On convergence properties of operators of class \mathscr{C}_{ρ}

By W. MLAK in Kraków (Poland)

In the preceding paper¹) G. ECKSTEIN proved that if a (bounded, linear) operator T on a (complex) Hilbert space \mathfrak{H} belongs to a class \mathscr{C}_{ϱ} ($\varrho > 0$)²) then $||T^{*n}f||$ converges as $n \to \infty$ for every $f \in \mathfrak{H}$. We are going to give another proof of the same statement, and of some related convergence properties.

We assume once for all that T is of a class \mathscr{C}_{ϱ} ($\varrho > 0$) so that it has a unitary ϱ -dilation on some Hilbert space $\Re(\supset \mathfrak{H})$, i.e. a unitary operator U such that

 $T^n f = \varrho P U^n f$ for $f \in \mathfrak{H}$ and n = 1, 2, ...,

P being the orthogonal projection of \Re onto \mathfrak{H} . We set $\mathfrak{M}_{+} = \bigvee_{n=0}^{\infty} U^{n} \mathfrak{H}$.

The following lemma is crucial for our purposes:

Lemma. If $h \in U^{n+1}\mathfrak{M}_+$ for some $n \ge 0$ then $Ph = T^n P U^{-n}h$.

Proof. Since $U^{n+1}\mathfrak{M}_+$ is spanned by the elements of the form $h=U^{n+i}f$ $(f\in\mathfrak{H}; i\geq 1)$ it suffices to consider such an h. Then,

$$Ph = PU^{n+i}f = \frac{1}{\varrho}T^{n+i}f = \frac{1}{\varrho}T^nT^if = \frac{1}{\varrho}T^n \cdot \varrho PU^if =$$
$$= \frac{1}{\varrho}T^n \cdot \varrho PU^{-n}U^{n+i}f = T^nPU^{-n}h,$$

and the proof is done.

Denote by Q_n the projection onto $U^{n+1}\mathfrak{M}_+$. Then $Q = \lim Q_n$ exists and is the projection onto $\bigcap_{n=1}^{\infty} U^n\mathfrak{M}_+$. It follows from the lemma that $PQ_nh = T^nPU^{-n}Q_nh$ for every $h \in \mathfrak{R}$. Consequently, if $f \in \mathfrak{H}$, then $(h, Q_n f) = (PQ_nh, f) = (T^nPU^{-n}Q_nh, f) =$ $= (h, Q_n U^n T^{*n} f)$. It results that

 $Q_n f = Q_n U^n T^{*n} f$ for $f \in \mathfrak{H}$ and $n = 1, 2, \dots$.

13 A

¹) Sur les opérateurs de classe \mathscr{C}_{e} , Acta Sci. Math., 33 (1972), 345–352.

²) For references on \mathscr{C}_{e} classes see: B. SZ.-NAGY and C. FOIAS, *Harmonic Analysis of Operators on Hilbert Space* (London—Amsterdam—Budapest, 1970).

Now since $U^n T^{*n} f \in U^n \mathfrak{M}_+$ $(n \ge 0)$ we have for $g \in \mathfrak{R}$:

$$(U^n T^{*n}f, g) = (Q_n f, g) + (U^n T^{*n}f, (Q_{n-1} - Q_n)g).$$

The sequence $T^{*n}f$ is bounded and $Q_{n-1}-Q_n \rightarrow 0$. Hence,

(1) $U^{n}T^{*n}f \rightarrow Qf \quad as \quad n \rightarrow \infty, \quad weakly for every \quad f \in \mathfrak{H}.$

As $(U^n T^{*n} f, f) = \varrho (T^n T^{*n} f, f)$ for $n \ge 1$, we deduce from (1) that $||T^{*n} f||^2 \rightarrow - \varrho ||Qf||^2$. Thus we have proved:

(2)
$$||T^{*n}f||^2 \to \varrho ||Qf||^2$$
 as $n \to \infty$, for every $f \in \mathfrak{H}$.

As T^* is of class \mathscr{C}_e whenever T is, we have got a sharpening of ECKSTEIN's result. As weak convergence $u_n \rightarrow u$ implies strong convergence if and only if $||u_n|| \rightarrow ||u||$, we infer from (1) and (2) that the convergence (1) holds for some f in the strong

sense too if and only if $||Qf||^2 = \varrho ||Qf||^2$. This is the case for every f if $\varrho = 1$, and for f satisfying Qf=0 if $\varrho \neq 1$.

It is easy to give an example of operator T in $\mathscr{C}_{\varrho}(\varrho>1)$ for which Qf=0 if f=0. This is indeed the case for every unitary T since then $||f||^2 = \lim ||T^{*n}f||^2 = = \varrho ||Qf||^2$. Thus, in general, (1) does not hold true for strong convergence.

(Received March 1, 1972)

.

169 B. O.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES (SECTION KRAKÓW)