Operators vrith__essentially disconnected Spectrum

By NORBERTO SALINAS-in Ann Arbor (Michigan, U.S.A)*)’

" 1. Introduction. Throughout this paper $ will denote an infinite dimiensional
complex Hilbert space, £ ($) will represent the algebra of all (bounded linear) oper-
ators on $, and by 2" we shall mean the ideal of all compact operators on §. Let = be
the canonical projection from Z($) onto the (Calkin) quotient algebra Z($)/A .
For every T€ £(9) the spectrum E(T) of n(T) in % (H)/A will be called the Calkin
essentlal spectrum of T. '

Definition. We say that the spectrum Z(T) of an operator T€ £ (%) is es-
sentially disconnected if the polynom1a1 hull £(T) of X(T) is disconnected and
E(T) intersects more than ‘one component- of Z(T) (the polynomial hull X of a
compact. Subset X of the complex plane C 1s the complement of the unbounded
:component of C—X). - SR :

* Qur main purpose in this note is to initiate the study-of the class of all operators
whose spectrum is essentially disconnected, which we shall denote by (ED). Examples
of operators havmg such a property are easy to come by, taking, for instance, the.
“direct sum of two operators ‘on § whose spectra are far from'each other. Inparti-
cular, aself-adjoint operator has an-essentially disconnected spectrum “if and only
Afits essent1a1 spectrum is dlsconnected Of course this 1s not the case for an arbit-
rary operator on 9. ' ' ‘ e '

Operators in (ED) have many mterestmg propert1es especrally those concerned
‘Wlth perturbatlons by either small ‘norm operators or compact ones. Thus, if
. T€(ED), then T+KE(ED) and 2(T+K) is disconnected for every KEA. Further-

more, an operator T'€(ED) if and only if E(T) is disconnected (Theorem 2). On
the-other hand, the class (ED) is open in the uniform topology of 2(%) (Theorem 7).
We- also prove (Theorem 8).that if TE(ED) and Sy, denotes the lattice of invariant
subspaces of T equlpped w1th the topo]ogy 1nduced by the dlstance between sub-
spaces [(R)8 then there exnst two mﬁmte dlmensronal subspaces 9)?1 ) 9322 EJ r which

%) This paper consists of-part-of the- author’s doctoral ‘dissertation written at the: University
of Michigan, The-author-would like to thank Prof: -C:>PEARCY for-his encouragement - durmg the
preparation of this paper. .
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are isolated points of #,, such that S, is homeomorphic to £ X.#;,, where
T;=TM;, j=1,2. C

In proving the last result we need to show (see the proof of Theorem 8) that
every T¢€(ED) is similar to the direct sum of two operators S, S, acting on in-
finite dimensional Hilbert spaces such that £(S,)N£(S,) = @. Therefore, up to
similarity, every operator in (ED) looks like the example given above.

We begin our considerations (§ 2) by discussing some relations between the
different kinds of essential spectra of an operator. One of our main results in this
direction is proved in § 3 (Theorem 4) and states that each separated part of the
different kind of essential spéctra of an operator T is an upper-semicontinuous
function of T. ’

Finally, in § 5 we enumerate some questions raised in the paper and we present
partial answers to some of them. As an immediate byproduct of these results we derive
interesting properties of hyponormal operators.

2. Some properties of the essential spectrum. To begin with we recall some facts
from the theory of Fredholm operators ([8]). For T¢ #(9) we have that = (7T) is
invertible in #(9)/ if and only if ran T is closed, a(7T)=dim null T is finite and
B(T)=dim null T*(=dim (ran T)L =a(T*)) is also finite (Atkinson’s theorem). In
this case T is called a Fredholm operator and its index is defined by j(T) =
= a(T)—B(T). Thus, the set & of all Fredholm operators is an open subset of
Z(9) in the uniform topology; its components are also open and they correspond
to each value of the (integer valued) function j(T'). We shall denote by @, the com-
ponent of @ consisting of all Fredholm operators of index zero.

With the above notation the Calkin essential spectrum of an operator T can
be expressed as E(T) = {A€Z(T):T—21¢ ®}. Another important concept native
to the theory of compact perturbation is the Weyl spectrum Q(7) of T ([1], [3]) i.e.
Q(T) = {A€ Z(T):T—1¢ P,}. SCHECHTER proved ([13]) that Q(T) = | Z(T+K).

Kex

On the other hand, BROWDER introduced in {2] a third concept of essential
spectrum, namely B(T) = Z(T)—{A€Z(T):T—A€ Py, A is an isolated point of
(1)} :

Clearly E(T)c Q(T)c B(T).

» It is easy to see that if A is an isolated point of Z(T) and T—A1€ &, then T— 1€ 470;
Also, it is an immediate consequence of (8], Chapter 4, Theorem 5. 31 that if 1 is
a limit point of »X(T) (here and in what follows bX denotes the boundary of the
set X), then 1€ E(T). Therefore we conclude that 48(7T)< E(T). Given a compact
subset X of the plane, a hole of X is a component of X—X. If Y is another compact
set such that b(X)C Y C X, it follows that b(X) cb(Y), X=7 and X can be obtained
from Y by filling in some holes of Y. We sumarize all the above discussion in the
following theorem:
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Theorem 1. Let T€ L (D). Then

a) E(T)c Q(T)c B(T),

b) bB(T)cbQ(T)CbE(T),

¢) E(T)=0(T)=B(T),

d) Q(T)(B(T)) can be obtained from E(T )(Q(T)) by filling in some holes of
ET(@(1)")

Corollary 2. 1. Let T¢ £(9). AIf E(T) is connected, Q(T) is connected, and
if Q(T) is connected, B(T) is connected.

One can construct very easily examples showing that none of the reverse implica-
tions in Corollary 2. 1 hold in general. Let ® be a separable Hilbert space, and let
V be a unilateral shift of multiplicity one on &; also let N¢ £(®) be any qliasi--
nilpotent operator. If we denote by D the closed unit disc in C we have
B(VoV*®N) = D, while QUVa@ V*®N) = EVeV*®N) = bD U {0} ([7] Prob- ‘
lem 144). Furthermore, Q(V® N) = D, but E(V® N) = bD U {0}.

Theorem 2. For T<€ 2(9), the following Statements are equivalent:

a) T€(ED), that is £(T) is dzsconnected and E(T) intersects more than one
component of (D),

b) E(T) is disconnected.

Proof. The proof is a consequence of the fact that £(T)—E(T)(= £(T)—B(T))
consists of isolated points 4 such that T—A€ @,. »
Next we introduce the following terminology: given a compact subset X of the

plane we will denote by rad X the radius of X, i.e. rad X = sup [4]. Theorem 1 tells
. aex

us that rad E(T)=rad Q(T)=rad B(T). Thus it is natural to call this common
value the essential spectral radius of T, which shall be denoted by r,(T).
NusssauM in [9] already observed that't_he radius of the different kinds of
essential spectra are the same, but our argument is much simpler than that used by
Nussbaum. : '
The next lemma makes the definition of the essentlal spectral radius even more
natural.

Lemma 2.2, If TE L(D), then

r.(T) = 1nf r(T+K)

*) This intereéting relationship between the Calkin spectrum and the Weyl spectrum is also
discussed by FILLMORE, STAMPFLI and WILLIAMS in their recent paper ‘“‘Essential numerical range,
essential spectrum and a problem of Halmos”, Acta Sci. Math., 33 (1972), 179—192.
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where r(T+ K) denotes the spectral radius of T+ K. Moreover, if Q is any projection
in £(9) and T, denotes the compression of T to the range of Q ie. To=(QT)|ran Q

then we also have
r.(T) = inf r(Ty),
. (1-Q)eZ,

where 2, is the set of all finite rank projections in 2 ($).

Proof. Let 4o€ 2(T) be an isolated point such that T— ) 0€Py. Set Ty =
= Z(T)—{%) and E;o the idempotent associated with the clopzn subset Z, of
Z(T) ([11], § 148). Also we denote by Q, the (orthogonal) projection onto ran £y, .
It follows that Zo=ZX(T,); hence Z(TQq) = X(Ty,)U {0} = X,U{0}. Therefore
rad (£(TQ,))=rad (£;:Q,). Since 1—Q, is a finite rank projection we see that

inf r(T+K) =r(TQ) =rad%, andalso inf r(Tp) = rad %o
Kex : oo . : u-o¢z,
Now the same argumen:t_"‘ u's’ed_for Jo can be applied to any set consisting of finitely
many isolated lEZ(]’)"Eu’éh"that T—2€9q. In'this way we conclude that

inf r(T+K) = rad B(T) = r(T), inf  r(Ty) = r.(T),

Kex a-ge#, i

proving half of the lemma. On the other hand, recalling that r,(T)=rad Q(T),

Q) = ﬂ Z(T—l—K) and observmg that Q(T) C N Z(Ty we see that the

- (1-oez,

other half is also valid. o ' D

Remark. We list .below some other elementary propert1es of the. essentlal
spectral radius of an operator. T.

1) It follows from 1ad E(T)—r (T) that
'Jawmmwwww

n-»oo

: n) From Lemma 2 2 a.nd [7] Problem l22 1t is not hard to see that
4D—nmmmw]wan@m

iii)‘ Let w,(T) be the essential numerical radius of 7 ([12], § 3) that is w (T)=
=rad W, (T), where W,(T) is the essential numerical range of 7' ({12], [16]). Then

(%) : e(T) w (T)<llﬂ(T)Il
We recall that W (T) can be deﬁned by the followmg 1dentmes ([12 Lemma 3. 3):

(* *) S a(l-){f:—.‘: ﬂ W(T+K) n. W(TQ)

(1 -0,

. where W(S) represents thetnumencal range of S.:
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iv) Tt.s easy to give examples of operators S for which r,(S)<w, (S)<[z(S)|.
We can take, for instance, S to be the 2XX2 scalar operator matrix

]

acting on $@ H in the usual fashion. We see that r,(S)=0, w,(S)=1, |z(S)|=2.
It is also easy enough to find an operator T for which r,(T)=w,(T)<|z(T)|. Let
us observe first that for evefy R, R, € Z(9) W,(R,&R,) coincides with the con-
vex hull of W,(R;)U W,(R,) (this readily follows from (x #)). Now, let R be any
-operator such that r,(R)=||z(R)|=1 (take for instance R=1) and set T = RBS,
where S is the nilpotent operator defined previously. Then

(T =max (xR, |z (SH)=2,

while, by the preceding comment, w,(T)=1 and hence 1=r (T)=w (T)<||n(T)|=2.
We are indebted to J. STAMPFLI who has pointed out to us that the remaining

situation concerning the strict inequality in (%) is impossible. The proof of this fact,

that we present below, is a simplification of Stampfli’s argument. o

‘Lemma 2.3. Let T (D) and suppose that ||7r(T)||—w (T) Then w (T)—

Proof. Let A€ W (T) be such that ]/1[—||7r(T)|| It can be easily proved ([12],
Lemma 2. 1) that
(% % %) ' ‘ Ilﬂ(T)ll = inf {ITQ|."

. , ~QEZ, _

Define, inductively, an orthonormal sequence {x,} in $ and a decieasing sequence
of projections {Q,} in Z(9) as follows: let x, be any unit vector in $ and Q, be
any projection in % ($) such that Qyx,=0 and (1 —Q,)€ #,; having defined x, and
Oy for 0=k=n, let x,,,€ 0,9 with ||x,,,]|=1 and let Q,,, =0, with Q,,,X,.,=0,
(1-0,+1)€2; such that [(Tx,4 1, X, 1)— 4| = 1/n, ”TQ_,.+1” = [A+1/(n+1) (the
existence of x,,; and Q,,, is guaranteed by conditions (% %) and ( % %)). Since
(Tx,, x,)| = | Tx,| = |A|+1/(n—1), n=>1and |(Tx,, x,)| ~|A| it follows that || Tx,|| -
—|A|. Also, we see that [(T—A)x,]|? = [ Tx,)|>—2(Tx,, x,)—A(Tx,, x,)+]A|> - O.
If n(T— 2) were invertible, then there would exist S€ £ () such that n(S)n(T—1) =
= n(1) and hence S(T—1) = 1+K for some K¢ ; but (S(T—Ax,, x;) -~ 0 while
((1+K)x,, x,) -~ 1. Therefore 1€ E(T) and hence w,(T)=|i|=r(T).

3. Upper-semicontinuity of the essential spectrum. Let # be a complex Banach
algebra with identity. Tt is well known ([10]) that the spectrum X(T) of T€4 is
an upper-semicontinuous furiction of 7. The next lemma shows that each separated -
part (closed and open subset) is also an upper-semicontinuous function of T.
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Theorem 3.2) For T¢A, let X be a non-empty clopen (closed and open) sub-
set Z(T), and set X' = Z(T)—Z2. If V and V' are two disjoint neighborhoods of X
and X’ respectively, then there exists ¢ =0 such that for every S€RB with [T—S| < ¢
the following conditions are satisfied:

a) Z(S) < VUV’, and the set A = X(S)NV is not empty,

b) if Ey and E  are the idempotents associated with X and A corresponding to T
and S, then there exists a constant k=0such that |E;—E || < k|T—-S|| < 1, 1=j=n,

¢) if B is the Banach algebra of all bounded operaroré on a complex Banach space,
then ran E; is topologically isomorphic to ran E,.

Proof. Let W be an open subset of C such that Zc W, W Vand I' = W—-W
consisting of finitely many rectifiable closed Jordan curves. From the upper-semi-
continuity of X(7T) there exists =0 such that if | T— S| < §, then X(S) < WU V"
Thus Z(S)NV = Z(S)NW = A. Let M = sup [(T—2)~!|. Since M << we can

AET .
choose O0<p<min (6, 1/M) so that, if |T—S]|| < n, then sup |(T—-A)—(S—D)| <
. : ler .
< inf (1/(T—2)~'{) and hence
Aer
T-HMN M
IT—SIT—AH~" = 1-nM

sup (S —2)" ) = sup 1
iEr . :
for every S€¢4# with | T—S|| < n. Employing the last inequality we obtain
1Es—Eall = [|(1/2m0) [T~ 2~ ~(S— 1)~ i =
F .

= (1120 [ IT— 2 T=5)(S— 1" I|d2] = kIT—S].

, -
with k = m!wﬂ]. Choosing 0 <g<min ['1, /—1(] part b) follows. Since the
norm of any non-zero idempotent is never less than one, a) is also clear. Finally,

part ¢) is a consequence of the following classical result ([11}).

Lemma (Sz.-Nagy). If F and G are idempotents on a Banach space and
|F—G|l < 1, then ran F and ranG are topologically isomorphic, and hence they have
the same dimension. '

Theorem 4. Each separaied part (clopen subset) of a) E(T),b) B(T), ¢) Q(T)
is an upper-semicontinuous function of T€ L (D), in the sense of Theorem 3.

2) A slightly different version of this result in case B is equal to the algebra of all bounded
operators on a Banach space can be found in [8], Theorem 3. 16 (Chap. 4).
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Proof. Part a) follows directly from Lemma 3.1 taking #=2(9)/¢ ", and
the fact that n: £ (9) -~ L (D)/A is norm decreasing.

In order to prove b) assume that B is a non-void clopen subset of B(T) and
write B” = B(T)— B. Suppose also that ¥ and ¥V’ are two disjoint open neigh'bor-
hoods of B and B’, respectively. We must show that there exists #=0 such that for
every S€.Z(9) with |T—S| <»n we have B(S) c VUV’ and B(S)NV # @. In
fact taking smaller neighborhoods if necessary we can assume Z(T)Nb(VU V') =
= f. Since X(T)—[V'U V'] consists of finitely many points we can choose a neigh-

borhood ¥” of X(T)— [VUV’] such that V"N(¥UV’) = 0. From Theorem 1
E(TYNV #0 and E(T) < VUV’ Now using Theorem 3 and part a) we con-
clude that there exists #=0 such that, if S€.Z($H) and |T—S|| < n, then E(S)
c VUV, 5(S) € VUV’ UV” and E(S)NV = 0. It follows, again from Theo-
rem 1, that B(S)N¥” = 0 and hence that B(S) < VUV, B(S)NV = 0.

Finally to prove c) suppose that @ is a non-void clopen subset of Q(T) and
let Q" = Q(T)—Q. Also, let U and U’ be two disjoint open neighborhoods of Q
and Q" respectively. Furthermore, let W and W’ be relatively compact open neigh-
borhoods of Q and Q' such that Wc U, W c U’. Since the set @, of all Fredholm
operators of index zero is open, there exists §"=>0.such that for any S¢ .Z(9) with
|IT-S|| <6 we have S—A€®,, for every Acb(WUW’). On the other hand,
from part a) there exists ¢=0 such that |T— S| < ¢ implies E(S) ¢ WU W’ and
E(S)NW 0. It follows from Theorem 1 that for every S¢€ £ (H) with | T—S|| <
<d=min( ") we have Q(S) c WUW’ and Q(S)NW = Q(S)NU = 0.
This completes the proof of the theorem.

Given T¢€ % ($) we say that an invariant (closed) subspace of T'is hyperinvariant
([5)) if it is invariant under every operator in the commutant «/; of T (recall that:
Ar={S€L(D):ST=TS}). Let o be the double commutant of T, ie. /7=
={Re L (9):RS=SR, for all Ses/;}. Clearly T¢ oy Cdy.

Tt is easy to check that for every R¢.o/7 the range of R and the null of R are
hypermvarlant subspaces of T.

Theorem 5. If T€ Z(H) and E(T) is disconnected, then there exists ¢=0 such
_ that for every Rc Z(9), | Rl <e and for every K¢ A", the operator T+ R+K has a
non-trivial hyperinvariant subspace.

- Proof. The theorem is a direct consequence of Theorem4 -a) and the next
lemma. '

Lemma 3. 1. For T€ Z(9), let X be a clopen subset 2(T) and let E; be the
associated idempotent, then ran E; and null E; are hyperinvariant subspaces of T.
Furthermore, if E(T) is disconnected then T has a non-trivial hyperinvariant sub-
space. :



200 N. Salinas

Proof. The first part follows from the fact that E; belongs to the rational
algebra generated by T and hence to /7. To prove the second part note that if
2(T) is connected, then there exists A, € Z(T)—E(T) such that either ran (T'—4,)
is proper or null (T—J/,) is so. In any case T has a non-trivial hyperinvariant sub-
space, as asserted. '

In section 4 we will see that if 7'¢(ED), then a more precise version' of
Theorem 5 can be given. _ '

Two subspaces M and N of § are said to be complementary if there exists an
idempotent F¢ Z($) such that M=ran F, N =null F.

Theorem 6. Let m, n be two non-zero cardinal numbers such that m+n =
= dim §, then the set of all operators in L (D) having two complementary hyperm-
variant subspaces of -dimension m and n has a non-void interior.

Proof. Let P¢ £($) be an (orthogonal) prOJectlon such that dim'ran P=m,
dim null P=n. Tt is easy to see that P=(—1/2xi) f (P—2)~1dA (where the

la—11=1/2
circle |A—1| = 1/2 is positively oriented). From Theorem 3 we can find an ¢=0
such that, if |[S—P| <e, then 4 = Z(S)N{AeC:|A—1] < 1/2} # @ is a proper
clopen subset of Z(S) and dim ran E,=m, dim null £,=n, where

Ey=(—1/2ni) f (S—z)-l_dzl.

[a—1]=1/2
The theorem follows, now, from Lemma 3. 1.

Theorem. 7. The class (ED) is uniforthly open in Z(9).

Proof. The fol'lowing elementary topological lemma together with Theorernt -
4-a) show that each sepdrated part of E(T) is an upper-semicontinuous function
of T. Clearly, from this assertion, the theorem follows. - '

Lemma 3.2. Let X be a compact subset of the plane and let U bé an open neigﬁ-
borhood of X, then there exists an open neighborhood V of X such that if 'Y is any com-
pact subset of V, it follows that YC U.

4. On invariant subspaces of operators in (ED ). In this paragraph we turn our -
attention to the proof of a decomposition theorem for the invariant subspace lat-
tice S of an operator T€(ED). The techniques provided in [4] and [5] are basic
for our purposes. We start our discussion with a lemma which is useful for proving
that certain operators lie in (ED).

Lemma 4.1. Let T¢€ £(9) and assume that X is a clopen subset of X(T)."If
E; denotes the associated idempotent, then E(T)NZX # 0 if and only if ran E;'is
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infinite dimensional. In this case E(TYNZXZ = E(T|ran E5]. Thus, if E(TYNZ =0,
X consists only of finitely many points which are eigenvalues of finite multiplicity..

Proof. Assume ran Ej is finite dimensional and let A, € Z, write S = T—4,,.
S,=S|ran E; and S,=S|null E;. Since- I(S,) = Z(T)—2, S, is invertible.
Therefore ran S = ran S, +ran S,. But ran S,=null E; is closed and ran S, if’
finite dimensional, then ran S is also closed. Since null Scran E; and ran SO
Dnull £y we conclude that S(= T—4,) is a Fredholm operator, and hence 1, ¢ E(T).
Conversely, suppose that ran Ej is infinite dimensional. If null E; is finite dimensional,.

-from the first part of the proof, E(T)C X and there is nothing to prove. Thus, we
can also assume that null £y is infinite dimensional. At this point we need the fol--
lowing auxiliary construction: let $;=ran E,, $,=9¢, also let Z, € £(9H,) be the:
identity operator on $,, and let Z,:$, —~null E; be the bounded linear transforma--
_tion given by Z, = (1 —E;)|$,. It is easy to see that Z, is invertible (it is bijective).
Define now the invertible transformation Z: $, ®$H, ~ Hby Z1H,=2Z,, ‘21552—22
Lettmg T,=T|ran E;, T,=T|null E; and observing that Z 'TZ = 271 TIZIGB

®Z;'T,Z, we have E(T)=E(Z 'TZ)=EZi'T,Z)UE(Z;'T,Z,) =
= E(Tl) UE(T,). Since $, and 9, are infinite dimensional we conclude that E(T)=
=E(Z;'T;Z)=0, j=1,2, and hence E(T)NI=ET,)# @, ETN

N[Z(T)— 2] = E(T,) ¢ 0. The proof of the lemma is complete.

Given T€ #($), let £, be the lattice of all invariant subspaces of T with the:
topology induced by the distance between subspaces, namely, if P, Q are the (ortho--
gonal) projections onto the subspaces 9, M€ .#,, then @ (M, N) = |P—Q]. It can
be proved that ([5], Corollary 1. 2) if M is an isolated point of £, then it is a hyper—
invariant subspace of T.

Theorem 8. Let T €(ED), that is assume there exist two proper clopen sibsets
Ay and A, of E(T) such that E(T) = A, UA, and A, N A, = 0. Then there exist.
two infinite dimensional complementary subspaces M, M, € F which are isolated
points of Iy, such that if T;=T|M;, j=1, 2 then S is homeomorphic to the topologt--
cal product Fr X I, and E(Ty=4;, j=1,2. '

Proof. From Theorem 1, £(T)—E(T) is a set of isolated points, thus there
exist two proper clopen subsets Z;, £, of Z(T) such that £, UZ, = Z(T), £, N
N, = @ and A;CX;, j=1,2. Now, let §,=ran Es,, $,=9t. Furthermore, let
M;=ran E; , and T;=T|M,;, j=1, 2. We deduce, as in the proof of Lemma 4. 1
that there exist an mvertlble transformation Z:H,® H, — 9 such that Z-17Z =
=Z{T,Z,0Z5'T,7Z,. Using now Theorems2 and 6. of [5] we obtain S, ~
~Ig-irg2 Iz, X I,z I p X I, On the other hand, using Theorem 1
in [4], it is easy to check that the subspaces $, @ {0} and {0}& $, are isolated points of
SFz-17z and hence M, , M, are isolated points of #£1. The last part of the theorem fol-
lows from Lemma 4. 1. : '
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We close this section with a couple of results that illustrate how to produce non-
‘trivial examples of operators in (ED).

Theorem 9. Let P be any (orthogonal) projection in £(9) and let V be any
isometry. Then the 2X2 self-adjoint operator matrix

PV
r= [V* 0] ’
.dcting in the usual fashion on $ & 9, is in (ED). Furthermore, if A;=[—1, 1/2(1 — m],
A, = [0, 1/2(1+V5)], then 2(T) € A,UA, and E(T)NA; = 0 (j=1,2).

Proof. Let p be the cubic polynomial p(i) = A3—A2—J+1. It can be
checked that _
L [r=—vyH? 0

“Since it is clear that V*PV and (P—VV*)? are positive contractions, it follows
that p(T) enjoys the same property. Therefore from the spectral mapping theorem
Z(Tycp- 0,11 = A, UA,. Now, let M, (M,) be the range of the map

'_y——[I;y] (y—»'[—;}/y]] from $ into $@ $. It can be éasily checked that M, and M,

are infinite dimensional orthogonal subspaces and that the compression of T to
M, (M) is a positive invertible (negative invertible) operator. We use this preced-
ing remark to prove that E(T) A;  §. This will clearly complete the proof of
the theorem. Assume for example that E(T)N A, = 0. Then (Lemma 4.1)
Z(TYyN A, consists of finitely many points which are eigenvalues of finite multi-
plicity. Since T is self-adjoint there exists a finite rank projection Q€ L (HHH)
such that TQ(=QT) is positive and T(1 —Q) is negative. Let T7“and T” be the com-
pressions of TQ and T(l1 —Q), respectively to M,. Then 77 and" —T” are positive
operators and 7' = T,+(—T") (where T, is the compression of T to IM,) is a
‘positive invertible operator on the infinite dimensional space 9, . This is a contra-
diction since 7" is a compact operator. An analogous reasoning shows that E(7)N
NA, =0 :

Theorem 10. Let A€ £ (H) be such that E(A) does not touch the segment
A=[—2,2] of the real axis. Then the operator T€ L (HDH) defined by

T= [_ff (‘)]

-Proof. Using [7], Problem 55, it réadily follows that X(T)=f~1[Z(A4)], where
[ is the analytic function defined on C—{0} by f(}) = A+1/. Furthermore, we sce

is in (ED).
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that E(T)=f"'[E(4)]. Also it can be checked that f~1" [E(A4)]=f~'[E(A4)]. There-
fore f~Y{E(A)]=E(T). Since f maps the exterior of the closed unit disc D onto
€ — A and the interior of D—{0} onto the same region, the theorem follows. -

.5. Open questions. As the reader may have noticed this paper raises some
interesting questions. For example, .from the proof of Lemma 2.2, the following
inclusion formula can be obtained: A

QMc N Z(TycB(T),
. (1-Q)e?,
where 2, is the set of all finite rank projections and T, =(QT)|ran Q. Therefore it
is natural to ask: does there exist 7€ % (9) for which the mclusnons in the above
chain of inequalities become proper? .

Moreover, we_can also ask the following related question: if (1-Q)€#, and
T¢ 2 ($H), does Z(T)—Z(Tp) consist only of isolated points?

Observe that if the last statement holds, then B(T) = ([ Z(Typ), as itis
easy to verify. . (t-0)e2, .

In a different direction we may ask: do there exist compact operators K;, 0=
=j=4, such that the following conditions are satisfied?

a) X(T+K,) = QT), b) B(T+K,) = Q(T), c) XZ(T+K;) = B(T),

d) I(T+K;) = B(T+K;), ¢ S(T+K,) = B(T+K,)(= B(T)).

Furthermore, : . .
f) if T€¢ 2(9) and £(T+K) is disconnected, for every K€, is T in (ED)?

Note that a=b and (a or c)=>d=e=f. On the other hand (b and c)=a.
Finally we give some fragmentary results in the posmve direction concerning
these last questions.

Theorem 1. Let T€ L(9) and assume that all poims‘in E(T)'— B(T), except
for a ﬁnite number of them, are reducing eigenvalues of T (i.e. the corresponding eigen-
spaces are reducmg subspaces of T), then rhere exists K€ A~ such that X (T +K) =
= B(T).

“Proof. If Z(T)—B(T) = 0, there is nothing to prove. Let 2, n:l, 2, ...
be the points in Z(T) B(T) and let v,, n=1, 2, ... be complex numbers such that
the points u, = v,+ 2, lie in the set Z’(T) ofllmlt pomts of Z(T), and mf I) —u| =

= lv,|. Also, let A4, = Z(T)— U {4} and Eu v Eq, be the ldempotents assocnated

with {4,}, 4,; define K,, = > v,E{, ;. Then
n=1

m

T+K, =(T+K )EAm+(T+Km)[ 2 Ew] =TE,, + 2 {a+ N} Eiy,
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where N, is a nilpotent operator acting on ran £y, 3, 1 =n=m. Therefore X(T+K,,) =
= A,U U {u,} = 4,,. This completes the proof of the theorem in case Z(T)—
n=1 )

—=B(T) is finite. By hypothesis there exists mg, such that if m=m,, then E(A,,,} is.
an orthogonal projection and since Ey; yEy; y=0, for n%m and lim v,=0, we see

n--oco

that K, converges, in the norm topology, to a compact operator K such that TK=KT..
Since T+ K commutes with T+ K,,, for each m=1, 2, ... we have ([8], Chap. 1V,
Theorem 3.6) X(T+K) = lim X(T+K,) = lim A, = B(T). Here the limits are

N1~ oo ni—+co

taken in the Hausdorff metric topology for compact subsets of the plane.

Remark. i) We point out that the actual hypothesis needed to prove the preced-
ing theorem is that the idempotent Ej;, be selfadjoint for all, but a finite number of
A€ Z(T)—B(T). On the other hand, BROWDER proved in [2], § 6, Lemma 17, that
A€ Z(T)—B(T) if and only if 1 is an isolated eigenvalue of finite multiplicity of T°
which is a pole of the resolvent function p — (u—T)"1, u¢ Z(T). Also, it is shown
in [6], Chap. 7, § 3, Theorem 18, that the residuum of the resolvent function-around
a pole A€ X(T) is Ey;y. Therefore, the requirement stated at the begining of the present
remark is equivalent to the following growth condition: if 1€ X(T)—B(T) and m
is the order of the pole 1,

(m—1) .
fim | o e (= = 1) | = 1= 1ED.

i) All points in B(7)—Q(T) are eigenvalues of finite multiplicity, but none of
them are reducing. In’ fact, an elementary argument shows that 1'is a reducing
eigenvalue of T if and only if null (T*—J) c null (T—41). Suppose that 1 is reduc-
ing and (T'—2)€ @,; since dim null (T—4) = dim null (T*—1), then null (T—41) =
= null (T*—1). This implies that (7—2)|[null (T—A)]+ is invertible and hence A
is an isolated point of 2(T). We conclude that A¢ B(T), as asserted.

iii) Let X be a subset of the plane and let conh X denote its convex hull. From
Theorem 1-¢ it readily follows that. conh E(T)=conh Q(T)=conh B(T). ’

As a consequence of the next theorem we shall obtain more information about
the convex hull of the essential spectrum of T in case T is hyponormal (i.e. HT*xl[ =

=| Tx||, for all x¢H).

Theorem 12. If T¢ ,‘? (9) is hyponormal, then there exists a normal combact '
operator K such that T+ K is hyponormal and Z(T+K) = Q(T).

Proof. It is well known that if T is hyponormal, then every eigenvalue of T
is reducing (null (T*—1) < null (T—2), for all A€ C). Therefore, from the preced-
ing remark i), Q(T)=B(T). Let K be the compact operator constructed in the:
proof of Theorem 11. Arguing as in [3], Corollary 3. 3 we see that K is normal and
T+ K is hyponormal. The second assertion follows directly from Theorem 11.
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Corollary 5. 1. If T is hyponormal, then conh E(T)Y=W (T). Moreouer there
exists Ke A such that W(T+K) = W,(T).

Proof. Let K€# as in Theorem 12. Then from [15] Theorem 2 we have
W(T+K) = conh Z(T+K) = conh Q(T) = conh E(T) < W (T) Smce W, (T) is
<clearly contained in W(T+K), the proof is complete.

Corollary 5.2. If T is hyponormal, then r (T)=[n(T)|.

Proof. Let X as in Theorem 12, then from [14], Theorem Lz(D) = r(T) =
=rad Q(T) =rad X(T+K) = |T+K| = [|n(T)]], and the assertion follows.
Added in proof. The first question in Sec. 5 has a negative answer while the second
«question has an affirmative one. The solution to these problems are included in the
author’s recent paper "A characgerization of the Browder spectrum”, to appear in
the Proc. Amer. Math. Soc. Problems a) and b) (and hence problems ¢), d), e) and
f)) have been answered in the affirmative by J. G. STAMPFLL
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