# Bi-ideals in associative rings and semigroups 

By KENNETH M. KAPP in Milwaukee (Wis.; U.S.A.)

The concept of a quasi-ideal in an associative ring was introduced by Otro Steinfeld in $[18,20]$. He has developed an extensive theory concerning quasi-ideals in rings and semigroups. Bi-ideals were introduced in semigroups by Good and Hughes [2], further treated by Lajos [10, 12] and the author [6] among others. An explicit treatment has recently been given for bi-ideals in rings by Lajos and Szász [13, 14]. We continue to develop some of the theory of bi-ideals in rings here.

In [20] Steinfeld showed that each minimal quasi-ideal of a ring $R$ is either null or a division ring of the form $e R e$. We consider here bi-ideals of a ring and show that an analogous result is also true. In a regular ring the sets of bi-ideals and quasiideals coincide [10]. However as LUH points out [15] a ring may have these sets coincide without being regular. In general, a quasi-ideal is a bi-ideal. We will investigate minimal bi-ideals in arbitrary rings and determine several conditions under which such bi-ideals are quasi-ideals.

## § 1. Preliminaries, bi-ideals and regularity

We begin by recalling the following definitions for rings. For semigroups (written multiplicatively) one obtains from the following the corresponding definition of quasi-ideal, bi-ideal etc. by considering only the multiplicative requirement. In the sequel, when a definition or proposition holds for semigroups with this obvious modification we will place $(\mathscr{S})$ following the number of the statement.

We will assume that the semigroup has a zero, 0 , since a zero element can always be adjoined (cf. [1] p. 4) and we will write $S=S^{0}$ to denote such a semigroup. When the corresponding result for semigroups is known we will cite the appropriate reference by: (1.3) ( $\mathscr{P}-[1]$ p. 85 ex. 18b).
(1.1) ( $\mathscr{S})$ Definition. A subgroup $(A,+$ ), of a ring, $R$, is a quasi-ideal of $R$ if $R A \cap A R \leqq A$. (As usual $C D=\left\{\sum^{n} c_{i} d_{i} \mid c_{i} \in C, d_{i} \in D\right\}$ for subgroups $(C,+)$ and ( $D,+$ ) of a ring $R$.) For the semigroup $S$, we require $A \neq \emptyset$, the empty set. and $S A \cap A S \subseteq A$.
(1.2) ( $\mathscr{P}$ ) Definition. A subring $B$, of a ring, $R$ is a bi-ideal of $R$ if $B R B \subseteq B$. For the semigroup $S$, a non-empty subset, $B$, is a bi-ideal if $B^{2} \cup B R B \subseteq B$.
(1.3) ( $\mathscr{P}-[1]$ p. 85 ex. 18b) Proposition. Let $B$ be a bi-ideal of a ring $R$. Then $J=B+B R$ and $L=B+R B$ are respectively right and left ideals of $R$ and $J L \subseteq B \subseteq$ $\subseteq J \cap L$.

Proof. A straightforward check shows that $J$ and $L$ are indeed right and left ideals of $R$. Clearly $B \subseteq J \cap L$. On the other hand $J L=(B+B R)(B+R B) \subseteq B^{2}+$ $+B R B+B R^{2} B \subseteq B$ since $B$ is a bi-ideal and the result follows.

We have the following partial converse of (1.3).
(1.4) ( $\mathscr{P}$-[1] p. $85 \mathrm{ex}$. 18c) Proposition. Let $J$ and $L$ be respectively right and left ideals of a ring $R$. Then any subgroup $(B,+)$ of $R$ such that $J L \subseteq B \subseteq J \cap L$ is a bi-ideal of $R$.

Proof. $B$ is already by hypothesis a subgroup of $R$.
Since $B^{2} \subseteq J L$ and $J L \subseteq B$ it follows that $B$ is a subring. Moreover $B \dot{R} B \subseteq$ $\subseteq(J \cap L) R(J \cap L) \subseteq J R L \subseteq J L \subseteq B$ so that $B$ is indeed a bi-ideal.

Unlike the semigroup case, the additional assumption that $B$ is a subgroup is necessary in (1.4) as the following example. shows.
(1.5) Example. Let $R=\{\alpha \mid \alpha: Z \rightarrow Z, Z$ the set of integers with $(n) \alpha=n(2 k)$, $k$ fixed $\}$ with the functional compositions defined in the usual fashion: $(n)[\alpha+\beta]=$ $=(n) \alpha+(n) \beta,(n)[\alpha \cdot \beta]=((n) \alpha) \beta$. Let $J=L=R^{2}$ and $B=\{\beta \in R| |(n) \beta \mid>4 n$ for each $n \neq 0$, or $(n) \beta=4 n$, or $\beta=0\}$. Clearly $J L \subseteq B \subseteq R^{2}=J \cap L$ and yet with ( $n$ ) $\beta=4 n$, $\beta \in B$ but $-\beta \notin B$ so that $B$ is not even a subgroup no less a bi-ideal.

In the remaining part of this section we will consider bi-ideals which are either themselves regular rings [semigroups] or which are subrings [subsemigroups] of a regular ring [semigroup].
(1.6) ( $\mathscr{P}$ ) Definition. An element a of a ring $R$ is regular if $a \in a R a . R$ is regular if each element in it is regular.

We now have the following proposition.
(1.7) ( $\mathscr{P}-[11]$ Theorem 10) Proposition. Let $a \in R$, a ring. Then $a R a$ is $a$ bi-ideal. Indeed, $a$ is regular if and only if $a R a$ is the smallest bi-ideal containing $a$.

Proof. By [12] Theorem $8, a R a$ is a bi-ideal. Suppose now that $a$ is regular. Then $a \in a R a$. Let $B$ be a bi-ideal containing $a$. We have $a R a \subseteq B R B \subseteq B$ so that $a R a$ is indeed the smallest bi-ideal containing $a$. Conversely if $a R a$ contains $a$ then $a$ is regular.
(1.8) ( $\mathscr{S}$ ) Proposition. Let $B$ be a bi-ideal of a ring $R$. If $B$ is itself a regular ring then any bi-ideal of $B$ is a bi-ideal of $R$.

Proof. Let $A$ be a bi-ideal of $B$. Then $A$ is also a subring of $R$. Since $B$ is regular we have $A \subseteq A B$ and $A \subseteq B A$ so that $A R A \subseteq(A B) R(B A) \subseteq A(B R B) A \subseteq A B A \subseteq A$. Thus $A$ is a bi-ideal of $R$.

The following two propositions are generalizations of [1] ex. 18d, p. 85, [6] (2. 15) and [10] Theorem 1.
(1.9) Proposition. Let $S$ be a semigroup and $B$ a bi-ideal of $S$. If the elements of $B$ are regular then $B$ is a quasi-ideal.

Proof. If $b s=r b^{*} \in B S \cap S B$ then there is a $b^{\prime} \in S$ such that $b b^{\prime} b=b$. Thus $b s=b b^{\prime} b s=b\left(b^{\prime} r\right) b^{*} \in B S B \subseteq B$. Whence $B S \cap S B \subseteq B$ and $B$ is a quasi-ideal.
(1.10) Proposition. Let $R$ be a ring and $B$ a bi-ideal of $R$. If every element of $B$ is regular then $B$ is a quasi-ideal.

Proof. Let $x \in B R \cap R B$. Then $x=\sum_{i=1}^{n} b_{i} r_{i}=\sum_{j=1}^{m} s_{j} b_{j}(*)$ where $b_{i}, b_{j} \in B$, $r_{i}, s_{J} \in R$. We procede inductively: $b_{1}=b_{1} t_{1} b_{1}$ for some $t_{1} \in R$ so $b_{1} r_{1}=b_{1} t_{1} b_{1} r_{1}=$ $=-\sum_{2}^{n} b_{1} t_{1} b_{i} r_{i}+b_{1} t_{1} x=-\sum_{2}^{n} b_{i}^{\prime} r_{i}+b_{1}^{\prime}$ where $b_{1}^{\prime} \in B$ since $x \in R B$. Substituting back in (*) $b_{1}^{\prime}+\sum_{2}^{n} b_{i}^{\prime \prime} r_{i} \doteq x$. Again for $b_{2}$ we have a $t_{2} \in R$ with $b_{2}=b_{2} t_{2} b_{2}$ so that $b_{2} r_{2}=-\sum_{3}^{n} b_{i}^{\prime \prime} r_{i}+x-b_{1}^{\prime}$ and

$$
b_{2} r_{2}=b_{2} t_{2} b_{2} r_{2}=-\sum_{3}^{n} b_{2} t_{2} b_{i}^{\prime \prime} r_{i}+b_{2} t_{2}\left(x-b_{1}^{\prime}\right)=-\sum_{3}^{n} b_{2} t_{2} b_{i}^{\prime \prime} r_{i}+b_{2}^{\prime}
$$

Substituting again we have $b_{1}^{\prime}+b_{2}^{\prime}+\sum_{3}^{n} b_{i}^{\prime \prime} r_{i}=x$. We continue in the above fashion to obtain $\sum_{1}^{n} b_{i}^{\prime}=x$. Since $(B,+)$ is a group the result follows.

It is possible to combine this with (1.8) to obtain:
(1.11) Corollary. Let $B$ be a bi-ideal of a ring $R$. If $B$ is itself a regular ring then any bi-ideal of $B$ is a quasi-ideal of $R$ as well as $B$. If $Q$ is a quasi-ideal of $R$ which is itself regular then any quasi-ideal of $Q$ is also a quasi-ideal of $\boldsymbol{R}$.

## § 2. General results on minimal bi-ideals

We gather in this section several general results concerning minimal bi-ideals. We have first the following definition.
(2.1) ( $\mathscr{P}$ ) Definition. A non-zero quasi-ideal [bi-ideal] $U$ of a ring $R$ is a minimal quasi-ideal [bi-ideal] if there is no quasi-ideal [bi-ideal], $T$, with $\{0\} \subset T \subset U$.
(We use $\subset$ for proper containment.) A similar definition is given for a semigroup $S=S^{0}$.
(2.2) ( $\mathscr{S}$-[6] (1.8)) Proposition. Let $B$ be a minimal bi-ideal of a ring $R$. Then $B$ is nilpotent if and only if $B^{2}=\{0\}$.

Proof. Let $n \geqq 2$. Then since the product of two bi-ideals is a bi-ideal $B^{n-1}$ is a bi-ideal which is clearly contained in $B$ and we have $B^{n-1}=B$ if $B^{n-1} \neq\{0\}$. Thus $B^{n}=B^{2}=\{0\}$ precisely when $B$ is nilpotent.
(2. 3) ( $\mathscr{S}$ ) Proposition. Let $B$ be a minimal bi-ideal of a ring $R$ with $B^{2} \neq\{0\}$. If $b_{1} B b_{1}=\{0\}$ and $b_{2} B b_{2}=\{0\}\left[b_{1} R b_{1}=\{0\}\right.$ and $\left.b_{2} R b_{2}=\{0\}\right]$ for fixed $b_{1}, b_{2} \in B$ then $b_{1} B b_{2}=\{0\}$ and $b_{2}, B b_{1}=\{0\}\left[b_{1} R b_{2}=\{0\}\right.$ and $\left.b_{2} R b_{1}=\{0\}\right]$.

Proof. If $b_{1} B b_{2} \neq\{0\}$ then $b_{1} B b_{2}=B$ by the minimality of $B$ and [12] Theorem 8. We have $B^{2}=\left(b_{1} B b_{2} b_{1}\right) B b_{2} \subseteq\left(b_{1} B b_{1}\right) B b_{2}=\{0\}$ a contradiction. Thus $b_{1} B b_{2}=\{0\}$ and similarly $b_{2} B b_{1}=\{0\}$.

The proof of the alternate reading is similar. Here we would have $B^{2}=$ $=\left(b_{1} R b_{2} b_{1}\right) R b_{2} \subseteq\left(b_{1} R b_{1}\right) R b_{2}=\{0\}$.

We remark that the above proposition is also valid with any bi-ideal $T$ in place of $R$ provided either $T b_{2} \subseteq T$ or $b_{1} T \subseteq T$.
(2.4) ( $\left.\mathscr{S}_{-[6]}(1.8)\right)$ Theorem. Let $B$ be a minimal bi-ideal of a ring $R$. If $B^{2} \neq\{0\}$ then $B$ is a division ring and a minimal quasi-ideal. Indeed $B$ is of the form $B=e R e=e B e$ where $e$ is the identity of $B$.

Proof. Let $C=\{b \in B \mid b B=\{0\}\}$. It follows immediately that $C$ is a subring since $B$ is. Moreover for $c_{1}, c_{2} \in C, r \in R,{ }^{\bullet} \dot{c}_{1} r c_{2} \in B$ and hence $c_{1} r c_{2} \in C$ so that $C$ is a bi-ideal of $R$. By the minimality of $B$ we must have $C=\{0\}$ since $B^{2} \neq\{0\}$ by hypothesis. Thus for $b \in B \backslash\{0\}, b B \neq\{0\}$. Since $b B$ is a bi-ideal ([12] Theorem 8) it follows that $b B=B$. Similarly $B b=B$. Thus for $b \in B \backslash\{0\}$ we have $B b=b B=B$ and it follows that $B$ is a division ring. Clearly $B$ is thus regular so that $B$ is a quasiideal by (1.10). Since $B$ is minimal as a bi-ideal it is surely minimal as a quasi-ideal. It now follows immediately from [20] Theorem 3 that $B=e R e=e B e$ where $e$ is the identity of $B$.

## § 3. Nilpotent minimal bi-ideals

We have seen in the last section that minimal bi-ideals which are not nilpotent are quasi-ideals and moreover division rings. We will now consider the alternative case when the bi-ideal is nilpotent (recall (2.2)!).
(3.1) Definition. We will call a minimal bi-ideal [quasi-ideal] $B$ a nilpotent minimal bi-ideal [quasi-ideal] if $B$ is a zero subring, i.e., $B^{2}=\{0\}$.

As the following example show, even in a commutative ring, a nilpotent minimal bi-ideal need not be a (minimal) quasi-ideal. Thus the sets of minimal bi-ideals and minimal quasi-ideals for a given ring need not coincide.
(3.2) Example. Let $S=Z /(6)$ where $Z$ is the ring of integers and set $R=$ $=R[\bar{x}]=S[x] /\left(x^{4}\right)$ where $x$ is transcendental over $S$. Let $B=\left\{0,2 \bar{x}^{2}, 4 \bar{x}^{2}\right\}$. Clearly $B$ is a subring of $R$. Since $B^{2}=\{0\}$ and $R$ is commutative $B R B=B^{2} R=\{0\} \subseteq B$ so that $B$ is a bi-ideal of $R$. However $4 \bar{x}^{3}=\bar{x}\left(4 \bar{x}^{2}\right)=\left(4 \bar{x}^{2}\right) \bar{x} \in B R \cap R B$ but $4 \bar{x}^{3} \notin B$ so that $B$ is not a quasi-ideal. It is easy to see that $B$ is also a minimal bi-ideal:

We note that a similar statement is also true in the case of a commutative semigroup. It suffices to consider $(R, \cdot)$ above as our semigroup and $B^{\prime}=\left\{0,4 \bar{x}^{2}\right\}$. Then $\left(B^{\prime}\right)^{2}=\{0\}$ so that $\{0\}=B^{\prime} R B^{\prime} \subseteq B^{\prime}$ while again $4 \bar{x}^{3} \ddagger B^{\prime}$.
(3. 3) Theorem. Let $B$ be a nilpotent minimal bi-ideal of a semigroup $S=S^{0}$. Then the following sets of equivalent statements are mutually exclusive.

1. some non-zero element of $B$ is irregular (iff),
2. no non-zero element of $B$ is regular (iff),
3. for some $b \in B \backslash\{0\}, b S b=\{0\}$ (iff),
4. for each $b \in B, b S b=\{0\}$
[in any of the above cases $B=\{b, 0\}$ ];
5. each element in $B$ is regular (iff),
6. some non-zero element of $B$ is regular (iff),
7. $b S b \neq\{0\}$ for each $b \in B \backslash\{0\}$ (iff),
8. $b S b \neq\{0\}$ for some $b \in B$
[in any of these cases $B$ is a quasi-ideal].
Proof. In any of the above cases one need consider only $b S b$ for $b \in B$. We observe that $b S b$ is a bi-ideal contained in $B$. Thus by the minimality of $B$ either $b S b=\{0\}$ or $b S b=B$. In cases 1 or 2 if $b$ is irregular then $b \notin b S b$ so $b S b \subset B$ and hence $b S b=\{0\}$. Clearly $\{b, 0\}$ is then a bi-ideal and hence $B=\{b, 0\}$. The equivalence of statements $1-4$ should now be obvious.

Indeed, it is now clear that a non-zero element of $B$ can be regular precisely when each element in $B$ is regular. Furthermore $b \neq 0$ is regular iff $b R b \neq\{0\}$ since in such a case $b R b=B$. It follows that each of the statements 5-8 are equivalent and for any of these cases $B$ is a quasi-ideal by (1.9).

We give the analogous result for nilpotent minimal bi-ideals in rings.
(3.4) Theorem. Let $B$ be a nilpotent minimal bi-ideal of a ring $R$. Then the following sets of equivalent statements are mutually exclusive.

1. some non-zero element of $B$ is irregular (iff),
2. no non-zero element of $B$ is regular (iff),
3. for some $b \in B \backslash\{0\}, b R b=\{0\}$ (iff),
4. for each $b \in B, b R b=\{0\}$
[in any of the above cases $B=([b],+)$ where $b$ is of prime order];
5. each element in $B$ is regular (iff),
6. some non-zero element of $B$ is regular (iff),
7. $b R b \neq\{0\}$ for each $b \in B \backslash\{0\}$ (iff),
8. $b R b \neq\{0\}$ for some $b \in B$
[in any of these cases $B$ is a quasi-ideal].
Proof: The additive operation of $R$ does not enter into consideration unti the final conclusion is approached. The proof of (3.3) can be repeated intact. Now however if $\dot{b} R b=\{0\}, b$ will generate an additive subgroup [b] which is a biideal. Since $(n b) r(m b)=b(n m r) b=0$ any subgroup of $([b],+)$ will also be a bi-ideal. Thus $B=([b],+$ ) and the order of $b$ must clearly be finite (else take $[2 b]$ etc.) and prime. If any of the conditions $5-8$ hold $B$ will be a quasi-ideal by (1. 10).

If $B$ is a subgroup of a ring $R$, with $B^{2}=\{0\}$ and the order of $B$ prime, then it is clear that if $B$ is a bi-ideal it.must be minimal. It suffices to have either $R$ commutative or $B$ contained in the center of $R$ to have this be the case. As the following example shows it is possiblet o have a subgroup $(B,+)$ of prime order and $B^{2}=\{0\}$ without $B$ being a bi-ideal.
(3. 5) Example. Let $R$ be the ring of $4 \times 4$ matrices over $Z /(p)$, where $Z$ is the ring of integers and $p$ is a prime number. Let

$$
B=\left\{\left.\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & a & 0
\end{array}\right) \right\rvert\, \quad a \in Z /(p)\right\}
$$

It is easy to check that $B^{2}=\{0\}$ but that $B$ is not a bi-ideal of $R$. Moreover if we take here

$$
S=\left\{\left.\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
x & 0 & y & 0 \\
0 & 0 & 0 & 0 \\
u & 0 & v & 0
\end{array}\right) \right\rvert\, \quad x, y, u, v \in Z /(p)\right\}
$$

then $S$ is a bi-ideal of $R$ and $B$ a bi-ideal of $S$ since $B S=\{0\}$. Thus the regularity condition of (1.8) is in one sense necessary for the middle subring. Here $R$ is, as is well known, a regular ring.

It is easy to observe from the above two theorems ((3.3) and (3.4)), (2.4) and [20] Theorem 3 that if a minimal bi-ideal (or quasi-ideal) is either a division ring (or group union $\{0\}$ in the semigroup case) or nilpotent and possesses no nonzero regular element (regulari in the original ring or semigroup) then the bi-ideal (or
quasi-ideal) considered itself as a ring (or semigroup) contains no non-trivial biideals (or quasi-ideals).

In the first case the bi-ideal is also a quasi-ideal. This situation is altered in the remaining case when the elements of the nilpotent minimal bi-ideal are regular (the second set of conditions in (3.4) or (3.5)). Here there may be many proper bi-ideals of the given minimal bi-ideal. We conclude with the following examples. which illustrate this situation.
(3. 6) Example. Let $S$ be a completely 0 -simple semigroup over a non-trivial group, $G$, (cf. [1], [4]) where $S$ is not a completely simple semigroup with a adjoined 0 , i.e., $S$ has at least one non-zero nilpotent $\mathscr{H}$-class. It is easy to see that the minimal bi-ideals of $S$ are just individual non-zero $\mathscr{H}$-classes union $\{0\}$. Since $S$ is regular these are also the minimal quasi-ideals of $S$ (cf. [19], [22], [5]). Let $B$ denote a nonzero nilpotent $\mathscr{H}$-class union $\{0\}$. Then $B$ is a minimal bi-ideal satisfying the second set of conditions in (3. 3). Since $G$ is non-trivial, $|B|>2$. It is easy to see since $B^{2}=\{0\}$. that any proper subset of $B$ which contains 0 will be a bi-ideal (quasi-ideal) of $B$.
(3.7) Example. Let $Q$ denote the rational numbers and let $R$ by the complete ring of $2 \times 2$ matrices over $Q . R$ is a regular ring. Let $\left.\left.B=\left\{\begin{array}{ll}0 & 0 \\ q & 0\end{array}\right) \right\rvert\, q \in Q\right\}$. Then. one readily checks that $B$ is a nilpotent minimal bi-ideal (quasi-ideal) of $R$ which. falls under the second set of conditions in (3.4). Again since $B^{2}=\{0\}$ any nontrivial subgroup (under addition) of $B$, and there are many, will be a bi-ideal (quasiideal) of $B$.

## References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. 1, 2 (Providence, R. I., 1961 and 1967).
[2] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), 624-625.
[3] K. Iseki, A characterization of regular semi-group, Proc. Jap. Acad., 32 (1956), 676-677.
[4] K. M. Kapp and H. Schneider, The lattice of congruences on a completely 0 -simple semigroup, Benjamin Press (New York, 1969).
[5] K. M. Kapp, Green's relation and quasi-ideals, Czech. Math. J., 19 (94) (1969), 80-85.
[6] $\qquad$ On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecen, 16 (1969), 179-185.
[7] L. Kovács, A note on regular rings, Publ. Math. Debrecen, 4 (1956), 465-468.
[8] S. Lajos, A félcsoportok ideálelméletéhez, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 11. (1961), 57-61.
[9] $\qquad$ Generalized ideals in semigroups, Acta Sci. Math., 22/23 (1961), 217-222.
[10] $\qquad$ On quasi-ideals of reguiar ring, Proc. Japan Acad., 38 (1962), 210-211.
[11] __ On the bi-ideals in semigroups, Proc. Japan Acad., 45 (1969), 710 - 712.
[12] __. Notes on ( $m, n$ )-ideals. I-III, Proc. Japan Acad., 39 (1963), 419-421; 40 (1964), 631-632; 41 (1965), 383-385.
[13] S. Lajos and F. Szász, On the bi-ideals in associative rings, Proc. Japan Acad., 46 (1970), 505-507.
[14] ___ Bi-ideals in associative rings, Dept. of Math., Karl Marx Univ. of Economics (Budapest, 1970.)
;[15] Jiang Luh, A characterization of regular rings, Proc. Japan Acad., 39 (1963), 741-742.
[16] $\qquad$ A remark on quasi-ideals of regular ring, Proc. Japan Acad., 40 (1964), 660-661.
[17] O. Steinfeld, On ideal-quotients and prime ideals, Acta Math. Sci. Hung., 4 (1953), 289-298.
[18] $\qquad$ Bemerkung zu einer Arbeit von T. Szele, Acta Math. Acad. Sci. Hung., 6 (1955), 479--484.
'[19] ___ Über die Quasi-ideale von Halbgruppen, Publ. Math. Debrecen, 4 (1965), 262-275.
[20] _... Uber die Quasi-ideale von Ringen, Acta Sci. Math., 17 (1956), 170-180.
[21] ___ Über die Quasi-ideale von Halbgruppen mit eigentlichem Suschkewitsch-Kern, Acta Sci. Math., 18 (1957), 235-242.
[22] __ On semigroups which are unions of completely 0 -simple semigroups, Czech. Math. J., 16 (91) (1966), 63-69.
[23] J. von Neumann, On regular rings, Proc. Nat. Acad. Sci., 22 (1936), $707-713$.

UNIVERSITY OF WISCONSIN-MILWAUKEE
MILWAUKEE, WISCONSIN 53201, U.S.A.

