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In this note we introduce the concept of a quasi-semi-prime ideal in an associa-
tive ring as a generalization of the notion of a semi-prime ideal. We consider the 
class of rings in which all ideals have this property. This class is shown to be a non-
hereditary radical class in the sense of Kurosh. As an application we show that the 
existence of a lattice isomorphism between the lattice of (two-sided) ideals in a ring R 
and the lattice of ideals in the ring Rn of nXn matrices over R, is equivalent to the 
fact that R belongs to the mentioned radical class. 

1. The ¿-radical of a ring 

D e f i n i t i o n 1. An ideal Q in a ring R may be called a quasi-semi-prime ideal 
if from RARQQ, where A is an ideal in R, it follows that AQQ. 

The following two theorems are easy consequences of this definition. 

T h e o r e m 2. For an ideal Q of a ring R the following statements are equivalent: 
(i) Q is a quasi-semi-prime ideal in R. 
(ii) If a is an element of R such that RaR ^ Q, then a£Q. 

T h e o r e m 3. For a ring R the following statements are equivalent. 
(i) All ideals in R are quasi-semi-prime. 
(ii) Each element a of R belongs to the corresponding ideal RaR. 
(iii) Each ideal A of R satisfies the relation RAR = A. 

We shall make particular use of the second condition of the latter theorem. 
For convenience we introduce the following terminology: An element a of a ring 
R is called a A-element if adRaR. A ring R is called a A-ring if every element of R 
is a A-element. An ideal A of a ring is called a A-ideal if A is a A-ring. A ring is said 
to be A-semi-simple if it contains no non-zero A-ideals. We show that the class of 
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A-rings is a radical class according to the definition by K U R O S H as adapted by D I -

VINSKY ( c f . [2]). 

Firstly, we note that the homomorphic closure of this class of rings follows 
directly by applying the operation preserving properties of ring homomorphisms. 

Secondly, it is obvious that the zero ideal of an arbitrary ring is a A-ideal. To 
show that every ring contains a unique maximal A-ideal, we verify the following 

L e m m a 4. The union X(R) of all the X-ideals of a ring R is a A-ideal in R. 

P r o o f . Let A and В be A-ideals in R and let J be an arbitrary element of A + B. 
Then j = a+b, where a£A and b£B. Since A is a A-ideal in R, there exist elements 
Xi, j>; in A such that a=Ixiayi. Denoting the element £х ;(а+й).у ; by c, we can 
write: 

a + b — с = a + b — Ix-t(a + = b — Ix^by^. 

Hence it follows that a + b — c£B. Since В is a A-ideal in R, there exist elements uJy Vj 
in В such that i м. 

a + b — с = Iuj(a + b — c)vj. 

It follows that 

a + b = Ixt (a + b) у ¡ + luj (a + b) Vj - luj [Ix, (a + b) j,] Vj. 

Since clearly xt, yh Uj, Vj, UjXt, y^jdA+B, we have that s is a A-element in A+B. 
Therefore A +B is a A-ideal in R. 

Finally, since each element of the union of all A-ideals of R belongs to thej sum 
of a finite number of these ideals, it is clear that every such element is a A-element 
in 1{R). Therefore X(R) is a A-ideal in R. This completes the proof of the lemma. 

There remains to show that the factor ring R/X(R) is A-semi-simple. ; 

L e m m a 5. The factor ring R//.(R) contains no non-zero X-ideals. 

P r o o f . Let HjX{R) be a A-ideal in R/X(R) and let h + X(R) be an arbitrary 
element of H!X(R). Then there are elements x ; , yt in H such that 

h + X(R) = X(xi + X(R))(h + A(R))(yi + X(Rj) = Zxihyi + X(R). 

This implies that h — А ( Д ) , and since А(й) is a A-ideal in R, it follows that 
h — IXfhyi = Zuj(h — IXihy^Vj for some Uj,Vj£X(R). Therefore 

h = Exjiyi + lujhvj — Luj [Ix, hy^Vj. 

Since Uj ,VjeX(R)^N, it follows that x h y h Uj, Vj, y . v ^ H . The last equality 
therefore shows that Я is a A-ideal in R, and accordingly it must be contained in 
X(R). Therefore H=X(R), and HjX(R) is the zero ideal in RjX(R). This completes 
the proof of the lemma. 
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T h e o r e m 6. The property X is a radical property. 

Being a radical property, /1 satisfies the relation X(I) £ I CM (R) for an arbitrary 
ideal I in any ring R. The reverse inclusion, however, does not hold in general; for 
instance, EHX(Z) — E gj X(E) = 0, where E denotes the ring of even integers 
and Z the ring of all integers. Thus it follows that X is not hereditary. 

We conclude this section by comparing the ¿-radical property with those be-
tween the Baer—McCoy radical property ft and the upper radical property <p deter-
mined by the class of all fields. 

T h e o r e m 7. The X-radical property is independent of all radical properties % 
such that — 

P r o o f . Every ideal of a ¿-radical ring R is quasi-semi-prime. Therefore R3QR2 

implies that RQR2, so that R2=R. Thus it follows that a nilpotent ring is not 
¿-radical, and consequently fii^X. On the other hand all fields are ^-semi-simple 
and at the same time /.-radical, so that The proof is completed. 

This independence was to be expected since the Baer—McCoy radical, for 
instance, is a measure for the presence of nilpotent ideals in a ring, while the ¿-radical 
measures the presence of "well-behaved" ideals such as regular ideals and simple 
non-trivial ones. Where semi-simplicity with respect to / is of special interest from 
a structural point of view, the emphasis must therefore be placed on radicality 
with respect to X. The following section deals with an application in this respect. 

2. Rings of nXh matrices over a ring 

Although the ring R under consideration needs not possess a unit element, 
we still use the matrix units E¡j in a formal way: If x£R, then xEu is to be inter-
preted as the matrix in R„ with the element x at the intersection of the i,h row and j'lh 

column and the zero element of R elsewhere. 

T h e o r e m 8. An ideal Q in a ring R is quasi-semi-prime if and only if Q„ is a 
quasi-semi-prime ideal in Rn. 

P r o o f . Suppose that Q is a quasi-semi-prime ideal-in R and let a = ZaijEiJ 

be any element of Rn such that RnaRnQQn. If then akm$ Q for some k, m£ 
€{1, 2, . . . , n}. Since Q is a quasi-semi-prime ideal in R, we have that RakmR%Q, 

that is, there exist elements x and y in R such that xakmy $ Q. But if this was the 
case it would follow that (xEkk)a(yEmm) = xakmyEkm$. Q„. However, this is impossible, 
since R„aRn^Q„. Therefore a£Qn, and we have that Qn is quasi-semi-prime in Rn. 

Conversely, suppose that Qn is a quasi-semi-prime ideal in Rn, and let a£R 
such that RaRQQ. We shall show that R„yR„QQn, where y = EaEu. An arbitrary 
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element of R„yR„ is a finite sum of elements of the form 

y' = (XXijE-.jXXaE^ZyijEij), 

which is the sum of nXn matrices of the form xpraysqEpq. Since RaR^Q, it fol-
lows that xpraysq€_Q, and hence y'£Qn. Therefore RnyRnQQn. Since Q„ is a quasi-
semi-prime ideal in Rn, it follows that y = EaEu^Qn, and thus that a(iQ. Therefore 
Q is a quasi-semi-prime ideal in /?..This completes the proof of the theorem. 

To prove our final result, we shall need the following fact (cf. [3]). 

L e m m a 9. If Jl is an ideal in the ring R„ then the set M of all elements at the 
intersections of the first rows and first columns of matrices in Jl is an ideal in R. 

T h e o r e m 10. The ideals of the ring R„ are of the form M„, where M is an ideal 
in R, if and only if R is a k-radical ring. 

P r o o f . Suppose that R is a A-radical ring. Let Jl be an arbitrary ideal in Rn, -
and let M be the ideal in R associated with Jl as in Lemma 9. We show that Jl—Mn. 
Let a = ZaijEij£Jl. Then, for arbitrary x,y£R, one has 

xarsyEl, = (xEu) (la¡j Eu) (yEsl) € Jt. 

Thus, by definition of M, we have that^xarsy£ M. Since this is true for arbitrary 
x,y(LR, it follows that Ra^RQM, and the fact that M is a quasi-semi-prime ideal 
in R ensures that ars£M. The latter relationship, being true for all r, s£ {1, 2, . . . , «}, 
yields the fact that a £ M n . Therefore JfQMn. 

If, on the other hand, m is any element of M, then there exists a matrix 2,777ij£'ij 

in Ji with W n = m and it follows that 

xmnyEpq = (xEpl)(ImijEiJ)(yElci)eJ/, 

that is, xmyEpq£Jt, where x and y are arbitrary elements of R and p, q £ {1, 2, . . . , «}. 
Thus every finite sum of the form IXimyiEpq, (x^y^R), belongs to JL Since R 
is A-radical, it follows that mEpq£JI for every m^M. Consequently Mn^. Ji, and 
we have that Jt= Mn. 

Conversely, suppose that every ideal in Rn has the form M„, where M is an ideal 
in R, and let A be any ideal in R. Then the sets ££ and of matrices in Rn with entries 
running through the ideals A, RA and AR as indicated in 

A A. .. A 'A AR. .AR 
RA RA- -RA 

and 
A AR. .AR 

RA RA- ••RA A AR. .AR. 

respectively, are obviously ideals in Ra. By the hypothesis on Rn it follows that 
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£> = <%=A,,=(RA)„=(AR)„. Hence we have A=RA=AR, and it follows tha t 
RAR—A. The required result follows from Theorem-3' (iii). 

By the preceding two theorems we obtain the following 

C o r o l l a r y 11. The ring Rn is X-radlcal if and' only if R is X-radical. 
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