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By L. TERRELL GARDNER in Toronto (Canada)*) 

§ 0 
At the end of his paper The class of functions which are absolutely convergent 

Fourier transforms [7] , SEGAL remarks without proof that he and K A P L A N S K Y 

have proved the following theorem: 
T h e o r e m . A. If G is a locally compact group with the property that Ll(G) is 

closed in the norm | | / | | = sup { | | / * g | | 2 : gdL2(G)}, then G is finite. 

Theorem A is offered as a non-commutative version of the main result of 
Segal's paper which we state as follows: 

T h e o r e m B. If G is a locally compact abelian group with the property that 
Ll(G) is closed in the norm [¡/| | = s u p { | /(x)j : ~/dG}, then G is finite. -

The Plancherel theorem provides the perspective which assures us that for 
abelian G, the two norms are the same. . .. 

It is easy to see that the following is equivalent to Theorem A : 

T h e o r e m A'. If the * -algebra L' (G) can be renormed as a C*-algebra, G is 
finite. 

A different generalization of. Theorem B to non-commutative groups is stimu-
lated by recent advances in non-commutative harmonic analysis, especially the con-
tributions of E Y M A R D [3] and W A L T E R [9]. In fact, since for abelian G, G is; finite' 
if and only if G is finite, we can rewrite Theorem B as follows: 

T h e o r e m B'. If G is a locally compact, abelian'group such that /1(G) = 
= {/: fdLl(G)} is uniformly closed, G is finite. 

For a general locally compact group, B(G), the Fourier—Stiejtjes algebra of 
G, is the complex linear span of the continuous, positive definite functions on G. 

*) Research supported in part by the National Research Council of Canada.; 
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Normed as the dual of C*(G), and with pointwise algebraic operations, B(G) is a 
commutative Banach algebra with identity, closed with respect to complex con-
jugation. /4(G), the Fourier algebra of G, is the closed ideal in B(G) composed of 
precisely those functions of the form f*g~,f, g£L2(G). It is far f rom clear that this 
set of functions should have any of the algebraic or topological properties here 
ascribed to it. But see EYMARD [3]. 

At any rate, if G is abelian, 

A(G)={/:f£Ll(G)} and B(G)={fi: n£M{G)}, 

with the norms transported f rom Ll(G), M(G) respectively, which accounts for 
the names introduced above, and we can ask for the extension of Theorem B' to 
non-abelian G: 

T h e o r e m C. If /4(G) is uniformly closed, G is finite. 

A consequence of Theorem C would be 

T h e o r e m D. If B(G) is uniformly closed, G is finite. 

For, by uniqueness of complete norm topology, since A is closed in B, A would 
be uniformly closed. 

Analogously, one could rewrite Theorem A (or A') with M(G) in place of 
L1 (G). 

We will prove all of these theorems, and prove their equivalence. More precisely, 
we will prove 

M a i n T h e o r e m . Let G be a locally compact Hausdorff topological group. The 
following are equivalent 

i) A(G) is uniformly closed. 
ii) The * -algebra A(G) can be renormed as a C* -algebra. 
iii) B(G) is uniformly closed. 
iv) The * -algebra B(G) can be renormed as a C*-algebra. 
v) L1 (G) is uniformly closed in the left regular representation. 
vi) The * -algebra Ll (G) can be renormed as a C*-algebra. 
vii) M(G) is uniformly closed in the left regular representation. 
viii) The * -algebra M(G) can be renormed as a C* -algebra. 
ix) The * -algebra M{G) can be renormed as a W* -algebra. 
x) G is finite. 

(In references to A(G) or B(G) as * -algebras, complex conjugation is to be used 
as involution.) 

Our interest in the question arose from W A L T E R ' S work [9], which shows A(G) 
(respectively B(G)} to be a complete Banach-algebra invariant of the locally compact 
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group G. This leads us to expect much more of the commutative picture to persist 
into the non-commutative setting than previously seemed reasonable. 

Along the way we prove another result of interest: a locally compact group 
which is extremely disconnected must be discrete. 

All the topological groups considered are assumed Hausdorff. 

§ 1. Preliminaries 

The following well-known lemma was first explicitely stated and proved in [8], 
for which reference I thank the referee. Professor I . HALPERIN has kindly pointed 
out that it can be proved as an easy consequence of [5], Theorem 1. We include 
a short proof. 

L e m m a 1. A norm-separable W*.-algebra is finite dimensional. 

P r o o f . Let A be such an algebra. If A contains infinitely many mutually ortho-
gonal projections, A contains a copy of l°° which is not norm separable. Therefore 
A has no type II or type III part, and A is a finite sum of «-homogeneous type I 
summands, each^of the form D<g>L(H), with D commutative [1]. But since D (re-

_ spectively L(H) can have only finitely many mutually orthogonal projections, D and 
L(H) must be finite dimensional. The lemma follows. 

L e m m a 2. An extremely disconnected compact topological group is finite. 

P r o o f . Since an extremely disconnected space (one in which the closure of 
each open set is open) is totally disconnected, we have at once that the underlying 
space of G is {0, l}m, where m is a suitable cardinal number [4], Theorem 9. 15. We 
need only show that such a space is extremely disconnected only if it is finite. 

First, assume m = X0. Then X = { 0 , l}m is metric, with ¿ (x ,0 ) = 2 xi2~'-
Especially, x^d{x, 0) maps X onto [0, 1]. , = 1 

Let r£[0, 1] be not a dyadic rational, and consider the open r-ball B about 
0 in X. Since the dyadic representation of r is unique, and there exists a point pdX 
at distance r from 0, p is in the closure B of B, while no ball about p is in B. Thus B 
is not open. 

Now for arbitrary infinite cardinal m, keeping the notation X, B as above, we 
can write {0, l}m = XX {0, \}d. Then U = 5X{0 , l}d is open, and U = B X { 0 , l}d 

cannot be open, or its projection B would be open in X. This concludes the proof . 
Now we generalize to non-compact groups. 

D e f i n i t i o n . A topological space is locally extremely disconnected (L .E .D.) if 
every open subset with compact closure has open closure. 

L e m m a 3. An open subspace A of L.E.D. Hausdorff space X is L.E.D. 
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P r o o f . If A is open inA", and U is open in A with UC\A compact, then U is 
open in X, and UDA is closed, so U — UDA is compact, so open in X, so in A. 

P r o p o s i t i o n 4. A locally extremely disconnected, locally compact topological 
group is discrete. 

P r o o f . Let F be a relatively compact, open neighborhood of e in G. Then 
F is a compact open neighborhood of e, and contains a compact, open subgroup 
H [4], Theorem 7. 5. Then H is an extremely disconnected compact group, so by 
Lemma 2, H is finite. Since H is open, G is discrete., 

C o r o l l a r y ' 5 . An extremely disconnected locally compact topological group is 
discrete. 

§ 2. Proof of the main theorem 

Terminology: The left, regular representation of a locally compact group G 
{or of L1 (G), or of M(G)} is the. restriction to G {or to L1 (G), or to M(G)j of the ac-
tion of M on L2(G) by left convolution: If L^(g) = fi*g, (g£L2,.[i£ M) /) -^L^ is 
the left regular representation. . .. 

The,weakly closed algebra generated by the image of L (this is unambiguous) is 
the left regular von Neumann algebra of. G. 

To avoid artificiality, we prove more than a minimal chain of implications. 
From those we provè thé schemès 

ii) ' vii) " v) 

- • i) -o-in) => x), and ix) <=>• viii) => vi) iii) л . • 

are easily extractéd, which together with the fact that x) implies all the others serve 
.to establish the equivalence. : • . ; -

The following implications are trivial:: i)=>ii), i i i ^ i v ) , ' v)=*vi), .vii)^>-viii), 
ix) > viii), x)-->all others. • • ' ••:. . 

The implications и)=и), iv)=>-iii), vi)=>v),' vii)=^vii) all fo l low ' f rom the fact 
¡that the imagé of a C*-algebra under-any -representation on a Hilbert. space is 
again a C*-algebra. For the first two implications, take as the representation 
d L(L2(G)), where Mr(g)=fg (g£L2), l : ; ' : ... 

.'Yi)=*iii): If'.the *-algebra' L L , c an - -be reno'rmsd a s . a ;C*-algebra,. the- new 
,norm Ц. Ц is: smaller than the || || , -norm, :since the identity map is norm-reducing 
on (L1 , || | | t) to (L1, || II). Therefore.the two norms are-equivalent-. thus'becomes, 

.-with- a chatjge^pf.nprm, .but not of norm topology, the dual space pf-a;C*,-algebra, 
and hence the linear span of,the.positive Iinear.functionals. But these can be chosen 
in L°° to be continuous positive definite functions. So consists entirely of con-
tinuous functions, and 'В is unifornilyclosed. ' 
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The implications iii)=^i), iv)=>ii), vii)=>v), viii)=>-vi) follow immediately f r o m 
the fact that A is closed in B (respectively L1 is closed in M), together with the equiva-
lence of nornis proved in the preceding paragraph. . 

vii)=>-ix) follows f r o m SAKAI'S characterization [6] of H7*-algebras as C*-algebras 
which are dual spaces, since M i s the dual of C 0 . Again we use the equivalence of the 
original norm and the C*-no rm on M. 

i)=Mx): Since A(G) is dense in C0(G) [3], i) is equivalent to A(G) = C0(G) as a 
topological vector, space. But Eymard has shown that ^4'' = the left regular von Neu-
mann algebra of G, while C Q = M . This gives us ix). . . . 

iii)=>-x): We have established that i)=>ix)=>viii)=^vi)=>-iii)=^i), so that iii)=>vi). 
Therefore, if G satisfies iii), L°°=B, as shown in the proof that vi)=>iii). Since L°° 
is a W*-algebra, its spectrum is its * -spectrum (the set of * -homomo'rphisms onto 
C, with the wf-topology), and is an extremely disconnected compact Hausdorff 
space. Thus the * -spectrum A of B is extremely disconnected. But A is a compactifica-
tion of G, and G, being locally compact, is open in every conipactification. Thus by 
Lemma 3, G is locally extremely disconnected, and finally,, by Proposit ion 4, G is di-

sc re te . . ' • • . . . . . . , 
N o w supposing G is infinite, we derive a contradiction. In fact, suppose H 

is a denumerably infinite subgroup of G. Then M(H) - / . ' ( / / ) is a closed subalgebra 
of M(G)=L1(G), and so (iii)=*vi)) can be renormed as a C*-algebra, which is then 
a W*-algebra (see viii)=>-ix)). -

But L 1 ( H ) is no rm separable, so by Lemma 1 finite dimensional, making H 
finite. This contradiction completes the proof. 

In [2], R. E . EDWARDS proved that if G is a locally compact abelian group, 
and A a commutative C*-algebra, <p: A — M(G) an algebraic isomorphism into M(G), 
then A is finite dimensional. 

We remark finally that the following theorem, which is a non-commutat ive 
version of Edwards ' theorem, can be used to secure the implication v i ) ^ x ) , replac-
ing the argument involving extremely disconnected groups. 

T h e o r e m 6 . If A is a closed * -subalgebra of M(G) which can be renormed as 
a C* -algebra, then A is finite dimensional. 

The proof is an easy consequence of Ogasawara's Theorem 1, op. cit., together 
"with Edvards ' arguments. We omit the detail. 

P r o b l e m . Is Theorem 6 valid with B(G) in place of M(G)1 

Added in proof. The problem is solved affirmatively by C. A. AKEMANN in 
private correspondence. Akemann alerts us to Sakai's theorem (Proc. Japan Acad., 33 
(1957), 439—444) asserting that the predaul of a IF*-algebra is sequentially weakly 
complete. Then the argument sketched above for M(G) applies. 
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We thus obtain the stronger form of the main theorem : 

If A is a subalgebra of B(G) (a *-subalgebra of M(G) which is (*-) isomorph-
ic to a C*-algebra, then A is finite dimensional. 
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