
Operators with essentially disconnected spectrum 

By NORBERTO SALINAS in Ann Arbor (Michigan, U.S.A.)*) 

1. Introduction. Throughout this paper §> will denote an infinite dimensional 
complex Hilbert space, i f (§) will represent the algebra of all (bounded linear) oper-
ators on ¡5, and by Ж we shall mean the ideal of all compact operators on Let л be 
the canonical projection f rom Л?(!о) onto the (Calkin) quotient algebra i f ( § ) / j f . 
For every T£ i f ( § ) the spectrum E(T) of n(T) in i f (§)/,.3f will be called the Calkin 
essential spectrum of T. 

D e f i n i t i o n . We say that the spectrum I(T) of an operator T 6 i f ( § ) is es-
sentially disconnected if the polynomial hull t(T) of Z(T) is disconnected and 
E(T) intersects more than one component of Ё(Т) (the polynomial hull X of a 
compact subset X of the complex plane С is the complement of the unbounded 
component of 'C— X). 

' Our main purpose in this note is to initiate the study of the class of all operators 
whose spectrum is essentially disconnected, which we shall denote by {ED). Examples 
of operators having such a property are easy to come by, taking, for instance, the 
direct sum of two operators on § whose spectra are far f rom each' other. Inparti-
cular, a self-adjoint operator 'has an essentially disconnected spectrum if and only 

-if its essential spectrum is disconnected. Of course this is not the case for an arbit-
rary operator on ' • • 

Operators in (ED) have many interesting properties., especially those concerned 
with perturbations by either small norm operators or compact ones. Thus, if 
T£(ED), then T+KfJED) and £(T+K) is disconnected for every Further-
more, an operator T£(ED) if and only if E(T) is disconnected (Theorem 2). On 
the other hand, the class (ED) is open in the uniform topology of i f (§ ) (Theorem 7). 
We also prove (Theorem 8) that if T£(ED) and , / r denotes the lattice of invariant 
subspaces; of T.t equipped with the topology, induced by the distance between sub-
spaces ([5]), then there exist two infinite dijnensionalstibspaces SO^, 9 И 2 € / г which 

• *) This paper consists ôf-pârt of the. author's doctoral'dissertation written at the; University 
of: Michigan.,The-author would like to thank Profi/C^PE^JipYxfpr -his encouragement during the 
preparation of this paper. . . _ . 
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are isolated points of J T , such that is homeomorphic to / r i X / r 2 , where 
T - T p l j , j=\,2. 

In proving the last result we need to show (see the proof of Theorem 8) that 
every T£(ED) is similar to the direct sum of two operators St, S2 acting on in-
finite dimensional Hilbert spaces such that f ( S 1 ) f l f ( 5 2 ) = 0. Therefore, up to 
similarity, every operator in (ED) looks like the example given above. 

We begin our considerations (§ 2) by discussing some relations between the 
different kinds of essential spectra of an operator. One of our main results in this 
direction is proved in § 3 (Theorem 4) and states that each separated part of the 
different kind of essential spectra of an operator T is an upper-semicontinuous 
function of T. 

Finally, in § 5 we enumerate some questions raised in the paper and we present 
partial answers to some of them. As an immediate byproduct of these results we derive 
interesting properties of hyponormal operators. 

2. Some properties of the essential spectrum. To begin with we recall some facts 
f rom the theory of Fredholm operators ([8]). For T£ we have that n(T) is 
invertible in JSf ( § ) / j f if and only if ran T is closed, a(7") = dim null T is finite and 
P(T) = dim null 77*( = dim (ran T)1-=oi(T*)) is also finite (Atkinson's theorem). In 
this case T is called a Fredholm operator and its index is defined by j(T) = 
— a ( T ) — f $ ( T ) . Thus, the set <P of all Fredholm operators is an open subset of 
Jz?0&) in the uniform topology; its components are also open and they correspond 
to each value of the (integer valued) function j(T). We shall denote by <P0 the com-
ponent of 0 consisting of all Fredholm operators of index zero. 

With the above notation the Calkin essential spectrum of an operator T can 
be expressed as E(T) = {X d E(T)\T—X$ <£}. Another important concept native 
to the theory of compact perturbation is the Weyl spectrum Q(T) of T ([1], [3]) i.e. 
®{T) = {X££(T)\T—X§.$0}. SCHECHTERproved ([ 1 3 ] ) t h a t Q(T) = |~| I(T+K). 

KiX 
On the other hand, BROWDER introduced in [2] a third concept of essential 

spectrum, namely B(T) = E(T) — {X£l(T):T—X£<P0, X is an isolated point of 
I(T)}. 

Clearly £'(7') c Q(T) c B(T). 
It is easy to see that if X is an isolated point of I(T) and T—X£ then T—X £ <i>0. 

Also, it is an immediate consequence of [8], Chapter 4, Theorem 5. 31 that if X is 
a limit point of bS(T) (here and in what follows bX denotes the boundary of the 
set X), then X£E(T). Therefore we conclude that bB(T)cE(T). Given a compact 
subset A'of the plane, a hole of X is a component of X—X. If Y is another compact 
set such that b(X)c YczX, it follows that b(X)ab(Y), £=? and AT can be obtained 
f rom Y by filling in some holes of Y. We sumarize all the above discussion in the 
following theorem: 
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T h e o r e m 1. Let <£(§). Then 
a) E(T) a Q(T)aB(T), 
b) bB(T)cz bQ(T) c bE(T), 
c) E(T) = Q(T) = B(T), 
d) Q(T)(B(T)) can be obtained from E(T)(Q(T)) by filling in some holes of 

E(T)(Q(T)).*) 

C o r o l l a r y 2. 1. Let T£ i f (§). If E(T) is connected, Q(T) is connected, and 
if Q(T) is connected, B(T) is connected. 

One can construct very easily examples showing that none of the reverse implica-
tions in Corollary 2. 1 hold in general. Let © be a separable Hilbert space, and let 
V be a unilateral shift of multiplicity one on ©; also let i ? ( © ) be any quasi-
nilpotent operator. If we denote by D the closed unit disc in C we have 
B(V®V*®N) = D, while Q(V® V*®N) = E(V® V* ® N) = bD U {0} ([7], Prob-
lem 144). Furthermore, Q(V®N) = D, but E(V®N) = Z>£»U{0}. 

T h e o r e m 2. For T£ £?(§>), the following .statements are equivalent: 
a) T£(ED), that is t(T) is disconnected and E(T) intersects more than one 

component of 1(T), 
b) E(T) is disconnected. 

P r o o f . The proof is a consequence of the fact that 1(T)-E(T)(= 2(T)-B(T)) 
consists of isolated points X such that T—X£<P0. 

Next we introduce the following terminology: given a compact subset X of the 
plane we will denote by rad X the radius of X, i.e. rad X = sup |A|. Theorem 1 tells 

us that rad E(7") = rad i2(7") = rad B(T). Thus it is natural to call this common 
value the essential spectral radius of T, which shall be denoted by re(T). 

NUSSBAUM in [9] already observed that the radius of the different kinds of 
essential spectra are the same, but our argument is much simpler than that used by 
Nussbaum. 

The next lemma makes the definition of the essential spectral radius even more 
natural. 

L e m m a 2.2.' If T£ <£{$>), then 

re(T) = inf r(T + K), 
KiJt 

*) This interesting relationship between the Calkin spectrum and the Weyl spectrum is also 
discussed by FILLMORE, STAMPFLI and WILLIAMS in their recent paper "Essential numerical range, 
essential spectrum and a problem of Halmos", Acta Sci. Math., 33 (1972), 179—192. 

3' 
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where r(T+ K) denotes the spectral radius of T+K. Moreover, if Q is any projection 
in JS?(§) and Tq denotes the compression of T to the range of Q, i.e. TQ = (QT)|ran Q 
then we also have 

re(T) = inf r(TQ), 
• . ' . o - Q W t 

where SPf is the set of all finite rank projections in JSf (§). 

P r o o f . Let X0iI(T) be an isolated point such that T — S e t I0 = 
= I(T) — {A0} and EIq the idempotent associated with the clopsn subset S0 of 
Z(T) ([II], § 148). Also we denote by Q0 the (orthogonal) projection onto ran EEQ. 
It follows that I0 = I{TQo}; hence l(TQ0) = I ( r C o ) U { 0 } = Z 0 U {0}. Therefore 
rad (Z(TQ0)) = rad (Zr Q0). Since 1— Q0 is a finite rank projection we see that 

inf r(T+K) s r ( r g Q ) = r a d l 0 arid also inf r(TQ) s r a d T 0 -

N o w the same argument used for ).0 can be applied to any set consisting of finitely 
many isolated A£Z(T) such that T—kd <f>0- In this way we conclude that 

inf r(T+K) rad £ ( 7 7 = re(T), and inf r(TQ) s re(T), 

proving half of the lemma. On the other hand, recalling that re(T)=rad Q(T), 
Q(T) = H Z(T+K) a n d observing that Q(T) c f | I ( T e ) we see that the 

other half is also valid. ! 

R e m a r k . We list .below some other elementary properties of the essential 
spectral radius of an operator T. . . . . . . . 

i) It follows f rom rad E(T) = re(T) that 

, Z^KJCW) - lim ;!K(7'")! 1/n. . 

! ii) From Lemma 2: 2, a,nd [7J. Problem 122 it is not hard to see that 

r (T) = inf p ( 5 ) ] - ^ ( r ) T r ( 5 ) | l . 
• ¡v.T* SC&o •• •' • • • • 

iii) Let we(T) be the essential numerical radius of T ([12], § 3) that is we(T) — 
= rad We(T), where We(T) is the essential numerical range of T ([12], [16]). T h e n 

(*) . re(T)^we(T)^\\n(T)\\. • 

We recall that We(T) can be defined by the following identities ([12, Lemma 3. 3): 

, ( * * ) . . I v , : M W . n m f T K ) = , : n . M f j , . . . . . . . . . 
. . . . . v l , . ) ; c ft* . . . . . . . . . • , . 

where 1^(5) represerits'tHetftumerical range of S. 
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iv) It,is easy to give examples of operators S for which r e ( 5 ) < w e (5)< | |7 t (5) | | . 
We can take, for instance, S to be the 2 X 2 scalar operator matrix 

acting on § © § in the usual fashion. We see that r e ( S ) = 0, w e ( S ) = 1, | |7t(5) | |=2. 
i t is also easy enough to find an operator T for which re(T) = we(T)<\\n(T)\\. Let 
us observe first that for every R1} J?26J2?(§) We(Rl®R2) coincides with the con-
vex hull of JVeiRJU W e(Ri) (this readily follows f r o m ( * *)) . Now, let R be any 
operator such thaf re(/?) = ||7t(/?)|| = 1 (take for instance 7?=1) and set T = R@S, 
where S is the nilpotent operator defined previously. Then 

||7tCr)ll = rnax (||tcCR)H, 

while, by the preceding comment, we(T) = 1 and hence l=re(T) = we(T)<\\n(T)\\ = 2. 
We are indebted to J. STAMPFLI who has pointed out to us that the remaining 

situation concerning the strict inequality in ( * ) is impossible. The proof of this fact, 
that we present below, is a simplification of Stampfli 's argument. 

L e m m a 2 .3 . Let T££C(§>) and suppose that \\it(T)\\=we(T). Then we(T) = 
= re(T). 

P r o o f . Let A6 We{T) be such that |A[ = | | rc(r) | | . It can be easily proved ([12], 
Lemma 2. 1) that 

( * * * ) ' ' W 7 0 I I = inf H7-0H.-
(1-0)6«' / 

Define, inductively, an orthonormal sequence {x„} in § and a decreasing sequence 
of projections {Q„} in i f ( § ) as follows: let x 0 be any unit vector in § and Q 0 be 
any projection in i f ( $ ) such that Q0xo = 0 and (1 — Q0)€&f', having defined xk and 
Qk for 0 S / c S r t , let xn+1£Q„% with | |x„+ i | | = l and let Qn+1^Q„ with Qn + 1xn+1= 0, 
O - G . + i ) ^ / such that \(Txn+1,xn+1)-X\ 1 In, \\TQn+l\\ =i |A| + l/(« + l) (the 
existence of x „ + 1 and Q„ + 1 is guaranteed by condit ions ( * * ) and ( * * * ) ) . Since 
| ( 7 X „ , X „ ) | =i | | 7 * J S |A| + 1 / ( « - 1 ) , M > 1 and \(Txn, X „ ) | - | A | it follows that | | 7 X J | -

-*\X\. Also, we see that | | ( 7 - - A ) X J 2 = \\Tx„\\2-I(Txn, xn)-X(Txn, x„) + | A | 2 - 0. 
If n(T— A) were invertible, then there would exist S£ i f (§ ) such that n(S)n(T— A) = 
= 7T(1) and hence 5 ( r - A ) = 1 + t f f o r some but ( S ( T - X ) x „ , x„) - 0 while 
((1 +K)xn, xn) - 1. Therefore ).£E(T) and hence we{T)=\X\^re(T). 

3. Upper-semicontinuity of the essential spectrum. Let ^ be a complex Banach 
algebra with identity. It is well known ([10]) that the spectrum I(T) of is 
an upper-semicontinuous function of T. The next lemma shows that each separated 
part (closed and open subset) is also an upper-semicontinuous function of T. 
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T h e o r e m 3.2) For let I be a non-empty clopen (closed and open) sub-
set E{T), and set E' = E(T) — E. If V and V are two disjoint neighborhoods of E 
and I' respectively, then there exists e > 0 such that for every SZ0) with || 7"— S || < e 
the following conditions are satisfied: 

a) E(S) с VI) V', and the set A = Z ( S ) D V is not empty, 
b) if Er and Ел are the idempotents associated with E and A corresponding to T 

and S, then there exists a constant such that WE^ — EaW < k\\T— 5|| < 1, 1 =7 = «, 
c) if В is the Banach algebra of all bounded operators on a complex Banach space, 

then ran E1 is topologically isomorphic to ran EA. 

P r o o f . Let W be an open subset of С such that Ed W, FFc V and Г = W— W 
consisting of finitely many rectifiable closed Jordan curves. F rom the upper-semi-
continuity of E(T) there exists <5>0 such that if | | Г - 5 | | с 5, then Z^S) с WU V. 
Thus 2 ; (5 )Г)К = I ( 5 ) i l l f = A. Let M = sup | | ( Г - Д ) - 1 | | - Since M < ° ° we can 

лег 
choose 0 < i ? < m i n (5, l / M ) so that , if Ц Г - 5 Ц < r\, then sup | | ( Г - Я ) - ( 5 - ; . ) 1 1 ' < 

< inf (1/||(7"—>1)" 41) and hence 
лег 

sup к S - д - l s SUP , _ „ Д - р ^ s ^ 

for every with \\T— S | | < /7. Employing the last inequality we obtain 

№z-EJ = \\(ll2ni)f[(T-X)-l-(S-X)-l]dl.\\* 
г 

^ ( 1 / 2 я ) / | | ( Г - А)" i ( r - 5 " ) ( S - А ) " S fc|j7"—S||, 
г 

М2 г ( П with к = y - ^ j J Choosing 0 < e < m i n I ц, — I part b) follows. Since the 

norm of any non-zero idempotent is never less than one, a) is also clear. Finally, 
part c) is a consequence of the following classical result ([11]). 

L e m m a (Sz.-Nagy). If F and G are idempotents on a Banach space and 
||F— G|| < 1, then r a n F and r anG are topologically isomorphic, and hence they have 
the same dimension. 

T h e o r e m 4. Each separated part (clopen subset) of a) E(T), b) B(T), c) Q{T) 
is an upper-semicontinuous function of 7"6«S?(i>), in the sense of Theorem 3. 

2) A slightly different version of this result in case 8 is equal to the algebra of all bounded 
operators on a Banach space can be found in [8], Theorem 3. 16 (Chap. 4). 
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P r o o f . Part a) follows directly f rom Lemma 3. 1 taking ^ = i f ( § ) / j T , and 
the fact that n : i f ( § ) - » i f is norm decreasing. 

In order to prove b) assume that B is a non-void clopen subset of B(T) and 
write B' = B(T)—B. Suppose also that V and V are two disjoint open neighbor-
hoods of B and B', respectively. We must show that there exists 77 > 0 such that for 
every SiEif(5) with \\T-S\\ < r\ we have B(S) c F U K ' and B(S) D F ^ 0. In 
fact taking smaller neighborhoods if necessary we can assume Z(T)r\b{VU V ) = 
= 0. Since I{T) — [VU V] consists of finitely many points we can choose a neigh-
borhood V" of I(T)~ [ K U T ] such that F " n ( F U V ) = 0. F r o m Theorem 1 
E(T) D V 0 and E(T) a F U V. Now using Theorem 3 and part a) we con-
clude that there exists rj=*0 such that, if and H ^ - S l l < t], then E(S) cz 
c F U V , I(S) c F U V U V" and £ ( S ) D F ^ 0. It follows, again f rom Theo-
rem 1, that B(S) D V" = 0 and hence that B(S) c F U V', B(S) D F ^ 0. 

Finally to prove c) suppose that Q is a non-void clopen subset of Q(T) and 
let Q' — Q{T) — Q. Also, let U and U' be two disjoint open neighborhoods of Q 
and Q' respectively. Furthermore, let W and W' be relatively compact open neigh-
borhoods of Q and Q' such that Wei U, W c U'. Since the set of all Fredholm 
operators of index zero is open, there exists such that for any S £ i f ( § ) with 
| | T - 5 1 | < 5' we have S-A£4>0, for every A£b(WUW'). On the other hand, 
f rom part a) there exists e > 0 such that | | r - S | | < e implies E(S) c WU W' and 
E{S)f]W 0. It follows f rom Theorem 1 that for every S e i ? ( § ) with | | r - S | | < 
< 5 = min (e, 5') we have Q(S) c WU W' and i2(5) f | W = Q(S) f l U ^ 0. 
This completes the proof of the theorem. 

Given T£ i f (53) we say that an invariant (closed) subspace of 7"is hyperinvariant 
([5]) if it is invariant under every operator in the commutant STF? of T (recall that > 
s/t={S££P(§):ST=TS}). Let ^ be the double commutant of T, i.e. SD'I = 
= {RI<£<&)\RS=SR, for all S£sdy). Clearly T ^ t ^ t -

It is easy to check that for every the range of R and the null of R are 
hyperinvariant subspaces of T. 

T h e o r e m 5. / / T C i f ( § ) and E(T) is disconnected, then there exists £ > 0 such 
that for every R 6 i f (§), || R\\ < e and for'every : ' / f , the operator T+R + K has a 
non-trivial hyperinvariant subspace. 

P r o o f . The theorem is a direct consequence of Theorem 4-a) and the next 
lemma. 

L e m m a 3. 1. For T£ i f (§) , let I be a clopen subset I(T) and let Ei be the 
associated idempotent, then ran Es and null El are hyperinvariant subspaces of T. 
Furthermore, if E(T) is disconnected then T has a non-trivial hyperinvariant sub-
space. 
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P r o o f : The first part follows from the fact that E1 belongs to the rational 
algebra generated by T and hence to s i ? . To prove the second part note that if 
I(T) is connected, then there exists X0£Z(T)—E(T) such that either ran (T—X0) 
is proper or null (T— ?.0) is so. In any case T has a non-trivial hyperinvariant sub-
space, as asserted. 

In section 4 we will see that if T£(ED), then a more precise vers ion 'of 
Theorem 5 can be given. 

Two subspaces 9Ji and of § are said to be complementary if there exists an 
idempotent FeJ2?(§) such that 301 = ran F, 9t = nu l lF . 

T h e o r e m 6. Let m, n be two non-zero cardinal numbers such that m + n = 
= dim 55, then the set of all operators in i f (§) having two complementary hyper in-
variant subspaces of dimension m and n has a non-void interior. 

P r o o f . Let P £.£?(§) be an (orthogonal) projection such that dim ran P = w , 
dim null P = n. It is easy to see that P=(-]/2ni) f (P-X)'1 dX (where the 

p.-11 = 1/2 
circle \X —1| = 1/2 is positively oriented). From Theorem 3 we can find an e=~0 
such that, if | | S - P | | < e, then A = Z ( S ) D {AeC: | A - 1 | < 1/2} ^ 0 is a proper 
clopen subset of Z(S) and dim ran EA—m, dim null EA = n, where 

EA = (-l/2ni) J (S-X)~ldX. 
| ; . - i | = i/2 

The theorem follows, now, f rom Lemma 3 .1 . 

T h e o r e m . 7. The class (ED) is uniformly open in (§). 

P r o o f . The following elementary topological lemma together with Theorem 
4-a) show that each separated part of E(T) is an upper-semicontinuous function 
of T. Clearly, f rom this assertion, the theorem follows. 

L e m m a 3. 2. Let X be a compact subset of the plane and let U be an open neigh-
borhood of X, then there exists an open neighborhood V of X such that if Y is any com-
pact subset of V, it follows that YaU. 

4. On invariant subspaces of operators in (ED). In this paragraph we turn our 
attention to the proof of a decomposition theorem for the invariant subspace lat-
tice of an operator T£(ED). The techniques provided in [4] and [5] are basic 
for our purposes. We start our discussion with a lemma which is useful for proving 
that certain operators lie in (ED). 

L e m m a 4. 1. Let r£=S?(§) and assume that I is a clopen subset of I(T). If 
El denotes the associated idempotent, then E(T)f)Z ^ 0 if and only if ran Es is 
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infinite dimensional. In this case E(T) = £ ( T | r a n f j . Thus, if E{T) H E = 0,. 
I consists only of finitely many points which are eigenvalues of finite multiplicity.-

P r o o f . Assume ran ES is finite dimensional and let write S = T—X0,. 

S'1 = 5 | r a n EZ and S 2 = S|null ES. Since Z(S2) = X ( T ) - Z , S2 is invertible. 
Therefore ran S = ran S ^ - f r a n S2. But ran S2 = null EZ is dosed and ran if 
finite dimensional, then ran S is also closed. Since null S c r a n .Ej and ran Szd 
zdnull EX we conclude that S(= T—a0) is a Fredholm operator, and hence A0$E(T). 

Conversely, suppose that ran EX is infinite dimensional. If null EZ is finite dimensional,, 
f r o m the first par t of the proof, E(T) c Z and there is nothing to prove. Thus, we 
can also assume that null ES is infinite dimensional. At this point we need the fol-
lowing auxiliary construction: let —ranis^, § 2 — a l s o let Z j € ^ ( § 1 ) be the 
identity operator on and let Z 2 : § 2 —null E : be the bounded linear t ransforma-
tion given by Z2 — (1 — £ j ) | § 2 • I* is easy to see that Z 2 is invertible (it is bijective). 
Define now the invertible t ransformation Z : § i © § 2 — § by Z | § 1 = Z 1 , Z | § 2 = Z 2 . . 
Letting T1 = T\r&NEI, T2 = T\mx\\ ES and observing that Z " 1 TZ = Z f 1 T ^ Z j © 
© Z j 1 T2 Z2 we have E(T) = E(Z~1 TZ) = E(Z\1 T 1 Z , ) U E(Z2 1 T2 Z2) = 
= E{TI) (JE(T2). Since and § 2 are infinite dimensional we conclude that E(TJ) = 

= E(ZJ1 TJZJ) 0, y = l , 2 , and hence E(T) D I = E(TX) 9* 0 , E(T)C\ 

f l [ £ ( R ) — Z] = E(T2) 0. The proof of the lemma is complete. 

Given T£ let JT be the lattice of all invariant subspaces of T with the-
topology induced by the distance between subspaces, namely, if P, Q are the (ortho-
gonal) projections onto the subspaces 9Ji, 9 t£ J T , then 0(sDi, 91) = \\P — Ql- It can 
be proved that ([5], Corollary 1. 2) if 9Ji is an isolated, point of J T , then it is a hype r -
invariant subspace of T. 

T h e o r e m 8. Let T£(ED), that is assume there exist two proper clopen subsets' 
A, and A 2 of E(T) such that E(T) = /1, U /12 and At f) A2 — 0. Then there exist, 
two infinite dimensional complementary subspaces D i , , 9Ji2 f . f r which are isolated 
points of J r , such that if Tj= T\)0lj,j= 1, 2 then JT is homeomorphic to the topologi-
cal product J^TlXJT2

 afid E(Tj) = Aj, j= 1, 2. 

P r o o f . F rom Theorem 1, Z(T)—E(T) is a set of isolated points, thus there 
exist two proper clopen subsets Zlt Z2 of Z(T) such that ZlUZ2 — X(T), f l 
n S 2 = 0 and A j ( z l j , j= 1, 2. Now, let § t = r a n ESi, §>2 = §>i. Furthermore, let 
SOlj—ran Elp and Tj — T^Jlj, j= 1, 2. We deduce, as in the proof of Lemma 4. 1 
that there exist an invertible t ransformation Z : § 1 © § 2 — § such that Z~1TZ = 
= Zll TyZ$Z2

l T2Z2. Using now Theorems 2 and 6 of [5] we obtain JT % 
~ ^ z - ' r z ~ - ^ z , - ' r , z , X / z 2 - 1 r 2 z 2 " ^ r , X • On the other hand, using Theorem 1 

in [4], it is easy to check that the subspaces © {0} and {0}© §>2 are isolated points o f 
^ z - ' r z a n d hence 9JJ,, Wl2 are isolated points of J T . The last part of the theorem fol-
lows f rom Lemma 4. 1. 
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We close this section with a couple of results that illustrate how to produce non-
trivial examples of operators in (ED). 

T h e o r e m 9. Let P be any (orthogonal) projection in i f (§ ) and let V be any 
Jsometry. Then the 2 X 2 self-adjoint operator matrix 

T = 

•acting in the usual fashion on § © is in (ED). Furthermore, //" /1 , = 1, l /2( l — VT)], 

A2 = [0, l /2( l + )/5)], then I(T) cz AlUA2 and E(T) f) Aj * 0 0 = 1 , 2 ) . 

P r o o f . Let p be the cubic polynomial p(k) = ?,3—k2 — k+l. It can be 
•checked that 

1 -(P-VV*)2 0 
0 V*PV ' 

P(T) 

Since it is clear that V*PV and (P— VV*)2 are positive contractions, it follows 
t ha t p(T) enjoys the same property. Therefore f rom the spectral mapping theorem 
I(T) cz p~l[0, 1] = Al\JA2. Now, let S R ^ S i y be the range of the m a p 

y — ( j — I ^ J j fr°m §> i n t 0 § © § • It can be easily checked that S)^ and 9JÎ2 

are infinite dimensional orthogonal subspaces and that the compression of T to 
9JÎL(9JÎ2) is a positive invertible (negative invertible) operator. We use this preced-
ing remark to prove that E(T) D Aj ^ 0. This will clearly complete the .proof of 
the theorem. Assume for example that E(T)f)Al = 0. Then (Lemma 4. 1) 
I C O n / l i consists of finitely many points which are eigenvalues of finite multi-
plicity. Since T is self-adjoint there exists a finite rank projection ô £ i f (§>©§) 
such that TQ(=QT) is positive and T(l-Q) is negative. Let T' and T" be the com-
pressions of TQ and T([—Q), respectively to SOÎj.. Then .7" and — J"' are positive 
•operators and T' = 7 \ + ( — T") (where 7\ is the compression of T to 9JÎ,) is a 
positive invertible operator on the infinite dimensional space 5)?!. This is a contra-
diction since T' is a compact operator. An analogous reasoning shows that £ ( 7 ) 0 
f l / l 2 ^ 0. 

T h e o r e m 10. Let AÇJiCfô) be such that Ê(A) does not touch the segment 
A = [-2, 2] of the real axis. Then the operator Td i f (?)© § ) defined by 

T.= 
A 

- 1 

is in (ED). 

P r o o f . Using [7], Problem 55, it readily follows that I(T)=f~l[I(A)], where 
f is the analytic function defined on C —{0} by f ( k ) = k + l/k. Furthermore, we see 
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that E(T)=f~1 [E(A)l Also it can be checked that f-l~ [E{A)}=f~1 [E(A)\. There-
fore f~i[E(A)]=E(T). Since / maps the exterior of the closed unit disc D on to 
C — A and the interior of D — {0} onto the same region, the theorem follows. • 

5. Open questions. As the reader may have noticed this paper raises some 
interesting questions. For example, f rom the proof of Lemma 2. 2, the following 
inclusion formula can be obtained: 

Q(T)<z n Z(TQ)dB(T), 
(l-QXL&l 

where SPF is the set of all finite rank projections and TQ = (QT)|ran Q. Therefore it 
is natural to ask: does there exist •£?(§) for which the inclusions in the above 
chain of inequalities become proper? 

Moreover, we_can also, ask the following related question: if (1— Q)d.8Pf and 
does I(T) — I(TQ) consist only of isolated points? 

Observe that if the last statement holds, then B(T) = I(TQ), as it is 
•c (1 -Q)i&r easy to verify. f 

In a dilferent direction we may ask: do there exist compact operators KJ, 
such that the following conditions are satisfied? 

a) I(T+K0) = Q(T), b) B(T+ = Q(T), c) I(T+K2) = B(T), 
d) Z(T+K3) = B(T+K3), e) Z(T+KA) = B(T+KA)(= B(T)). 

Furthermore, 
f ) if and Z(T+K) is disconnected, for every KdJT, is T in (ED)1 

Note that a=>b and (a or c)=>d=>-e=>-f. On the other hand (b and c)=>a. 
Finally we give some fragmentary results in the positive direction concerning 

these last questions. 

T h e o r e m 11. Let Td i f ( 6 ) and assume that all points in I(T) — B(T), except 
for a finite number of them, are reducing eigenvalues of T (i.e. the corresponding eigen-
spaces are reducing subspaces of T), then there exists Kc ,3f such that Z(T+K) = 
= B(T). 

P r o o f . If Z(T)-B(T) = 0, there is nothing to prove. Let ).„, / 7=1 ,2 , ... 
be the points in Z(T)—B(T) and let v„, « = 1 , 2, ... be complex numbers such that 
the points ju„ = v„-|-An lie in the set Z'(T) of limit points of Z(T), and inf |A„—P\ = 

• n nircr, 
= jv„|. Also, let An = Z(T)— |J and E ^ , EA be the idempotents associated 

k= 1 

m 
with {An}, A„; define KM = 2 V™£&„} • THEN 

T+KM = (T+KM)EAM + (T + KM)\ 2 %„> = TEAM+ 2 K + AQEI. 
\n= 1 ) - n= 1 
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where Nn is a nilpotent operator acting on ran'£"{;.„}, 1 Therefore Z(T+Km) = 
m 

= / i m U U = This completes the proof of the theorem in case Z(T) — 
n= 1 

— B(T) is finite. By hypothesis there exists m0, such that if m>m0, then E^Xm} is-
an orthogonal projection and since £{;.„,}£{/.„}=0, for n ^ m and lim v n =0, we see n — OO 

that Km converges, in the norm topology, to a compact operator .K such that TK=KT.. 
Since T+K commutes with T+Km, for each m = \, 2, ... we have ([8], Chap. IV, 
Theorem 3. 6) Z{T+K) = lim Z(T+Km) = lim Am = B(T). Here the limits are 

m—o° m — oo 
taken in the Hausdorff metric topology for compact subsets of the plane. 

R e m a r k , i) We point out that the actual hypothesis needed to prove the preced-
ing theorem is that the idempotent E{$ be selfadjoint for all, but a finite number o f 
k£Z(T)-B(T). On the other hand, B R O W D E R proved in [2 ] , § 6 , Lemma 1 7 , that 
X£Z(T) — B(T) if and only if X is an isolated eigenvalue of finite multiplicity of T 
which is a pole of the resolvent function ¡x — (fi — T)"1, n$Z(T). Also, it is shown 
in [6], Chap. 7, § 3, Theorem 18, that the residuum of the resolvent function around 
a pole X 6 Z(T) is E^y. Therefore, the requirement stated at the begining of the present 
remark is equivalent to the following growth condition: if X£Z(T) — B(T) and m 
is the order of the pole X, 

1 d 
lim ^ ( f i - x r O i - T ) - 1 

1 ( = l l^wll) . (m— 1)! i / / / m - 1 ) 

ii) All points in B(T) — Q(T) are eigenvalues of finite multiplicity, but none of 
them are reducing. In' fact, an elementary argument shows that X is a reducing, 
eigenvalue of Г if and only if-null (T*— 1) с: null (T—X). Suppose that X is reduc-
ing and (T-X)e<P0; since dim null (T—X.) = dim null (T*-X), then null (T-X) = • 
= null ( Г * - X ) . This implies that (Г—A)|[null {T—X)]L is invertible and hence A 
is an isolated point of Z(T). We conclude that X$B(T), as asserted. 

iii) Let X be a subset of the plane and let conh X denote its convex hull. F r o m 
Theorem 1-е it readily follows that, conh £ ( F ) = conh i 2 ( r ) = conh B(T). 

As a consequence of the next theorem we shall obtain more information about 
the convex hull of the essential spectrum of T i n case Г is hyponormal (i.e. НГ^хЦ ^ 
^HTJCII, f o r a l l 

T h e o r e m 12. If T£<S?(£)) is hyponormal, then there exists a normal compact 
operator К such that T+K is hyponormal and Z(T+K) = Q(T). 

P r o o f . It is well known that if Г is hyponormal, then every eigenvalue of T 
is reducing (null (T* — А) с null (T— A), for all ACC). Therefore, f rom the preced-
ing remark ii), Q(T) — B(T). Let К be the compact operator constructed in the^ 
proof of Theorem 11. Arguing as in [3], Corollary 3. 3 we see that К is normal and 
T + K is hyponormal. The second assertion follows directly f rom Theorem 11. 
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C o r o l l a r y 5. 1. I f T is hyponormal, then c o n h E(T)=We(T). Moreover, there 

exists K(iJT such that W(T+K) = We(T). 

P r o o f . Le t K d f f as in T h e o r e m 12. T h e n f r o m [15], T h e o r e m 2 we h a v e 

W C f + K ) = c o n h I(T+K) = c o n h Q(T) = c o n h E(T) c We(T). S ince We(T) is 

•clearly c o n t a i n e d in W(T-\-K), t h e p r o o f is c o m p l e t e . 

C o r o l l a r y 5. 2. I f T i s hyponormal, then re(T) = \\n(T)\\. 

P r o o f . Let Kas in T h e o r e m 12, t h e n f r o m [14], T h e o r e m 1, | |7r(T)| | S re(T) = 
= r a d Q(T) = r a d I(T+K) = S | |7i(T)| | , a n d t h e a s s e r t i o n f o l l o w s . 

Added in proof. T h e first q u e s t i o n in Sec. 5 h a s a n e g a t i v e a n s w e r w h i l e t h e s e c o n d 

•ques t ion h a s a n a f f i r m a t i v e o n e . T h e s o l u t i o n t o t he se p r o b l e m s a r e i n c l u d e d i n t h e 

a u t h o r ' s r e c e n t p a p e r " A c h a r a c t e r i z a t i o n of t h é B r o w d e r s p e c t r u m " , t o a p p e a r i n 

the Proc. Amer. Math. Soc. P r o b l e m s a) a n d b) ( a n d h e n c e p r o b l e m s c), d ) , e) a n d 

f ) ) h a v e b e e n a n s w e r e d in t h e a f f i r m a t i v e b y J . G . STAMPFLI. 
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