
On a generalization of Bernoulli's inequality 

By L. LEINDLER in Szeged 

At the Oberwolfach Conference on "Linear Operators and Approximat ion" 
in August, 1971, H. S . S H A P I R O [1] presented a lecture on "Fourier multipliers whose 
multiplier norm is an attained value". On this occasion he mentioned that the element-
ary inequalities 

(1) | l + z | 4 ^ l + 4 R e z + | z | 2 + i - | z | 4 , 

(2) | l + z | 4 si l + 4 R e z + 8 | z | 2 + 3 [ z | 4 

played an important role in the proof of his Theorem 2. (See Lemma 5 and 6 in [1].) 
He also stated (see also [2]) that to prove an analogue of his result for p s 2 inequalities 
of the following type are needed: 

(3) | l + z | p s \+pRez + ap\z\2 + bp\z\", 

(4) | l + z | p s \ +pRez + Ap\z\z + B„\z\p, 

where ap, bp, Ap, Bp are positive constants depending only on p. 
The proof of (3) and (4) given in [2] does not seem to yield optimal values for 

these positive constants. In connection with this fact H. S . S H A P I R O raised the Droblem 
to find the best possible constants, i.e. the exact range of (ap, bp) such that (3) holds, 
and similarly for (4). 

In the present paper we are going to give a proof of these inequalities which 
exhibits best possible constants. In fact we prove: 

T h e o r e m . For any complex number z and for any /> = 2 the inequalities 

(5) | l + z [ p S \+pRsz + ap\z\2+bp\zY, 

(6) \\+z\" ^ \ + p ^ z + Ap\z\2 + Bp\z\" 

hold with any positive ap,bp,Ap, Bp satisfying 

(7) 

5 A 
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(8) 
^ » / \ - (i — \y+pt— 1 —apt2 
0 < bp S ^ ( p ) = min-i -

f 

(9) 1 < < 

(10) 

or 

(T) 

M i ( p ) = sup —- - j £ — iip < 
l > 0 ' 

0 < ¿ p < /i2(/>) = m m , 
< S 2 ( 

( 8 ) 0 < ap ^ fi3(p) = min-^ — ^ , 
I S 2 ' 

( 9 ) ^ < < 

(10 ) A ^ O O = sup - - ^ si 5 p 
t=>0 

These ranges of (ap, bp) and (Ap, Bp) are best possible. 

R e m a r k s . For some special p the exact values or good approximat ion of the 
numbers and Mi can be gotten by an easy computa t ion . 

For instance if p=2 then (2) = 1 —a2, M1(2) = 1 —B2, 

H2(2) = 1, a«3(2).= 1 -b2 and M2(2) = 1 -A2. 

I f p = 4 and we choose a4 = l then /ii(4) = -^-, and, for B4 = 3, Mx(4) = 8; i.e. 

the constants y and 8 appearing in (1) and (2) are optimal. 

The following estimates of the numbers and Mi can be obtained by a s tandard 
computa t ion: 

. . 2p-Aa„ . . 2p . . 2p—2pb„ 
Ml(p)s y

2 „ p ; M/0 = 4 > 

Mi{p) £ max |2P— 1 —p — Bp, j ; M2(p)^ 2 ' - l - p - A p ; 

and n3(p) a 1 ^ bp . 



On a generalization of Bernoulli's inequality 227 

One more remark: inequality (5) can be slightly generalized as follows. 

For any p the inequality 

(11) 

holds, where 

1 + z\> £ 1 +p Re z + ap(g) |z|" + bp(q) |z|" 

(t-\)'+pt-\ 0 < ap(q) < min 

0 < bp(q) CI min 
tS2 

« 2 t" ' , 

(t-\y + pt-l-ap(qjfl 
t" " 

The proof of these inequalities is the same as that of (7) and (8). 
Such a generalization of (6) is impossible. This fact can be seen easily if p and 

q are integers greater than two and z is a real number tending to zero. 

P r o o f of (5). Denote z = x+iy and r=\z\. For the sake of brevity we write 
• ap and b for bp. 
In the first step we fix p, q, and r. Then we have to prove the inequality 

JL 

(l+2x + r2)2 ^ l+px + ar2 + br" 

for all x lying in [ — r, r ] with positive a and b. Put R = i - (1 +r2), C = 1 +ar2+brp, 

(12) 

f ( x ) = 2 2 (R + x)2 and g(x) = p x + C. 

Drawing the graphs of these functions it is easy to see that inequality (12) will be 
satisfied if the graph of y = g ( x ) lies under the graph o f y = / ( x ) on the interval [—r, r]. 
We obtain the best possible result in respect to a and b if y~g(x) is tangent to the 
graph of y=f(x) inside of [—r, r] or, when this is not the case, if j / = g ( x ) passes 
through the point P(-r,f(-r)). (See Fig. 1 and Fig. 2.) 

Fig. 1 Fig. 2 
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In the first case our task reduces to find the point P(x0,y0) on the graph f ( x ) 
at which f'{x0)=p, 

In order to find P(x0, y0) we calculate the derivative of f ( x ) and solve the 
equation 

r2 

Thus we get x0 = —— this x 0 lies in [—r, r] if 

In this case, i.e. if we obtain the best possible constants a and b i f / ( x 0 ) — 
=g(x0), i.e. if 

/ 1 - 4 = 1 '=P\~-j\ + ^+ar2 + br" = g \ - ' y 

holds. Hence we obtain the following conditions on a and b: 

P • „ P—2a 
0 < a < 4 and 0 < è =§ „„ , . 2 2 P _ 1 

If r S 2 we have the following equation as a condition on a and b: 

A-r) = ( r - 1)" = p(-r)+ 1 +ar2 + br" = 

Hence we get 

(r-iy+pr-l _ 
m j yr) = mm 

rm 2 
0 < a < « j = min Mt (r) = min —- 2 = — 

ra 2 /" 2 

and 
•• , , . . ( r - l ) p + / > / • - 1 - a / - 2 o - 2 a 
0 < 6 t/2 = minw2(r) = mm -

rg=2 r S 2 ^ ^ 

It is easy to see that ut and u2 are positive. In fact, u^r)^— for any r S 2 and 

{oo for p>2\ 

1 for p = 2\ as • 

Similarly, u2(r) S r af = U\_2 > 0 for any furthermore 

" ' ^ { l - f l 
for p > 21 

} as r -
for p = 2J 
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To complete the proof of (5) we have only to show that ui = ^ . To verify 

this we compute 

(M l(r)) ' = r^[(p(r-iy-1+p)r2-2r((r-iy+pr-l)]. 

Let h(r) = (pir-iy-1 +p)r-2({r-\y+pr-\). Now h(2)=0 and 

h'(r) = p[(p-2)(r-I)""1 + (j>-l)(r-I)""1 - 1] S 0 

for all 2; thus A(r)sO, which implies that wi(/-)sO, i.e. «iOO is an increasing 

function, hence u1 = min u t (r) = ux (2) = in accordance with our statement. 
rS2 2 

Setting Hi(p) = u2 and collecting our results the proof of (5) is complete. 

P r o o f of (6). We use the same notations as before except that we write a 
for Ap and b for Bp. We distinguish the cases O ^ r S l and 1. If r^l then let 
hy 0 ) = (r-f-l)p —(1 —r)p—2rp. Since hL(0)=0 and h'l(0) = 0, furthermore 0 
for all O S r ^ 1, we have 

(13) ¿iOO = 0 for all 0 = § r s i . 

If r s 1 let h2{r) = (r+iy-(r-l)"-2rp. As before, since h2{ 1 )^0 , ^ ( 1 ) ^ 0 and 
h 2 ( r ) ^ 0 for all 1, we have 

(14) h 2 ( r ) ^ 0 for all r s l . 

(13) and (14) imply that 

(\K\ m - R - r ) = (r+\y-\r-i\" _ n 

2r 2 r ~P 

for all 0. 
By (15) it is evident that inequality (6) is satisfied if g(r)^f(r) and we obtain 

the optimal constants if g(r)=f(r). 
Hence we get the following condition on a and b: 

1 + pr + ar1 + brp = (r + 1 )p. 

It is easy to see that b must be greater than 1, and if b is fixed then the best possible 
value of a is 

(r + Y)p-\-pr-brp 

a = sup - j . 
r> 0 ' 

.To complete the proof of (6) we have only to prove that supt>(r)<°o ; where 
r=»0 
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I n f a c t , s i nce b>\, 

a n d 

{—oo f o r p 21 

1 - b f o r p — 2} 

(P(P-1) 

v(r) 2 

l - b 

f o r p > 2 

f o r p = 2 

a s r — °° 

a s r — 0, 

a n d t h e s e s t a t e m e n t s i m p l y t h e d e s i r e d c o n c l u s i o n . 

T h e p r o o f o f (6) is c o m p l e t e . 

I n e q u a l i t i e s (5) a n d (6) w i t h (7 ' ) , (8 ' ) , (9 ' ) a n d ( 1 0 ' ) c a n b e p r o v e d s i m i l a r l y , 

a n d t h e r e f o r e t h è s e p r o o f s a r e o m i t t e d . 
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