## Direct product in locally finite categories

By L. LOVÁSZ in Bưdapest

A category will be called locally finite if only a finite number of morphisms joins any two objects of it. We are going to study "cancellation" properties of direct products in such categories. The results are generalizations of those of [1,2] and no essentially new idea is used; however, the questions and results extend to categories in such a natural and general form that it seems to be worth stating them in a short note. ${ }^{1}$ )

Given a category $\mathscr{K}$, we denote by $H(A, B)$ the set of all morphisms of $\mathscr{K}$ from $A$ to $B$.

Lemma 1. Let $A, B$ be objects of the locally finite category $\mathscr{K}$, and assume that there are monomorphisms $\varphi$ from $A$ to $B$ and $\eta$ from $B$ to $A$. Then both $\varphi$ and $\eta$ are isomorphisms.

Proof. Consider the morphisms $(\varphi \eta)^{n}(n=1,2, \ldots)$. Since $\mathscr{K}$ is locally finite: there exist $k, m>0$ such that

$$
(\varphi \eta)^{k}=(\varphi \eta)^{k+m}
$$

Now. $\varphi \eta_{-}^{-}$being a_monomorphism, this implies

$$
\begin{equation*}
(\varphi \eta)^{m}=i d_{A}, \tag{1}
\end{equation*}
$$

i.e. putting $\eta^{\prime}=\eta(\varphi \eta)^{m-1}$, we have $\varphi \eta^{\prime}=\mathrm{id}_{A}$. Multiplication of (1) from the left by $\eta$ gives $(\eta \varphi)^{m} \eta=\eta \cdot(\varphi \eta)^{m}=\eta$; since $\eta$ is a monomorphism, it follows that

$$
(\eta \varphi)^{m}=\eta^{\prime} \varphi=i d_{B}
$$

Hence $\eta^{\prime}$ is the inverse of $\varphi$ and thus $\varphi$ is an isomorphism. Similarly $\eta$ is an isomorphism.

Remark. Obviously, Lemma 1 remains true if we consider only the subcategory determined by $A$ and $B$.

[^0]Let $M(A, B)$ be the set of all monomorphisms of $A$ to $B$. If $P$ is an equivalence relation on the set $S(X)$ of all morphisms to $X$, we denote by $H(P, A)$ the set of those morphisms $\varphi \in H(X, A)$ which satisfy $\alpha \varphi=\alpha^{\prime} \varphi$ for every $\left(\alpha, \alpha^{\prime}\right) \in P$.

Lemma 2. Let $A, B, X$ be objects in the locally finite category $\mathscr{K}$ and assume $|H(P, A)|=|H(P, B)|$ for every equivalence-relation $P$ on $S(X)$. Then $|M(X, A)|=$ $=|M(X, B)|$.

Proof. We may assume $\mathscr{K}$ and thus $S(X)$ are finite. Obviously, $\varphi \in M(X, A)$ iff $\varphi \notin H(P, A)$ except $P$ is the identity relation $j$ on $S(X)$. Hence, by sieving we get

$$
\begin{align*}
&|M(X, A)|=\sum_{k \geqq 0}(-1)^{k} \sum_{P_{1}, \ldots, P_{k} \neq j}\left|H\left(P_{1}, A\right) \cap \cdots \cap H\left(P_{k}, A\right)\right|=\mid  \tag{2}\\
&=\sum_{k \geqq 0}(-1)^{k} \sum_{P_{1}, \ldots, P_{k} \neq j}\left|H\left(P_{1} \vee \cdots \vee P_{k}, A\right)\right|
\end{align*}
$$

where $P_{1} \vee \cdots \vee P_{k}$ means the least equivalence-relation containing $P_{1} \cup \cdots \cup P_{k}$ (the member corresponding to $k=0$ is $|H(j, A)|=|H(X, A)|)$.

Now $|M(X, B)|$ can also be expressed by a formula like (2) and the two right hand sides are equal by assumption. Hence the statement follows.

Remark. If the condition of the lemma holds for $X=A$ and $X=B$ then $|M(A, B)|=|M(A, A)|>0$ and $|M(B, A)|=|M(B, B)|>0$, thus by Lemma 1, $A$ and $B$ are isomorphic.

Lemma 3. Let $\left(\pi_{1}, \pi_{2}\right)$ be a (projective) direct product; $\pi_{1} \in H(A B, A)$, $\pi_{2} \in H(A B, B)$. Then for any object $X$ and equivalence-relation $P$ on $S(X)$, $|H(P, A B)|=|H(P, A)| \cdot|H(P, B)|$.

Proof. It is easy to verify that a $\varphi \in H(X, A B)$ belongs to $H(P, A B)$ iff $\varphi \pi_{1} \in H(P, A)$ and $\varphi \pi_{2} \in H(P, B)$. Hence the proposition follows.

We prove now that the $k$ th root is unique in any locally finite category.
Theorem 1. Let $\left(\pi_{1}, \ldots, \pi_{k}\right)$ and ( $\varrho_{1}, \ldots, \varrho_{k}$ ) be two (projective) direct decompositions of the same object $C$ of the locally finite category $\mathscr{K}$ and let $\pi_{1}, \ldots, \pi_{k} \in$ $\in H(C, A), \varrho_{1}, \ldots, \varrho_{k} \in H(C, B)$ (Fig. 1). Then $A$ and $B$ are isomorphic.


Fig. 1

Proof. By Lemma 3 we have $|H(P, C)|=|H(P, A)|^{k}=|H(P, B)|^{k}$ for any equivalence relation $P$ on any $S(X)$. Hence $|H(P, A)|=|H(P, B)|$. By the remark following Lemma 2, this implies that $A, B$ are isomorphic.

A question analogous to Theorem 1 is whether the following diagram (Fig. 2) implies that $A$ and $B$ are isomorphic ( $\iota$ is isomorphism, $\pi_{1}, \pi_{2}, \varrho_{1}, \varrho_{2}$ direct products).


Fig. 2
This is not the case in general but we have
Theorem 2. If in Fig. 2 both $A$ and $B$ have morphisms into $C$ then they are isomorphic.

Proof. Let $P$ be an equivalence relation on $S(X)$ where $X$ is some object. By Lemma 3,

$$
|H(P, A)| \cdot|H(P, C)|=|H(P, A C)|=|H(P, B C)|=|H(P, B)| \cdot|H(P, C)|
$$

Now ị $H(P, C) \neq \emptyset$ then $|H(P, A)|=|H(P, B)|$. But this also follows if $|H(P, C)|=$ $=\emptyset$, since then both $H(P, A)$ and $H(P, B)$ are empty. Hence by Lemma 2, $A$ and $B$ are isomorphic.

Now we consider the case when Theorem 2 cannot be applied.
Theorem 3. In the diagram of Fig. 3, $A D$ and $B D$ are isomorphic $\left(\left(\pi_{1}, \pi_{2}\right)\right.$, $\left(\varrho_{1}, \varrho_{2}\right),\left(\sigma_{1}, \sigma_{2}\right),\left(\tau_{1}, \tau_{2}\right)$ are direct products, $\imath$ is an isomorphism $)$.


Fig. 3

The proof is very similar to that of Theorem 2, therefore we omit it.
Theorem 4. In the diagram of Fig. 2 one can always find an isomorphism $\iota$ such that the diagram commutes.

Proof. Denote by $\mathscr{K}^{*}$ the category of those morphisms $\varphi$ which are in $H(A C, A C)$ and satisfy $\varphi \pi_{1}=\pi_{1}$; or in $H(A C, B C)$ and satisfy $\varphi \varrho_{1}=\pi_{1}$; or in $H(B C, A C)$ and satisfy $\varphi \pi_{1}=\varrho_{1}$; or in $H(B C, B C)$ and satisfy $\varphi \varrho_{1}=\varrho_{1}$. It is easily seen that these morphisms form a category indeed. We denote the set of morphisms, monomorphisms etc. in $\mathscr{K}^{*}$ by $H^{*}(X, Y), M^{*}(X, Y)$ etc.

Let $P$ be an equivalence relation on $S(X)$ where $X=A C$ or $B C$. It is enough to show

$$
\begin{equation*}
\left|H^{*}(P, A C)=\left|H^{*}(P, B C)\right|\right. \tag{3}
\end{equation*}
$$

since then by the remark after Lemma 2 the statement follows.
Consider the pairs $(\delta, \varphi)$ where $\delta \in H(X, C)$ and $\varphi \in H^{*}(P, A B)$. Their number is $|H(X, C)| \cdot\left|H^{*}(P, A C)\right|$. We attach to every such $(\delta, \varphi)$ an $(\varepsilon, \psi)$ where $\varepsilon \in H(X, C)$ and $\psi \in H^{*}(P, B C)$. Let $\varphi^{*}$ be defined by

$$
\varphi^{*} \pi_{1}=\delta, \quad \varphi^{*} \pi_{2}=\varphi \pi_{2}
$$

and set

$$
\psi^{*}=\varphi^{*} \iota, \quad \varepsilon=\psi^{*} \varrho_{1}
$$

Define $\psi$ by

$$
\psi \varrho_{1}=\left\{\begin{array}{ll}
\pi_{1} & \text { if } \quad X=A C, \\
\varrho_{1} & \text { if }
\end{array} \quad X=B C, \quad \psi \varrho_{2}=\psi^{*} \varrho_{2}\right.
$$

Then, obviously, $\psi \in H^{*}(P, B C)$ and $\varepsilon \in H(X, C)$, and the correspondence is one-to-one since the argument defining $(\varepsilon, \psi)$ can be converted. Hence the number of pairs $(\varepsilon, \psi) .\left(\varepsilon \in H(X, C), \psi \in H^{*}(P, B C)\right.$ is also $|H(X, C)| \cdot\left|H^{*}(P, A C)\right|$, and since $H(X, C) \neq \emptyset$, (3) follows.

## References

[1] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hung., 18 (1967), 321-328.
[2] L. Lovász, On the cancellation law among finite relational structures, Periodica Math. Hung., 1 (1971), 145-156.


[^0]:    ${ }^{1}$ ) Recently A. Pultr (Prague) informed me that he also remarked the possibility of this generalization and obtained similar results.

