
On a certain converse of Holder's inequality. II 
By L. LEINDLER in Szeged 

A . P R E K O P A [2] proved the integral inequality 

(1) / sup f(x)g(y)dt ^ 2 [ f f 2 ( x ) d x ] U 2 [ / g 2 { y ) d y ] m , 
- c o X+y = t 

for arbitrary Lebesgue measurable non-negative functions f ( x ) and g(y). 
In [1] we proved the inequality of similar type 

(2) / [ / (f(x)g(t - x))y dx] U> dt ^ [ />(*) dx] »' [ f g-(x) dx] U\ 

where 1 S r . i , and — + — = 1 + — . The proof of (2) is much easier than; 
r s y 

that of (1), but (2) does not include (1) because of the lack of the factor 2. 
In the present paper we prove the inequality, more general than (1), 

(3) f sup f(x)g(y) dt ^ [ / f i x ) dx]llp [ f g«(x) dx] Uq, 

where 1 ^ p , q ^ °° and — + — = 1. Here the constant factor at the second member 
P q 

is best possible ( i f / ? = l then by this constant we understand 1). 
This inequality can be generalized to any finite number of functions as follows:: 

n j 

T h e o r e m . Suppose that 1 g ^ S » ( / = 1 , 2 , . . . , « ) and ^ — = 1.. Then for 
i=i Pi 

arbitrary non-negative Lebesgue measurable functions fi(x1),f2(x2), ... ,/„(x") we have: • 

(4) / sup f l f i A d t * [ I ll/.ll,, 
» ,.< '=1 J '=1 " x' 
x T / = 1 PI 

and this inequality is best possible. 
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For n = 2 inequality (4) reduces to (3) by the substitution xl=px and x2=qy. 
If n= 1, then (4) reduces to the obvious equali ty: 

•(5) f supMx)dt= J fAx)dx=\\fA,. 
— OO * f — oo 

We also obtain (5) if n is arbitrary, but one of-the numbers/7, s ay /7 t , is equa l . to 1; 
n 

for in this c a s e P 2 = P 3 = --- — />n
 = co , and thus we can divide (4) by H/H«, assura-

i t 2 
ing this product is positive and finite (otherwise both sides of (4) are zero o r in-
finite). 

For similar reason, if one of the numbers pt, say pn, is equal to infinity, then 
we can divide (4) by | | / „ | | -

Therefore 'we may assume that 1 < / ) ,<«> for all i. 

P r o o f of t h e T h e o r e m . .We may assume, as.already explained; tha t 1 <pi<°o 
for i= 1, 2, . . . , n; for n^2, the integral on the left-hand side of (4) has finite value, 
and the functions / ; ( x ' ) do not vanish almost everywhere. We prove (4) fo r s tep 
funct ions with integer points of discontinuity only, the transition to arbi t rary Lebesgue 
measurable - funct ions follows as'in-[2]. Moreover , it suffices to consider step func-
tions which at their points of discontinuity are equal to the larger one of the values 
taken on the adjoining intervals (this latter convention will be important technically 
later, see (10), (11) arid (12)). 

First we set down some notat ions and définitions: Let 

... - m a x f / ' ^ . , ' 

and N be an integer such that if then fi(x')=0 for all /; f u r the rmore let 

Fi(ï) = ai iï ,xl£.tk-\,k),. ,k.= -N + 2, ...,N-l,N. 

Let v,. denote a fixed index with a[. = 1. Finally we definé the following auxiliary 
func t i on : . . . * . 

' " _ i f . c v ) i f ' V i C r - i , ^ ) ; • ' - ' 

. i 2 ' / P i ¡f - v ' e t v . - i j v , . ] . 

Denot ing the values of G i ( x ' ) on (k--1, k) by b'k, it is clear, that b\=a\ if vi 

and Tor k=v\ ¿t |--:2' /pi", ' 
By means of these funct ions G^x ' ) we want to-, give a decomposi t ion of the 
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interval (— » < « » ) such that the sum of the lower estimations to be given on the 
subintervals for the left-hand side of (4) be greater than 

j j (max/ ,) 
¡ = i 

¿_L f Ffix̂ dx'. . 
;=i Pi -<*> 

From this point the proof of (4) will already be easy. 
By the definition of N we have 

N 

<6) I s u p T[ F t ( x ' ) 

E I t ; 

dt= J sup n ^ i i x 1 ) 
• " ' ' . ., 

E —=' 
¡=i 

dt = SN, 

thus it is enough to decompose the interval [ — N,N]. 

First we sketch the idea of the decomposition in the case n = 2. 
( N N X 

We want to choose a path f rom the point P 0 , — — to the point 
v Pi ' P i > 

( N N\ 

On — r ^ l s u c h that t>y means of the "break points" of this path the required 
P i ' • • • • 

decomposition of the interval [ — N < t < N ] could be given. See the following figure: 

Q (ÎL tL\ 

ot p ' V ! 

From a break .point, e.g. f rom the point Pm [——-, - | we go a step to the right 
' . . • - . • : . , • , - . ...... ^ px p 2 ) ., 
o r upward according as (hf)"* or (bl)p< is the larger number, that is, we go toward 
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the direction where the smaller value of the funct ions ( G , (JC'))pI and ( G 2 ( X 2 ) ) P * 

in the following step can be. found ; if (b?)pi=(bl)p< then we go obliquely upward 

to the point ( — , — ) . We continue this procedure till one of the break po in t s 
1 P2> 

Pm, say m = m0, comes up to the point ( — > — ) • This ensues necessarily since 
\Pi P 2' 

one of the break points "knocks against the lined wall" and after this the poin ts 
fv i v2 —n 

go along the wall to the point J — - — , — - — J (in fact, the funct ions take the 

(v, — 1 v2 — n 
> > by (¿v , ) P l =(^v 2 ) P 2 = Pi PI ' 

— 2, we j u m p to the point [ — , — I . For similar reasons and by an ana logous 
1 P2> 

(V v . 

— , — along the poin ts 
P i Pz> 

Qm. If we join the points Qm to the points Pm in reverse order as we obta ined them, 
then we will get the required pa th f r o m P 0 to Q0. 

N o w we construct such a path in the «-dimensional case. Let 

11, if i s 0, 

* ( 0 = i o , if 
and we denote, as usual, by h+{u0) the limit f r o m the right of the funct ion h(u) a t 
w0, and by h_ (M0) the limit f rom the left. We put 

. « 2 „, [ N N N 
i o O ' o . J ' o / o = - — . - — , - . - T -

I Pi P2 Pn 

Next we define, for m ^ l , the following numbers and points successively: 

! 4 = — i ( m i n G f + (pjyi-d-G^ (Piyl_ 0 ) 
Pi 

and 
PmiyLyZ, •••,y"m) = (Jm-1 + Wm, Jm-1 • • •, K-1 + "m)- , 

V-
We continue this procedure till y'mn = — will hold, for some m=m0 and fo r all 

Pi 
i, i.e. 

Pi Pn) 

This follows necessarily by the same reason as we explained it in the case of two 
functions. 
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Then we define a sequence of points . . . , z"m) in an analogous way 
(N N N\ 

coming back from the point — - , — , . . . , — . Let 
^x Pi Pn' 

N N N 
J o l Z Ô , Z 6 , . . . , Z " o ) - \ p i . p . . P n 

Similarly as before, we define the following numbers and points, for m 1, suc-
cessively: 

vL = ' s(min G?i (Pjzi^) - Gfi (A:4 , - , ) ) 
Pi 

and 
? , . . . , Zm) (z m _ ^ VM, Zm_ i Um , . . . , Zm_ j 

In the «-dimensional case we also "knock against the wall', therefore it is clear 
that in a finite number of steps, say in mt, we come to the point Pmo, i.e. Pmo = Qmi. 
For each i (7=1, 2, . . . , « ) we put 

. y.ln0 + l=Zi
mi_l ( / = 0 , 1 , 

hereby we arranged the points in a sequence Pm(yj„, y„, ..., y„) (m = 0 ,1 , . . . , WQ+WJJ), 
which gives the required path f rom P0 to Q0. 

Now we prove that by means of the obtained path, i.e. by means of the sequence 
Pm(yh>ym, J™) (»J=0, 1, . . . . W o + m j ) , we can give the decomposition of the 
interval [ — N, N] we have required. First we set for each i (i=1, 2, . . . , n) 

(7) Iim=yim-yim- 1- (W 1, 2, ... , + Wj), 
furthermore denote by ej„ the value of F ;(x ' ) on the interval (p . j 'm- i , /?,Jm) if 7/„ = 

= — , and at the point x '= /> , j4 if 7 ^ = 0 . 
Pi 

Let 

( 8 ) tk = 2 J 4 = 0 , 1, . . . , OTO + IWI). 
i = l 

It is easy to see that t0 = —N and tmo+mi=N, furthermore for 1 

n 
h = + —ffc-1 = + 2 ft 

'=1 

also holds. Thus we can decompose each interval [/fc_ x , i j by the points 

(9) Tt>0 = / i _ 1 and T i ^ ^ + i i 0" = 1,2, . . . ,«) . 
i = l 
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On such an interval [ik J _ 1 , rk j] for any k and j(k= 1,2, ..., m0 + m1; j= 1, 2, . . . , « ) 
we have the following lower estimate: 

(10) SKJ = J" 
'k.j- 1 

s u p n Fi(x') 
- " x' i = 1 

¡=1 

d t ^ U 7 7 4 -

To verify (10) we put for /<y and , f o r />7, and we have run 
from y J

k - iP j to yJ
kPj, then / goes from t k j - 1 to xk ] \ in fact, by (7), (8) and (9) we have 

and 

n X* j — 1 . n • j — 1 
t= 2 — = 2 yi+ 2yi-1 = tk~ 1+ 2 Jk = 

1=1 Pi i= 1 i = j i = 1 

t = 2 — ^ 2y'k+ 2 y'k-1 = 4 - 1 + i ^ = T M . 
1=1 Z7; /=1 /=>+1 1 = 1 

Choosing A'' in such a way as we mentioned above, we have 

G O SKJ = f sup 77 F ;(x ;) 

I 
1 = 1 

dt s 

s HFiiyiPd 77 Fiiyi-iPdci f dt, 

and hence, by the definition of our step functions (see their definition at the points of 
discontinuity), (10) obviously follows. 

By (9) and (10) we obtain 

(12) a, =.- 2 s k J = f I sup 7 7 d t s I 2 in 77 4-
j = 1 t„ , l » xi ' = 1 v/= 1 j i = l 

;= 1 

By the definitions of y[ and I [ , furthermore taking into account that the functions 
at their points of discontinuity are equal to the larger one of the values taken on the 
adjoining intervals, it can be seen that I( differs f rom zero only for such indices j 
for which (ciyj^ici)"' holds for all i ( /=1 , 2, ...). Thus we obtain f rom (12) that 

(13) 

since if then 
ff* S 2 H{c№, 

i = 1 

n Pi £ 
77 4 s 77 - " = (<*)'>, 

1=1 /=1 

whence, by (12), inequality (13) follows obviously. 
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Since 
m0 + m, 

s = sN = 2 ok, 
k= 1 

by (13), we have 
m0+m j n n mQ + mi 

(14) s ^ 2 2 H{ci)Pj - 2 2 tiictfj. 

k= 1 j=l j= 1 4=1 

By the definition of I{ and c{ it is clear that 

mo + ffli 
r0 + m, | N 

Z = - 2 № (15) _ n _ 
k= 1 Pj l=-N+l 

n " 1 
thus, by (14) and (15), using the following well-known inequality ]J 6i= 2 — (£?;)p'" 

, = i / = i Pi 
(£ ;>0) , we get 

n , N „ ( N y / p j n 

(16) 2 V Z ( a f y j k n \ 2 (airA =n\\Fj\ pj-

Multiplying both sides of (16) by J ] ( m a x / ) we obtain the required inequality (4).. 
; = i 

To prove that the inequality (4) is best possible we define the following func-
tions: 

• f l on (0,1), 
f°(x<) = { n u . i = 1,2, ...,«. 

10 otherwise, 
Then 

/ sup n/pix1) dt = j idt= n u t X r 
- t . » x , /=1 £ '=1 

I r ' 

The proof is thus completed. 
My grateful acknowledgement is due to Professor BELA SZOKEFALVI-NAGY for 
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