Direct product in locally finite categories

By L. LOVÁSZ in Budapest

A category will be called *locally finite* if only a finite number of morphisms joins any two objects of it. We are going to study "cancellation" properties of direct products in such categories. The results are generalizations of those of [1, 2] and no essentially new idea is used; however, the questions and results extend to categories in such a natural and general form that it seems to be worth stating them in a short note.¹)

Given a category \mathcal{K} , we denote by H(A, B) the set of all morphisms of \mathcal{K} from A to B.

Lemma 1. Let A, B be objects of the locally finite category \mathcal{K} , and assume that there are monomorphisms φ from A to B and η from B to A. Then both φ and η are isomorphisms.

Proof. Consider the morphisms $(\varphi \eta)^n$ (n=1, 2, ...). Since \mathscr{K} is locally finite there exist k, m>0 such that

$$(\varphi\eta)^k = (\varphi\eta)^{k+m}.$$

Now $\varphi \eta$ being a monomorphism, this implies

(1)

$$(\varphi\eta)^m = id_A$$
,

i.e. putting $\eta' = \eta(\varphi \eta)^{m-1}$, we have $\varphi \eta' = id_A$. Multiplication of (1) from the left by η gives $(\eta \varphi)^m \eta = \eta \cdot (\varphi \eta)^m = \eta$; since η is a monomorphism, it follows that

$$(\eta \varphi)^m = \eta' \varphi = id_B.$$

Hence η' is the inverse of φ and thus φ is an isomorphism. Similarly η is an isomorphism.

Remark. Obviously, Lemma 1 remains true if we consider only the subcategory determined by A and B.

¹) Recently A. PULTR (Prague) informed me that he also remarked the possibility of this generalization and obtained similar results.

L. Lovász

Let M(A, B) be the set of all monomorphisms of A to B. If P is an equivalence relation on the set S(X) of all morphisms to X, we denote by H(P, A) the set of those morphisms $\varphi \in H(X, A)$ which satisfy $\alpha \varphi = \alpha' \varphi$ for every $(\alpha, \alpha') \in P$.

Lemma 2. Let A, B, X be objects in the locally finite category \mathscr{K} and assume |H(P, A)| = |H(P, B)| for every equivalence-relation P on S(X). Then |M(X, A)| = |M(X, B)|.

Proof. We may assume \mathscr{K} and thus S(X) are finite. Obviously, $\varphi \in M(X, A)$ iff $\varphi \notin H(P, A)$ except P is the identity relation j on S(X). Hence, by sieving we get

$$(2) \quad |M(X,A)| = \sum_{k \ge 0} (-1)^k \sum_{P_1, \dots, P_k \ne j} |H(P_1, A) \cap \dots \cap H(P_k, A)| = |$$
$$= \sum_{k \ge 0} (-1)^k \sum_{P_1, \dots, P_k \ne j} |H(P_1 \lor \dots \lor P_k, A)|,$$

where $P_1 \lor \cdots \lor P_k$ means the least equivalence-relation containing $P_1 \cup \cdots \cup P_k$ (the member corresponding to k=0 is |H(j, A)| = |H(X, A)|).

Now |M(X, B)| can also be expressed by a formula like (2) and the two right hand sides are equal by assumption. Hence the statement follows.

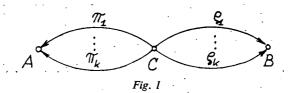
Remark. If the condition of the lemma holds for X=A and X=B then |M(A, B)| = |M(A, A)| > 0 and |M(B, A)| = |M(B, B)| > 0, thus by Lemma 1, A and B are isomorphic.

Lemma 3. Let (π_1, π_2) be a (projective) direct product; $\pi_1 \in H(AB, A)$, $\pi_2 \in H(AB, B)$. Then for any object X and equivalence-relation P on S(X), $|H(P, AB)| = |H(P, A)| \cdot |H(P, B)|$.

Proof. It is easy to verify that a $\varphi \in H(X, AB)$ belongs to H(P, AB) iff $\varphi \pi_1 \in H(P, A)$ and $\varphi \pi_2 \in H(P, B)$. Hence the proposition follows.

We prove now that the kth root is unique in any locally finite category.

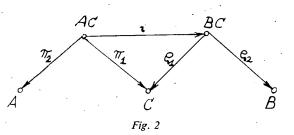
Theorem 1. Let $(\pi_1, ..., \pi_k)$ and $(\varrho_1, ..., \varrho_k)$ be two (projective) direct decompositions of the same object C of the locally finite category \mathscr{K} and let $\pi_1, ..., \pi_k \in H(C, A), \varrho_1, ..., \varrho_k \in H(C, B)$ (Fig. 1). Then A and B are isomorphic.



320

Proof. By Lemma 3 we have $|H(P, C)| = |H(P, A)|^k = |H(P, B)|^k$ for any equivalence relation P on any S(X). Hence |H(P, A)| = |H(P, B)|. By the remark following Lemma 2, this implies that A, B are isomorphic.

A question analogous to Theorem 1 is whether the following diagram (Fig. 2) implies that A and B are isomorphic (ι is isomorphism, π_1 , π_2 , ϱ_1 , ϱ_2 direct products).



This is not the case in general but we have

Theorem 2. If in Fig. 2 both A and B have morphisms into C then they are isomorphic.

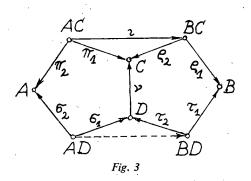
Proof. Let P be an equivalence relation on S(X) where X is some object. By Lemma 3,

 $|H(P, A)| \cdot |H(P, C)| = |H(P, AC)| = |H(P, BC)| = |H(P, B)| \cdot |H(P, C)|.$

Now if $H(P, C) \neq \emptyset$ then |H(P, A)| = |H(P, B)|. But this also follows if $|H(P, C)| = = \emptyset$, since then both H(P, A) and H(P, B) are empty. Hence by Lemma 2, A and B are isomorphic.

Now we consider the case when Theorem 2 cannot be applied.

Theorem 3. In the diagram of Fig. 3, AD and BD are isomorphic $((\pi_1, \pi_2), (\varrho_1, \varrho_2), (\sigma_1, \sigma_2), (\tau_1, \tau_2)$ are direct products, ι is an isomorphism).



11 A

The proof is very similar to that of Theorem 2, therefore we omit it.

Theorem 4. In the diagram of Fig. 2 one can always find an isomorphism ι such that the diagram commutes.

Proof. Denote by \mathscr{K}^* the category of those morphisms φ which are in H(AC, AC) and satisfy $\varphi \pi_1 = \pi_1$; or in H(AC, BC) and satisfy $\varphi \varrho_1 = \pi_1$; or in H(BC, AC) and satisfy $\varphi \pi_1 = \varrho_1$; or in H(BC, BC) and satisfy $\varphi \varrho_1 = \varrho_1$. It is easily seen that these morphisms form a category indeed. We denote the set of morphisms, monomorphisms etc. in \mathscr{K}^* by $H^*(X, Y)$, $M^*(X, Y)$ etc.

Let P be an equivalence relation on S(X) where X=AC or BC. It is enough to show

(3)
$$|H^*(P, AC) = |H^*(P, BC)|,$$

since then by the remark after Lemma 2 the statement follows.

Consider the pairs (δ, φ) where $\delta \in H(X, C)$ and $\varphi \in H^*(P, AB)$. Their number is $|H(X, C)| \cdot |H^*(P, AC)|$. We attach to every such (δ, φ) an (ε, ψ) where $\varepsilon \in H(X, C)$ and $\psi \in H^*(P, BC)$. Let φ^* be defined by

and set

$$\varphi^* \pi_1 = \delta, \quad \varphi^* \pi_2 = \varphi \pi_2,$$
$$\psi^* = \varphi^* \iota, \quad \varepsilon = \psi^* \varrho_1.$$

Define
$$\psi$$
 by

$$\psi \varrho_1 = \begin{cases} \pi_1 & \text{if } X = AC, \\ \varrho_2 & \text{if } X = BC, \end{cases} \quad \psi \varrho_2 = \psi^* \varrho_2.$$

Then, obviously, $\psi \in H^*(P, BC)$ and $\varepsilon \in H(X, C)$, and the correspondence is oneto-one since the argument defining (ε, ψ) can be converted. Hence the number of pairs (ε, ψ) ($\varepsilon \in H(X, C)$, $\psi \in H^*(P, BC)$ is also $|H(X, C)| \cdot |H^*(P, AC)|$, and since $H(X, C) \neq \emptyset$, (3) follows.

References

 L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hung., 18 (1967), 321-328.
L. Lovász, On the cancellation law among finite relational structures, Periodica Math. Hung., 1 (1971), 145-156.

(Received March 15, 1971)