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1. Let X be a measurable space with a positive measure p and {f, (x)} a sequence
of u-measurable functions in X. On the measurable set £ C X, consider the Lebesgue
functions of the system { £, (x)}:

L =f

E

S AOAG)| i),

and for an index sequence v, <v;<... set
L, (E) = [ max L, (x)du(x).
: E Oéjén.

Recently we have proved the following theorem ([2], Theorem 2):
If E is of finite measure and L,(E)=K (n=0, 1, ...), further if {a,} is a sequence
~of real numbers such that Ya?<oo, thén the series Ya, f, (x) converges on E a.e.
If no more than the uniform boundedness of the subsequence {Lv,. (E)}isrequired
then for the subsequence {s, (x)} of the partial sums

5.0 = 3 @ fi(®)
k=0

a similar statement could be proved only under a rather restrictive subcondition
(I2], Theorem 3). But it seems that an analogous statement without any restriction
could have a certain importance. In the following we shall prove it by suppressing,
besides the mentioned subcondition, also the inutile condition that E should have
a finite measure. More exactly, we shall prove the followirtg

Theorem 1. Let {a,} be an arbitrary sequence of real numbers with > a?<oo
and { f,(x)} an arbitrary sequence of p-integrable functions defined on the measurable
set EC X. Then the condition Lv"(E)éK (n=1, 2, ...) implies the convergence of the
sequence {s, (x)} on E a.e. ' ‘
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Theorem 1 has different consequences of various kind; one of them could open
a new way to the study of the convergence properties of certain function series
even if the corresponding Lebesgue functions do not form a bounded sequence.
One of these consequences concerns the series of weakly multiplicative functions, a
notion we introduced occasionally [3] and which is a vigorous generalization of the
stochastically independent functions. :

Definition. A system {¢,(x)} of p-integrable functions on E is called weakly
multiplicative, if the integrals / @, (0@, (x)...e, (x) du (x) exist for all finite collec-
v E H 2 n N -

tions of indices v, <v,<---<v, and

S 00 00,0 ... 9, (X du(x)| < =,

where the summation has to be taken for all finite collections of v, <v,<-..<v,.

We shall prove the convergence a.e. of the series >c¢,¢,(x) if >¢?<oo and
{@.(x)} is bounded. (We have already proved this [3] assuming the validity of our
present Theorem 1.) Then we shall study also the absolute convergence of such
series. _ ‘

The convergence a.e. of e, 0,(x) under D c2<eo generalizes a theorem
we proved earlier ([1], Theorem 1). Our present result is much stronger than
that earlier one; this can be seen by the following fact: FieDLER and TRAUTNER
proved [4] the existence of a complete bounded orthonormal system which does
not contain any infinite subsystem of multiplicatively orthogonal functions (to which
our earlier theorem refers). Moreover, FRIESS and TRAUTNER [5] proved that the
bounded complete orthogonal systems containing an infinite multiplicatively ortho-
gonal subsystem are in some sense “rare”. Whereas we shall see that every bounded
“infinite orthonormal system contains an infinite weakly multiplicative subsystem.

2. Turning to the proof of our Theorem 1 we first prove an inequality which
plays a similar role as the Rademacher—Menchov inequality in the theory of ortho-
gonal series. '

Let n=m be two fixed positive integers and denote by m(x) and #(x) measurable
functions taking only integer values between m and n, ie.. m=m(x)=n(x)=n.
If r,(¢) denotes the kth Rademacher function defined in 0=t=1, ie. r./(t)=
=3$ign sin 2" xt, we can write i

1

Sv,,‘(x)(x) = Sty () = f

o K

Vn Va(x) .
_Z-’ are () 2 n@OfE)d.

=V xyt1

Hence, denoting by P and N the sets on which s‘,n(x)(x)—s‘,m(x)(x)zo or <=0, respec-
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tively, we get by Schwarz’s inequality

Lo (P) = [ [0,y (0) = Sy (Ot () =

é{j L;Z ar(t) zdt_/[f 5

m(x)

L
rk(t) ﬁ‘(x)d)u(x-)] dt} =
3

={ Safff s n0h 5 rk(t)ﬂ(y)dzdy(x)du(y)} =

k=v,, PPO k=Vmatl =Vt 1

{2 a? f / s ﬁ(x)ﬁ(y)dﬂ(x)du(y)}

k=v,, Vm(x,y)

where v, )=max {Vois)s Vmgyt and Vo, y=min {v,), Vu,y}. Write the sum in the
last integral in the following form:

Vnx,y)

k= Vm(x,y) +1 k=0 k=0

Then we get by definition of L, (x) and L, (E)

Im,"(P)' { Z ak ff[ v:(xoy)

l\vm
k=v,,

| 3
™)/ (y>| + ' zof (xm(y)l] du(x) d#(y)} =

dp (x) du(y) +

W

Z fk(x)fk(y)

k=2 ’fk(x)fk(y)\ du(x) d#(y)]} =

. . ,
év'{ > at [2 [ L@ due)+2 [ L‘,m(x)(x)dy(x)]} = {4k > a,f-Lv”(E)} :

The same estimate holds true for the integral of Svm(,,,(x)_sv"(x)(x) extended over
the set .V, so we get finally :

1
7
M S 181200 ) = 54y @ () = {16Lv,,(E)kZ af} .
E s
This is the inequality we intended to prove.

3. From (1) the proof of Theorem 1 follows. Indeed, choose for m(x) the least
integer =m and for n(x) the largest integer =n such that

lv,.(x)(x) S‘m(x)(X)l - max IS (X) S (X)l

mS;SJS
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Denote by 4,, , the set on which

Suney ) = Suny @ =& (6> 0).

From (1) and the inequality

el Amal = [ 154,00 () = Sy D) A (%)
E
one gets the estimate

3
| Ayl = 6! {IGLVH(E) > a,%} ,
k=v

m

where |4,, ,| denotes the p-measure of 4, ,. Since a7 <eo, for every &>0 there
- exists an index m, such that
2 Vi » 84
a —_— m=m,),
® Sd<qg (n=m

where K is the common bound of the numbers L, (£). Hence [Am ol <€ for every
m=m, and n=m. From the definition of m(x) and n(x) it follows that, for m fixed,
the sequence {|svn(x)(x)—svm(x)(x)|} is not decreasing if n— <. Then, for m fixed,
the sequence of sets {4,, ,} is also not decreasing. Therefore the set

A(m) = lim A, ,

n—+oo -

exists and has measure |4(m)|=¢ for an arbitrary m=m,.
Put m, > m, then

Is\’,..(x) (x) - svm(x) (x)l é !Svn(x) (x) - S"ml(x) (x){’

hence A(mJCA(m). Or if x ¢ A(m) we have

150,00 = 50, GO = 180,00, )=S0y <€

for an arbitrary n=m. So we got finally the estimate

©) I8y, (x) =5, () < &

for every m=m, and an arbitrary n=m, I‘jrovided x ¢ A(m,). The measure of A(m,)
being =s¢, the inequality (3) holds true except the points of a set of measure =e.
Repeating the same order of ideas with &/2; ¢/4, ... instead of &, we obtain a
sequence of sets A(mtlz), A(m,,), ... with measures =¢/2, =¢f4, ... on the com-
plements of which (3) holds true with &/2, ¢/4, ... instead of ¢. Form the set

A= U A(mslzk),
k=0
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then |4|=2¢ and, for x ¢ 4, we have
' £
|8y, () — s, ()] < £ (k=0,1,..)

for every n=m=m, ;. This means that {s'v"(x)} converges except perhaps on the
set A of measure =2¢ and the proof is complete.

4. We say that the function system {¢@,(x)} can be extended to a L, (E)-bounded

system {f,(x)}, if f, +1(x)=@,(x) and the system {f,(x)} has the property
L, (E)=K (n=1,2,...). From Theorem 1 we deduce immediately the following

Corollary. If a system {¢,(x)} can be extended to a L, (E) bounded system
{£, (%)}, then the ‘series 2, (p,,(x) converges on E a.c. under the sole condition

ZC <Z oo,

Indeed, if we set g,=c¢, fork=v,+1 (n=1,2,...) and a,=0 for every other
k, then we have '
. vat+1

2 afi (x) Z"; @ (%)

and the corollary follows from Theorem 1.

We would like to emphasize that this corollary contams eventually a possible
way for the study of the convergence properties of different series > ¢,¢,(x). Con-
sidering namely the circumstance that we do not need more than the u-integrability
of the functions f;(x), it might be possible that, by a suitable choice of the indices
v, and the functions f;(x) which we insert between ¢,(x) and ¢, , (x), one could
extend different systems {¢,(x)} to a L, (E)-bounded system {f,(x)}, and so con-
clude the convergence a.e. of >e¢,9,(x) if JcZ<eoo. It would be very interesting
if one could apply this method to some classical orthogonal system.

5. We defined (in Sec. 1 the notion of a weekly multiplicative system {¢,(x)}.
For such systems we can apply the above sketched method to prove the following

Theorem 2. If {9,(x)} is weakly multiplicative on the set EC X of finite meas-
ure, further if |@,(x)|=M, with M, =1, then the condition Jc:M? < zmpltes the
convergence of the series 2.c,, (x) on E a.e.

Denote by {i,(x)} the product system of {¢,(x)/M,}, i.e. Wo =1 and Y,(x)=
= (@0, 4100 o @y 1 (M 41 <. My ) fOr n= 2914 2%4 -4 2% Then
Yan-1(X)= 0, (x)/ M,

and it is easy to see that

2n—1

@ Z weno = 11 "’—(’jfj’&]
k



6 ) G. Alexits

We want to show that the product system {,(x)} is L,._,(E)-bounded, hence
{0,(x)/M,} is imbedded in a L,._,(E)-bounded system. Taking into account
|@, (x)|/M,=1, the right hand side of (4) is non-negative; so we can omit the sign of
absolute value in the integral defining L,._; (x), hence

L@ = [ 73 h@UOId0) =

= 3 I fum a0 = 3 | [hodo)] = c.,
=0 K =o'p

where C,, C,, ... are absolute constants. The last inequality is a consequence of the
weak multiplicativity of {¢,(x)}. In fact, denoting by {y*(x)} the product system of
{®, (x)} we have by assumption .

3| Jrod)| = ¢,
n=0"p

and, because bf M, =1,

f Yva(»)du(y) ] m

/ Y (»)dp (y)‘

= S’ f w:(y)dn(y)": C;.

The sequence {L,._,(x)} being uniformly bounded on E, we get L,._,(E)=C;
(n=1, 2, ...) by the finiteness of |E|. Therefore we can apply our corollary to the series

Pn(X)

M, M, and our statement follows.

The property to be a weakly multiplicative system is, of course, independent
of the order of the terms. Hence, in the statement of Theorem 2 we can say.
unconditional convergence a.e. instead of -simple convergence a.e. Theorem 2
immediately implies different forms of the strong law of great numbers (see [3]).
But P. REvEsz [6] proved that also the law of iterated logarithm can be extended, in
a proper form, to weakly independent systems.

6. Now we are looking for the absolute convergence of expansmns in the func-
tions (p,,(v) of a weakly multiplicative system.

Theorem 3. Let {¢,(x)} be a bounded weakly multiplicative system on the set
Ec X of finite measure and assume

O ' lim [ |@.(x)|du(x) = q = 0.

n—~eo p
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If the p-integrable function f(x) is one-sided bounded and the expansion coefﬁciénts
of f(x) in the product functions ,(x)

a, = [1()¥a(x)du(x)

vanish except perhaps the coefficients
amr == [ £ (x) (),
tlzen the series |c,| is convergent.

We may assume without restricting-the generality that [@,(x)[=1 for.all n.
Indeed we have |p,(x)|=C, by assumption and the absolute convergence of the
. series Sc,@,(x) is equivalent to that of C, Jc,¢,(x)/C,. '
Rearrange {¢,(x)} in an arbitrary way: {¢, (x)}, and put

Sy ({vk} x) c‘k(p‘k(x)

Denote by {y* (x)} the rearranged product system of {p,(x)} corresponding to the
arrangement {(p‘ (x)}. Since the expansion coeﬁiments of f(x) in y; (x) vanish for
Y ()= @, (x), i.e. for k¢2" 1 we get

© st = [0 3 0.00.@dO= [10 3 VOREAUO.
E k=1 . E =

By assumption f(¢) is bounded from one side, for 1nstance JHO=M, s0 we 1nfer
from (6) and

2n—1

2 UOU = I 140,000, (9] = 0

the estimate

O sl =M 3 Wl [ROwo] =4 3| [Roduo] = cm
- K k=0 'g ,

Furthermore, in a similar way we obtain

® =) = J70 I 1-0u 00, ) =

= M 3 Wiel] [ O] = Cm
k= E

The estimates (7) and (8) give the result
I, ({ve}, X)| = Cs M n=1,2,..)

and this common bound holds good for every rearrangement of the series D¢, o, (x)
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Hence, according to a classical theorem of Riemann, the convergence of the series
Dleaa ()] follows. So the sum of this series is bounded on any E’ & E with |[E" >0
therefore

> lel [ 1@a@ldu) <<=,
n= E
and so we get by (5) :

as we have stated.

7. In section 1 we mentioned that the bounded complete orthonormal systems
containing an infinite multiplicatively orthogonal subsystem are “rare” in some
sense. Now we will show that every bounded infinite orthonormal system on a set
of finite measure, even if it is not complete, contains an infinite weakly multiplicative
system. .

Let {®,(x)} be a bounded infinite orthogonal system on the set E. The expansion
coefficients of every L‘f -integrable function tend to zero, hence there exists an index
n, such that

| [0 du) §512__

Set ¢, (x)= &, (x). Suppose, we have chosen the functions @100, P2(%), ooy @ (X)
from {®,(x)} in such a way that for every product Oy Py, Oy, with indices v, <

<vy<--<vy=n—1

J de 0| = rims

holds true. All the finite products of the ¢,’s being Li -integrable, for every product
@y, @,,...9,, there exists a number n,, depending on the choice of the product,
such that B

[0 [ o,0de)] = 5

for every n=n,,. There are 2"~ ! different products of this form, hence at most
2"~! indices n,,. Denote by ny the greatest of them and set ¢,(x)= ®, (x). Then

| [ 0u(®) jlj1 ., () du(x)| = =

In this way we defined the infinite system {¢,(x)} by induction. To see that this
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system is weakly multiplicative, form all~different products @y, ¢y, @y, Of the
first n functions (pl, @35 ..» @,- There are 2" such products, hence

ON Z| Jou @009 G| = 5

where the sum has to be taken over all 2” different products. The sum S of the absolute
values of integrals of all possible finite products formed with the functions of the

system {@,(x)} is less than the sum of the sums (9) taken for n=1, 2, .... Hence
s< > L
=i on -

This estimate means just that {@,(x)} is weakly multiplicative.
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