixn\\2 = (]/5)2\\Txn\\2 - 0. 
a 

T h e implications (3)—(2)—(1) are elementary. To see that (3) implies (6), choose 
an or thonormal sequence {<?„} with en£E[0, 1 /«]§, and let P be the projection on 
the span of the en. Then 

P9)dE[0, l ] § c C ( T , T ) i = 

') That ( 3 ) implies ( 6 ) was independently observed by C . A P O S T O L (private communication). 
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if P„ is the projection on the span of et, e2, ..., en, we also have 

\\TP-TPn\\ == l / ( » + l ) , 

which implies that TP is compact. 
Suppose that K = XT—I is compact, A ' C © ^ ) . If P i s a projection with P§> c : D r 

and TP compact, then because XTP—P = KP, P must be compact and therefore 
finite-dimensional. Thus (6) implies (7). To show that (7) implies (4), assume that 
(7) holds and that 9 i ( 7 ) is closed. Define the linear t ransformation X: 91(7) ^ 9 1 ( 7 ) ^ 
to be the inverse of T, and let X=Oon ^ ( r ) - 1 . Then X is closed and everywhere 
defined, hence bounded, and I—XT is the projection on 91(7"). It follows f r o m (7) 
that 91(7) is infinite-dimensional. 

Next, we show that (4) implies (3). This is clear if 91(7) is infinite-dimensional, 
so assume that 9 ? ( T ) is not closed. If T=U(T*T)i is the polar decomposition, it 
is well known that Ucarr ies SR((7*7)*) isometrically onto 91(7), and so 9I ( (7*7))± 
is non-closed. It follows that £[0 , <5]$ is is infinite-dimensional for every < 5 > 0 . 

If (8) holds then for each integer « S i there is a closed infinite-dimensional 
subspace 9 J i „ c D r such that | |7x|| ^ r c - 1 ||x|| for all By induction one can 
choose e„6£9Ji„ such that ||e„|| = l , 0 = (e„, P„nek) =(en, ek) for k<n. Then {en} 
is an or thonormal sequence and ||7e„|| 1/«. Thus (8) implies (2). 

The equivalence of (3) and (5) is a consequence of a well-known theorem of 
WEYL (Theorem (3. 4 ) below). 

Finally, (3) implies (8) because ( 7 * 7 ) * , and therefore also 7, is bounded by & 
on £[0, <5]§. 

An operator AfJB(53) is called semi-Fredholm (or Fredholm) if the range 9 J ( A ) 
of A is closed and if at least one (both) of the subspaces 91 (A), 9 i ( A ) ± is finite-
dimensional. For a bounded operator A the equivalence of conditions (4) and (6) 
reduces to the assertion that A has closed range and finite-dimensional null space 
if and only if the coset v(A) has a left inverse in ©(§) /&. The following are therefore 
immediate consequences: 

C o r o l l a r y 1 (Atkinson's Theorem). / 1 6 © ( § ) is a Fredholm operator if and 
only if v(A) is invertible in ©(§)/&. 

C o r o l l a r y 2. If A is semi-Fredholm (or Fredholm) then A + K is semi-Fredholm 
(or Fredholm) for any compact operator K. 

C o r o l l a r y 3. The semi-Fredholm (or Fredholm) operators form an open set 

P r o o f . Since A is Fredholm if and only if both A and A* are semi-Fredholm, 
it. suffices to prove that the set of those A in © ( § ) for which 9i(X) is closed and 
9 l (§) is finite-dimensional is open. This in turn is a consequence of continuity of 
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the quotient map v and the fact that the left-invertible elements form an open set in 
any Banach algebra. (See [11] for example.) 

We conclude this section with two related results. (The first is easy to prove; the 
second may be found in [6].) 

T h e o r e m (1.2). Suppose that A is a bounded .operator with finite-dimensional 
null space. Then 9f (/4) is closed if and only if A maps dosed bounded sets onto dosed 
bounded sets. 

T h e o r e m (1. 3). Let A be a bounded linear transformation from a Banach space. 
X into a Banach space 5). If the range of A is not closed in then for each E > 0 there 
is an infinite-dimensional closed subspace 9Ji (e) of X such that the restriction of A to 
9Jt(e) is compact and has norm less than e. 

2. Essential spectra. There are several distinct definitions of the essential 
spectrum of an operator A 6 ©(f)). In this section we shall indicate the basic facts 
concerning two of these. By definition, the Wolf (or Fredholm or Calkin) essential 
spectrum of A is the complement of the set of A for which A—A is a Fredholm opera-
tor. Atkinson's theorem implies that the Wolf essential spectrum of A is therefore 
<r(v(^4)); the spectrum of the coset v(A) that contains A in the Calkin algebra. The 
second notion of essential spectrum that we shall examine is by definition the largest 
subset of cr(A) that is invariant under compact perturbations of A, i.e., the set 
f | a { A + K ) sometimes called the Weyl spectrum).2) 

In order to describe the relation between these two concepts we need to recall 
that a Fredholm operator has an index given by 

ind (A) = dim 91(4) - dim ft (A)1-

and that the index is invariant under compact perturbations (see [5, 6]). The fol-
lowing theorem is due to M. SCHECHTER [13]: 

T h e o r e m (2. 1). 

U a{A+K) = a(v(A))U {X:A-A is Fredholm and ind (A-A) ^ 0}. 
K6« 

P r o o f . The quotient map v is an algebra homomorphism, hence o(v(A)) — 
=o(v(A+K)) c <r(A +K) for every compact operator K. Moreover, if A—A is 
Fredholm with nonzero index, then so is A+K—A for any compact operator K. 
In particular, A + K—A is not invertible. This proves that the set on the right in Theo-

2) For a nice discussion of this topic, see S. K . BERBERIAN, The Weyl spectrum of an operator, 
Indiana Univ. Math. J., 20 ( 1 9 7 0 ) , 5 2 9 — 5 5 4 . 
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rem (2. 1) is contained in the set on the left. On the other hand, if X does not belong 
to the set on the right, then A — X is Fredholm. with index 0. This implies that A—X 
is of the form B + K where B is invertible and K is compact. Thus X$a(A—K) and 
hence X does not belong to the set on the left in Theorem (2. 1). 

The next two results indicate the relation between the essential spectrum and 
spectrum of an operator. Here <JP(T) denotes the point spectrum (=eigenvalues) 
of 7V 

T h e o r e m (2.2). a(A) = P\o(A+K)V)op(A). ' 

P r o o f . The set on the right is clearly contained in a (A). Suppose then that 
X£a(A) and that X$a (A + K) for some compact K. Then 

(A+K—X){\—(A+K—X)~lK) = A — X 

is not invertible, so that 1— (A+K—X)~ lK is not invertible. Hence 1 is an eigen-
value of the compact operator (A+K—X)~iK. But if (A + K— X)~1 Kx — x with 
x^O, then Kx = (A+K—X)x, and so 0 = (A — X)x. In other words, X€ap(A). This 
completes the proof. 

T h e o r e m (2. 3). <r(A) = <r(v(A)) U <rp(A) U ap(A*)~, where the bar denotes com- . 
plex conjugate. 

. P r o o f . Suppose that X£<r(A) and <rp(A){Jop(A*)-. Then A-X is one-to-
one.with dense range. Since A—X is not invertible, it follows that 9i(A—X) is not 
closed. Therefore A — X is not Fredholm so that X £a(v(A)). . 

R e m a r k . It is easy to see that if U is the unilateral shift of multiplicity 1, then 
f)a(U+ K) is the closed unit disk and a(v(U)) is the unit circle. The larger essential 
spectrum is therefore obtained f rom the smaller one by filling in the hole. This is a 
general fact : 

T h e o r e m (2. 4). Oa(A+K) consists of a (v (A)) together with some of the holes 
in a(v(A)). 

P r o o f . Recall first that by definition a hole in a compact set A' is a bounded 
component of the complement of X. We will use the following elementary fact : 
If E and F are compact subsets of the plane such that Ea F and dFczE, then F is the~ 
union of E and those holes of E that meet F. 

Now if E=o(v(A)) and F — r\a(A+K), then F—E consists of those complex 
numbers X fo r which A—X is Fredholm of index ^ 0 . By continuity of the index 
(see [5, 6]) this is an open set. Hence dFczE. 

C o r o l l a r y . C\a(A+K) and a(v(Aj) have the same convex hull. 
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3. The left essential spectrum. Wolf ' s theorem motivates consideration of the 
left essential spectrum AT(V(A)) of an operator By definition, a complex 
number X belongs to <T,(V(A)) if and only if the coset v(A— X) — v(A) — X fails t o 
have a left inverse in ©(§) /&. Equivalently, X belongs to the left essential spect rum 
of A if and only if there is a sequence {*„} of unit vectors such that xn —0 weakly 
and 1104—A)x„|| 0. Moreover, the x„ can even be chosen o r thonormal (Theorem 
(1. 1).) In the special case in which A is self-adjoint the same concept was in t roduced 
by Weyl; accordingly such a complex number X is also called a Weyl limit po in t 
of the spectrum of A (see [12]). The right essential spectrum <Jr(v(A)) is defined in 
the obvious way. 

The concepts just introduced derive their usefulness f r o m the fol lowing: 

T h e o r e m (3. 1). al(v(A))r\(yr(v(A))z^d(T(v(A)). Hence fft(v(A)) is a non-
empty compact subset of cr(v(/4)). 

P r o o f . The theorem is an immediate consequence of two well-known facts 
about Banach algebras. First, the set ©, of elements that have a left inverse is open 
and second, any point of the boundary of ©, is a right topological divisor of 0. 
(See [11] for example.) 

T h e o r e m (3. 2). If then n(A), the approximate point spectrum of A, 
consists of <7j(v(y4)) together with the eigenvalues of finite multiplicity. 

P r o o f . If A£7t(A) and A(£ff,(v(y4)), then A — X is not bounded below but has 
closed range and finite dimensional null space. Hence 91(^4—A) ^ 0 so that X is an 
eigenvalue of finite multiplicity. 

The next result of PUTNAM [9] is much deeper: 3) 

T h e o r e m (3. 3 )..If A €©(§) and X^da(A), then either X is an isolated point of 
ff(A) and an eigenvalue of finite multiplicity, or it belongs to <Jt(v(A)), that is there is 
an orthonormal sequence {e„} such that \\(A—X)en\\ -*• 0. 

If A is an operator with no eigenvalues, then Theorem (2. 2) asserts that a (A) = 
= C)a(A +K). In particular, each compact per turbat ion of A has a larger spectrum 
that that of A. There is a simple relationship between these spectra: 

C o r o l l a r y . Let A f^(S3) and assume that A has no eigenvalues. Then for any 
compact operator K 

<J{A+K) = e r ( ^ ) U 3 U some holes in A (A), 

where 3 Is the set of isolated eigenvalues of A+K of finite multiplicity. 

3 ) Prof. P U T N A M has requested that we refer to this result as the Putnam—Schechter theorem. 
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P r o o f . We have < j ( ^ ) U 3 c a(A+K) (by the preceding corollary). Also, by 
Putnam's Theorem, 

+ + = c r , ( v ( ^ ) ) U 3 c < 7 ( ^ ) U 3 . 

The proof is completed by an application of the topological fact used in the proof of 
Theorem (2. 4). 

If A is a normal operator on then it is easy to see f r o m Theorem (2. 1) that 
f\a(A+K) = a(v(A)). Moreover, al(v(A)) = a(v(A)), and if E is the spectral mea-
sure of A, then X£a(v(A)) if and only if every neighborhood 11 of X has infinite 
spectral measure (dim iR(E(U)) — °°). From this it is easy to obtain WEYL'S characteri-
zation of the essential spectrum of A (see [12, p. 367]). 

T h e o r e m (3. 4). If A is normal, then a(v(Aj) = a1(v(A)) consists of the cluster 
points of a (A) together with the isolated eigenvalues of A of infinite multiplicity. 

Weyl's theorem has recently been generalized to hyponormal operators by 
COBURN [3]: 

T h e o r e m (3. 5). If A is hyponormal, then C\a(A + K) consists of the cluster 
points of o (A) and the isolated eigenvalues of infinite multiplicity. 

4. Eigenvalues in the Calkin algebra. In this section we obtain more detailed 
information about the Wolf essential spectrum of special operators. For statements 
about elements in the Calkin algebra it is convenient to use lower case Latin letters 
a, p instead of the more cumbersome notation v(A), v{P) for the cosets containing; 
the operator A, P. 

We begin, with a simple reformulation of part of Wolf 's theorem: 

T h e o r e m (4. 1). Let a£ ©(§)/& and let X £o(a). Then there is a projection p^O-
such that either ap = Xp or pa = Xp. 

P r o o f . Suppose X belongs to at(a). If Ada, then v(A—X) does not have a left 
inverse, hence (Theorem 1.1) there is a compact operator K such that 
dim9104 — A — K) = » , Let P be the orthogonal projection onto X—K) and 
let p = v(P). Then (A-X-K)P =0 so that ( a - X ) p = 0. Moreover, />±0 since P 
has infinite rank. 

To complete the proof we must also consider the possibility that v(A—X) fails 
to have a right inverse. However on taking adjoints, this case reduces to the one just 
discussed. 

C o r o l l a r y . If A (§) then there are orthogonal projections P and Q of in-
finite rank and nullity and a complex number X such that (A—X)P and Q(A — X) are 
compact. 
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P r o o f . Any two projections of infinite rank contain orthogonal sub-projections 
•of infinite rank and nullity. Projections with the asserted properties can therefore 
be found for any A£cr,(v(A)) r\or(v(A)). 

Note that if P is as in the corollary, then v(/i)v(/>) — v(P)v(A)v(P). Thus 
AP—PAP is compact so that A has an invariant subspace "modulo the compacts" . 

Theorem (4. 1) shows that k belongs to the Wolf essential spectrum of A if 
.a'nd only if either k is an eigenvalue of (the regular representation of) v(A) or I is 
.an eigenvalue of v(A*). We will shapren this assertion for hyponormal elements of 
the Calkin algebra. For this we need a lemma. 

L e m m a 4. 1. Let (5 be a C*-algebra with unit and let Abe a hyponormal element 
•of © (i.e., A*A^AA*). If A has a right inverse, then A is invertible. 

P r o o f . Since A is hyponormal, Z* AA* Z^&Z* A* AZ for any Z. Hence AZ=0 
implies A*Z=0. Suppose now that AX= 1. Then A(XA-l)=0 so A*(XA-l) =6> 

.and thus XA-1 = X*A*(XA-1) = O. 

T h e o r e m (4. 2). Let a be a hyponormal element of ©(§)/&. Then 
(1) k£a (a) if and only if there is a projection p 5^0 such that a*p = Xp. 
(2) If p is a projection such that ap = kp, then a*p = lp. 
(3) If api = kiPi for / = 1 , 2, and i f ' k ^ k 2 , then PtP2 = 0. • 

P r o o f . The first assertion is an obvious consequence of Lemma (4. 1). To 
prove (2), note that the condition (a—k)p = 0 implies (a—k)*p = 0 because a—k is 
^hyponormal (see the proof of Lemma (4. 1)). 

If ap1=klpl and ap2—k2p2 then p1a=klpi by (2) so that k2p1p2=piap2 = 
=klp1p2. 

R e m a r k s . (1) It is easy to exhibit non-normal hyponormal elements of ©(§) /&. 
For example, if U is an isometry with infinite defect, then v(U) is such an element. 
Or again, if B is a positive noncompact operator with 0 £ er(v(5)), then (RADJAVI [10]) 
there exists (§) such that A*A —AA* = B. The coset v(A) is then hyponormal 
but not normal. 

(2) It is not true that every hyponormal coset a contains an operator of the 
form hyponormal-)-compact. (Let a—v(A) where A is the adjoint of the unilateral 
shift and compute the Fredholm index.) 

It is well known that any eigenvector of an operator A corresponding to an 
•eigenvalue k of modulus |A| = ||y4|| must reduce A, i.e., Ax—kx implies A*x=kx. 
T h e next result is the analogue of this fact for the Calkin algebra: 

T h e o r e m (4. 3). Let and suppose that there is a k£<r,(a) with |/.| = 
= ||a||. If p is a projection such that ap — kp, then a*p—lp. 
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P r o o f . Without loss of generality we may suppose that ||a|| = l = A . Then 
pa*p = (pap)*=p, and so 

0 S (a*p = p)*(a*p-p) = paa*p-pap~pa*p+p = paa*p-p = p(aa* — l)p S 0. 

Hence a*p=p. 

C o r o l l a r y . If A £©(§) and if the coset v(A) has norm equal to its spectral 
radius, then there exists a projection P of infinite rank and a complex number X such 
that (A —X)P and P(A—X) are both compact. 

R e m a r k . A coset v(A) has norm equal to its spectral radius in each of the 
following cases: 

(i) v{A) is hyponormal. 
(ii) v(A) contains a Toeplitz operator. 
(iii) A has norm equal to its spectral radius and A has no isolated eigenvalues 

of finite multiplicity. 
(Sufficiency of (i) can be proved by a slight modification of the proof in [14] 

of the corresponding fact in 23 (§). Condition (iii) is sufficient by Putnam's Theo-
rem (3. 3), and (ii) is a special case of (iii) since a Toeplitz operator has no isolated 
eigenvalues of finite multiplicity [3].) 

The corollary therefore implies that if A is a compact perturbation of a hypo-
normal operator or a Toeplitz operator then there is an orthonormal sequence {e„} 
and a complex number X such that 

(A-X)en- 0, (A*-X)en-~ 0. 

Consequently, A is uniformly approximable by operators with a reducing eigen-
vector. (See [15], Theorems 1, 2.) 

5. The essential numerical range. The numerical range of a bounded operator 
A on § is defined as 

W(A) = {(Ax,x): ||*|| = 1}. 

In [17] a generalized numerical range fV0(a) was introduced for an element a of 
an arbitrary complex Banach algebra © with norm 1 unit. By definition JV0 (a) 
consists of the complex numbers of the form f(a) w h e r e / ranges over the states of ©. 
The set fV0(a) is convex, compact, and contains the spectrum of a. If © is a sub-
algebra of 93 (§) then for A£(5 the numerical range W0 (A) coincides with the closure 
W(A)~ of the usual numerical range. 

The essential numerical range [17] of an A £ © (§) is by definition the numerical 
range JV0(v(A)) of the coset in ©(§) /& that contains A. We shall denote this set by 
We(A) in the following. A more explicit' identification is given by the formula 

We(A) = Pi {W(A +K)~: K£S{}. 
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(Thus, unlike the situation for the essential spectrum, there is only one "na tu r a l " 
definition of essential numerical range. See Theorem (2. 1).) 

The preceding formula was proved in [17] by a convexity argument. A simpler 
proof is obtained by noting that a complex number X belongs to either side if and 
only if \\A + K— z\\ S \X — z\ for all complex numbers z and all compact operators 
K. (This is an immediate consequence of Theorem 4 of [17] and the definition of 
the norm of the coset v(A— z).) 

In this section we give several new descriptions of the essential numerical range. 
These are obtained from the following analogue of Theorem (1. 1): 

T h e o r e m (5. 1). For ©(£>), ¡he following conditions are equivalent: 
(1) 0 6 C\{W(T+F)~-.F is of finite rank}. 
( 2 ) 0 £ W e ( T ) . 
(3) There exists a sequence {xn} of unit vectors such that x„~*0 weakly and 

(Txn,xn)~ 0. 
(4) There exists an orthonormal sequence {en} such that (Ten, en) — 0. 
(5) There exists an infinite-dimensional projection P such that PTP is compact. 

P r o o f . The implications (5) ^(4)-~(3) —(2) —(1) are clear. We first prove that 
(1) implies (4). Let 0, and assume that orthogonal unit vectors el,e2, •••,en 

have been found so that \{Tek, ek)\<sk for k — k,2, . . . , « . Let 9Jt be the subspace 
spanned by the ek, and let P be the projection on 9Ji. In order to exhibit a unit vector 
e„+1 orthogonal to 9)i with \{TenJri, e „ + 1 ) | < E „ + 1 , it is sufficient to show that 
0 6 ^ ( ( / - T ^ r l S « - 1 ) - . To see that the latter condition holds, choose 

LiiW((I-P)T\m±), 
and let 

F = nP-PTP-(I-P)TP-PT(I-P). 

Then F i s of finite rank, and 

T + F= nP + (I-P) T(I-P) = nrw®(I-P)T\m^. . 

In general it is true that W(AQ)B) is the convex hull of W(A) and and thus 
it follows that 

W(T+F) = W((I-P)T\WlJ-) 

since ^ ( ( / - P ) ^ » ^ ) is convex and contains n. Hence (1) implies 0 6 ^ ( ( / - i ^ r l » * - 1 ) , 
as required. 

To complete the proof we show that (4) implies (5). Let {en} be an orthonormal 
sequence with (Ten, e„) —0. By passing to a subsequence we can assume that 

2 \(Ten,en)\ 
n= i 
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Put nx — Since 

J ¡ ( 7 V , e„)|2 S I I | | 2 and 2 № „ , e„,)|2 ^ i T * e n i \ \ 2 

n=l n=l 

by Bessel's inequality, there is an integer n 2 > n I s u c h t h a t 

2 I(Ten i , e„)|2 < i and 2 \(Ten> eni)|2 < . 
n = n2 n = n2 

By iterating this procedure we generate a strictly increasing sequence {<nk} of positive 
integers with the property 

<**) 2 \{Te„k,en)\2 < 2~k and 2 \{Ten, e„ t)|2 < 2~* ' 

fo r all Inequalities ( * ) and ( * * ) imply that 

2 \{Teni,en)\2<~. 
i,j=l 

If P i s the projection on the span of the e„k, this means that PTP is a Hilbert—Schmidt 
operator, and therefore PTP is compact. 

Corollary. Each of the following conditions is necessary and sufficient in order 
that X^We(T): 

(1) (Tx„, xn) — A for some sequence {x„} of unit vectors such that xn —0 weakly. 
(2) (7en ,e„)— A for some orthonormal sequence {en}. 
(3) PTP — XP is compact for some infinite-dimensional projection P. 

R e m a r k s . (1) As we observed in § 4 a point X belongs to the Wolf essential 
spectrum of A if and only if v(/4)v(P) = Av(P) or v(P)v(^4) = Av(P) for some non-
zero projection v(P). By Theorem (5. 1) the corresponding statement for the numerical 
range is: A£ W (A) if and only if v(P)v(A)v(P) = Xv(P) for some non-zero projec-
tion v(P); i.e.,pap = Xp. 

(2) The analogy between Theorems (1. 1) and (5. 1) is not complete. Call a 
sequence of vectors non-compact if it has no strongly convergent subsequence. 
Then Wolf ' s statement of condition (3) of Theorem (1. 1) requires only that Ax„ -*0 
strongly for some non-compact sequence {x„} of unit vectors. However, the cor-
responding reformulation of condition (3) of Theorem (5. 1) is not equivalent to 
the conditions of that theorem. For example, let A be the operator with matrix 
diag(—1, 1, 1, ...) in an or thonormal basis {e„} and let x„ = (e, +en+1)//2 . Then 
0 $ We(A), and yet {x„} is a non-compact sequence with (Ax„, x„)^0. 
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(3) If . the space § is finite-dimensional no sequence of unit vectors can con-
verge weakly so that the conditions of the corollary of Theorem (5. 1) have no 
reasonable analogue. A possible replacement is the condition: (Aeiei)=A for some 
orthonormal set { e ^ . l ^ i ^ k } where In [4] it is shown that the set of 
complex numbers A with this property constitute the ^-numerical range [7] of A. 

(4) The preceding remark suggests the following question: If /4 623(§) fo r 
which complex numbers A does there exist a projection P of infinite rank such that 
P(A—X)P = 01 A partial answer is given in [1]. 

(5) The Corollary of Theorem (5. 1) shows that if / is a state on 23(§) that 
annihilates ft, then for each /4 623(g) there is an orthonormal sequence {en} such 
that f(A) = lim (Ae„, e„). 

n 

6. Non-cyclic operators. We conclude with an application to a problem recently 
proposed by HALMOS [8]: does the set of cyclic operators have a non-empty inter ior? 
Although this set is readily seen to be open when dim § > < w e have: 

T h e o r e m (6. 1). When § is infinite-dimensional, the non-cyclic operators are 
norm-dense in 23(§). 

P r o o f . We use the observation (HALMOS, op. cit.) that if = has 
dimension at least two, then for each / the span of / , Af,A2f,... has codimension 
at least one, and so A is non-cyclic. Now let r £ © ( § ) , choose A in the left essential 
spectrum of T* (cf. Theorem (3. 1) above), and let e > 0 . Then there exist or thogonal 
unit vectors <p and i¡j such that | | ( r*-A/)(p | | < e and \\(T*-?J)\(/\\ < e. Let P be 
the projection on the span of cp and ip, and set 

S* = AP + T*(I-P). 

Then T*-S* = (T*-XI)P has norm at most 2e. But S*—AI has nullity at least 
two, so S—Il is non-cyclic, and therefore S is non-cyclic. Since UT"— S| | S 2e and e 
is arbitrary, the proof is complete. 

R e m a r k . Since the approximating operator differs f rom the given opera tor 
only on a finite-dimensional subspace, the proof shows that the non-cyclic operators-
are dense in any norm. 

For another application of Theorem (3. 1) we refer the reader to [16] where 
it is shown that for any ,4 623 (§) the range of the inner derivation X — AX— XA is-
never dense in 23(S>), nor does it contain all finite dimensional operators. 

Our final result is an application of Wolf's theorem. 

T h e o r e m (6. 2) Let T£ 23(§). Then 1 — T*Tis compact if and only if T— U +,K 
where K is compact and U is either an isometry or a co-isometry with finite-dimensional 
hull space. . . 
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P r o o f . Sufficiency is trivial. To prove necessity suppose that 1 — T* Tis compact-

Since 1 - T * T = ( l + fr*T)( 1 - fF*T) and the left factor is invertible, it follows 

that 1 - i T* T is compact. 
If x„ -* 0 weakly and Tx„ —0 strongly then xn= (l — T* T)xn -f T* Txn -* 0 strongly 

Hence by Theorem (1. 1) T has closed range and finite dimensional null space-
Suppose d i m 9 t ( T ) s d i m ^ ( r ) - 1 . Replacing T by T+K for some compact K 

if necessary we may assume that T is one-to-one. If T=U^T*T is the polar de-
composition of T, then U is an isometry and T = U— = U+compact-

To complete the proof we must also consider the case dim 9i(7")-L < d i m 91(7")... 
The above argument shows tha T* = U+K where U is an isometry and K is compact.. 
The null space of U* is finite-dimensional by the hypothesis on T. 

C o r o l l a r y . T = isometry-(-compact if and only if l — T* T is compact and T 
is semi-Fredholm with ind (7") ^ 0 . 

R e m a r k s . If 1 — 7"*7"is compact and 1 — TT* is not compact then a(T) con -
tains the unit disk. This is a consequence of the theorem and fact that in any C*-
algebra with identity the spectrum of a non-unitary isometry is the unit disk. 
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