# Structure of operators with numerical radius one 

By T. ANDO in Sapporo (Japan)<br>Dedicated to Professor Béla Sz.-Nagy on his sixtieth birthday

## 1. Introduction

The numerical radius $w(T)$ of a bounded linear operator $T$ on a Hilbert space $\mathfrak{5}$ is defined by

$$
w(T)=\sup \{|(T h, h)|:\|h\| \leqq 1\}
$$

Important characterization of operators with numerical radius not greater than one was discovered by Berger and subsequently generalized by Sz.-NAGY and Foins (see [1] I-1): $w(T) \leqq 1$ if and only if there is a unitary operator $W$ on a Hilbert space $\mathfrak{\Omega}$, containing $\mathfrak{S}$ as a subspace, such that for all $h \in \mathfrak{H}$ and $n \geqq 1$

$$
T^{n} h=2 P W^{n} h
$$

where $P$ is the projection from $\mathfrak{\Omega}$ to $\mathfrak{G}$. $W$ is called a unitary 2 -dilation of $T$.
The key result of the present paper is an intrinsic characterization of operators with numerical radius not greater than one (Theorem 1): $w(T) \leqq 1$ if and only if there are a selfadjoint contraction $A$ and a contraction $B$ such that $T=(1+A)^{\frac{1}{2}} B(1-A)^{\frac{1}{2}}$. This factorization theorem makes it possible to construct a unitary 2-dilation in simple matricial form just as the Schäffer description of a unitary dilation of a contraction (Theorem 2).

## 2. Factorization

$\mathfrak{H}$ is a Hilbert space, and $\oplus_{j=-\infty}^{\infty} \mathfrak{H}_{j}$ denotes direct sum of copies of $\mathfrak{H}$ in which $\mathfrak{H}$ is identified with $\cdots \oplus 0 \oplus \mathfrak{S}_{0} \oplus 0 \oplus \cdots$ in the canonical way. A bounded linear operator $S$ on $\oplus_{j} \mathfrak{S}_{j}$ can be represented by its matricial components, [ $S_{j, k}$ ], where $S_{j, k}$ is an operator on $\mathfrak{H}$, considered as an operator from $\mathfrak{H}_{k}$ to $\mathfrak{H}_{j}$.

Lemma 1. If $w(T) \leqq 1$, there is a positive contraction $X$ such that

$$
(X h, h)=\inf _{g}\left(\left[\begin{array}{cc}
1 & \frac{1}{2} T^{*}  \tag{1}\\
\frac{1}{2} T & X
\end{array}\right]\left[\begin{array}{l}
h \\
g
\end{array}\right],\left[\begin{array}{l}
h \\
g
\end{array}\right]\right)
$$

Moreover $X$ is the maximum of all positive contractions $Y$ for which $\left[\begin{array}{cc}1-Y & \frac{1}{2} T^{*} \\ \frac{1}{2} T & Y\end{array}\right]$ is positive.

## Proof. Suppose that $W$ is a unitary 2-dilation of $T$ on a Hilbert space $\Omega \supseteqq \mathfrak{G}$.

 Let $X_{0}=1$ and $X_{n}$ be the compression of $1-Q_{n}$ to $\mathfrak{5}$ where $Q_{n}$ is the projection to $\bigvee_{j=1}^{n} W^{* j}(\mathfrak{H})$. This means that$$
\begin{gathered}
\left(X_{n} h, h\right)=\inf _{h_{1}, \ldots, h_{n} \in s}\left\|h+\sum_{j=1}^{n} W^{* j} h_{j}\right\|^{2}= \\
=\inf _{h_{1}, \ldots, h_{n}}\left\{(h, h)+\left(h, \sum_{j=1}^{n} W^{* j} h_{j}\right)+\left(\sum_{j=1}^{n} \dot{W}^{* j} h_{j}, h\right)+\sum_{j, k=1}^{n}\left(W^{* j} h_{j}, W^{* k} h_{k}\right)\right\}= \\
=\inf _{h_{1}, \ldots, h_{n}}\left(\left[\begin{array}{ccc}
1 \frac{1}{2} T^{*} \ldots \frac{1}{2} T^{* n} \\
\frac{1}{2} T & 1 & \vdots \\
\vdots & \ddots & \vdots \\
\vdots & & 1 \frac{1}{2} T^{*} \\
\frac{1}{2} T^{n} & \cdots \cdots \frac{1}{2} T & 1
\end{array}\right]\left[\begin{array}{c}
h \\
h_{1} \\
\vdots \\
\vdots \\
h_{n}
\end{array}\right],\left[\begin{array}{c}
h \\
h_{1} \\
\vdots \\
\vdots \\
h_{n}
\end{array}\right]\right) .
\end{gathered}
$$

Since

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 \frac{1}{2} T^{*} & \cdots & \frac{1}{2} T^{* n} \\
\frac{1}{2} T & 1 & & \\
\vdots & \ddots & \vdots \\
\vdots & & 1 \frac{1}{2} T^{*} \\
\frac{1}{2} T^{n} & \ldots & \cdots & \frac{1}{2} T
\end{array}\right]=}
\end{aligned}
$$

$X_{n}$ admits the alternative representation

$$
\left(X_{n} h, h\right)=\inf _{h_{1}, \ldots, h_{n}}\left(\left[\begin{array}{cccccc}
1 & \frac{1}{2} T^{*} & & 0 & \cdots & 0 \\
& & \ddots & & \ddots & \vdots \\
\frac{1}{2} T & 1 & \ddots & \ddots & 0 \\
& \ddots & \ddots & \ddots & \ddots & \\
0 & & \ddots & \ddots & \frac{1}{2} T^{*} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \\
0 & \cdots & 0 & \frac{1}{2} T & & 1
\end{array}\right]\left[\begin{array}{l}
h \\
h_{1} \\
\vdots \\
h_{n}
\end{array}\right],\left[\begin{array}{l}
h \\
h_{1} \\
\vdots \\
h_{n}
\end{array}\right]\right)
$$

The corresponding representation for $X_{n-1}$ yields

$$
\left(X_{n} h, h\right)=\inf _{g}\left(\left[\begin{array}{cc}
1 & \frac{1}{2} T^{*}  \tag{2}\\
\frac{1}{2} T & X_{n-1}
\end{array}\right]\left[\begin{array}{l}
h \\
g
\end{array}\right],\left[\begin{array}{l}
h \\
g
\end{array}\right]\right)
$$

Since $X_{n}$ converges decreasingly to some $X$, transfer to limit in (2) leads to the relation (1).
Now if $\left[\begin{array}{cc}1-Y & \frac{1}{2} T^{*} \\ \frac{1}{2} T & Y\end{array}\right]$ is positive, $X_{n-1} \geqq Y$ implies by (1) and (2)

$$
\left(X_{n} h, h\right) \geqq \inf _{g}\left(\left[\begin{array}{cc}
1 & \frac{1}{2} T^{*} \\
\frac{1}{2} T & Y
\end{array}\right]\left[\begin{array}{l}
h \\
g
\end{array}\right],\left[\begin{array}{l}
h \\
g
\end{array}\right]\right) \geqq(Y h, h),
$$

hence $X_{n} \geqq Y$. Now $X \geqq Y$ follows from $X_{0}=1 \geqq Y$.
Theorem 1. The numerical radius of $T$ is not greater than one if and only if $T$ admits a factorization

$$
T=(1+A)^{\frac{1}{2}} B(1-A)^{\frac{1}{2}}
$$

with a selfadjoint contraction $A$ and a contraction $B$. Moreover in the set of such $A$ there exist the maximum $A_{\max }$ and the minimum $A_{\min }$ and the corresponding $B_{\max }$ (resp. the adjoint of $B_{\min }$ ) is isometric on the range of $1-A_{\max }\left(\mathrm{resp}\right.$. that of $1+A_{\min }$ ).

Proof. Suppose that $T$ admits the factorization. Then

$$
|(T h, h)|=\left|\left(B(1-A)^{\frac{1}{2}} h,(1+A)^{\frac{1}{2}} h\right)\right| \leqq \frac{1}{2}\left\{\left\|(1-A)^{\frac{1}{2}} h\right\|^{2}+\left\|(1+A)^{\frac{1}{2}} h\right\|^{2}\right\}=\|h\|^{2},
$$

which shows $w(T) \leqq 1$.
Conversely, if $w(T) \leqq 1$, by Lemma 1 there is a positive contraction $X$ with (1). Since (1) is equivalent to

$$
\left\|(1-X)^{\frac{1}{2}} h\right\|=\sup _{: g} \frac{\left|\left(\frac{1}{2} T h, g\right)\right|}{\left\|X^{\frac{1}{2}} g\right\|}
$$

with convention $0 / 0=0$, to each $h$ there corresponds uniquely $f$ in the closure of the range of $X$ such that

$$
X^{\frac{1}{2}} f=\frac{1}{2} T h \quad \text { and } \quad\|f\|=\left\|(1-X)^{\frac{1}{2}} h\right\|
$$

Thus there is a contraction $B_{\max }$ which is isometric on the range of $1-X$ and $\frac{1}{2} T=$ $=X^{\frac{1}{2}} B_{\max }(1-X)^{\frac{1}{2}}$. Now $A_{\max }=2 X-1$ meets the requirement. Given any factorization with $A$ and $B$ it follows with $Y=\frac{1}{2}(1+A)$ that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1-Y & \frac{1}{2} T^{*} \\
\frac{1}{2} T & Y
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1-A & T^{*} \\
T & 1+A
\end{array}\right]=} \\
& \quad=\frac{1}{2}\left[\begin{array}{cc}
(1-A)^{\frac{1}{2}} & 0 \\
0 & (1+A)^{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{cc}
1 & B^{*} \\
B & 1
\end{array}\right]\left[\begin{array}{cc}
(1-A)^{\frac{1}{2}} & 0 \\
0 & (1+A)^{\frac{1}{2}}
\end{array}\right]
\end{aligned}
$$

Since $\|B\| \leqq 1$ is equivalent to $\left[\begin{array}{cc}1 & B^{*} \\ B & 1\end{array}\right] \geqq 0,\left[\begin{array}{cc}1-Y & \frac{1}{2} T^{*} \\ \frac{1}{2} T & Y\end{array}\right]$ is positive. Then Lemma 1 shows $Y \leqq X$, hence $A \leqq A_{\max }$. The minimum operator $A_{\min }$ can be obtained so as $-A_{\min }$ is the maximum operator for $T^{*}$. This completes the proof.

In general $A_{\max }$ is different from $A_{\min }$. This is shown with the simple $2 \times 2$ matrix $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. In this case

$$
A_{\max }=\left[\begin{array}{rr}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A_{\min }=\left[\begin{array}{rr}
-1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right]
$$

In terms of the unitary 2-dilation $W$ the maximum and the minimum operators are given by the following formulas:

$$
A_{\max }=1-2 P Q_{-} P \quad \text { and } \quad A_{\min }=2 P Q_{+} P-1
$$

where $P$ is the projection to $\mathfrak{G}$ and $Q_{+}\left(\right.$resp. $\left.Q_{-}\right)$is the projection to $\bigvee_{n=1}^{\infty} W^{n}(\mathfrak{H})$ (resp. $\bigvee_{n=1}^{\infty} W^{-n}(\mathfrak{H})$ ).

Theorem 2. The numerical radius of $T$ is not greater than one if and only if there is a contraction $C$ such that

$$
\begin{equation*}
T=2\left(1-C^{*} C\right)^{\frac{1}{2}} C \tag{3}
\end{equation*}
$$

Under such factorization a unitary 2-dilation $W$ is realized as an operator on $\oplus_{j=-\infty}^{\infty} \mathfrak{G}_{j}$ with components:

$$
\begin{gathered}
W_{k+1, k}=1 \quad \text { for } k \geqq 1 \quad \text { or } \quad k \leqq-3, \\
W_{-1,-2}=\left(1-C C^{*}\right)^{\frac{1}{2}}, \quad W_{-1,-1}=C\left(1-C C^{*}\right)^{\frac{1}{2}}, \quad W_{-1,0}=C^{2} \\
W_{0,-2}=-C^{*}, \quad W_{0,-1}=\left(1-C^{*} \dot{C}\right)^{\frac{1}{2}}\left(1-C C^{*}\right)^{\frac{1}{2}}, \quad W_{0,0}=\left(1-C^{*} C\right)^{\frac{1}{2}} C \\
W_{1,-1}=-C^{*}, \quad W_{1,0}=\left(1-C^{*} C\right)^{\frac{1}{2}}
\end{gathered}
$$

and $W_{j, k}=0$ for other $j, k$.
Proof. If $w(T) \leqq 1$, by Theorem 1

$$
T=\left(1+A_{\max }\right)^{\frac{1}{2}} B_{\max }\left(1-A_{\max }\right)^{\frac{1}{2}}
$$

and $B_{\max }$ is isometric on the range of $1-A_{\max }$. Let $C=2^{-\frac{1}{2}} B_{\max }\left(1-A_{\max }\right)^{\frac{1}{2}}$. Then

$$
1-C^{*} C=1-\frac{1}{2}\left(1-A_{\max }\right)=\frac{1}{2}\left(1+A_{\max }\right)
$$

hence

$$
T=2\left(1-C^{*} C\right)^{\frac{1}{2}} C
$$

Suppose conversely that $T$ admits a factorization (3). It is well known (see [1]

I-5) that a unitary dilation $U$ of $C$ is realized as the operator on $\bigoplus_{j=-\infty}^{\infty} \mathfrak{S}_{j}$ with components

$$
\begin{aligned}
& U_{k+1, k}=1 \quad \text { for } \quad k \geqq 1 \quad \text { or } \quad \dot{k} \geqq-2, \\
& U_{0,0}=C, \quad U_{0,-1}=\left(1-C C^{*}\right)^{\frac{1}{2}}, \\
& U_{1,0}=\left(1-C^{*} C\right)^{\frac{1}{2}}, \quad U_{1,-1}=-C^{*},
\end{aligned}
$$

and $U_{j, k}=0$ for other $j, k$. Then $W$ in the assertion is written in the form $W \equiv V U^{2}$ where $V$ is the backward shift, that is,

$$
V_{j, k}=\delta_{j, k-1} \quad \text { for all } j, k ;
$$

hence $W$ is unitary. $W$ is a unitary 2 -dilation of $T$ if

$$
\begin{equation*}
\left(W^{n}\right)_{0,0}=\frac{1}{2} T^{n} \quad(n=1,2, \ldots) \tag{4}
\end{equation*}
$$

To prove (4) by induction, assume that

$$
\left(W^{n}\right)_{-k, 0}=0 \quad(k \geqq 2), \quad\left(W^{n}\right)_{-1,0}=C^{2} T^{n-1} \quad \text { and } \quad\left(W^{n}\right)_{0,0}=\frac{1}{2} T^{n}
$$

which is valid for $n=1$ by definition. Matrix multiplication shows

$$
\begin{gathered}
\left(W^{n+1}\right)_{-k, 0}=\left(W^{n}\right)_{-k-1,0}=0 \quad(k \geqq 2) \\
\left(W^{n+1}\right)_{-1,0}=C\left(1-C C^{*}\right)^{\frac{1}{2}}\left(W^{n}\right)_{-1,0}+C^{2}\left(W^{n}\right)_{0,0}= \\
=C\left(1-C C^{*}\right)^{\frac{1}{2}} C^{2} T^{n-1}+\frac{1}{2} C^{2} T^{n}=\frac{1}{2} C^{2} T^{n}+\frac{1}{2} C^{2} T^{n}=C^{2} T^{n}
\end{gathered}
$$

and

$$
\begin{aligned}
\left(W^{n+1}\right)_{0,0} & =\left(1-C^{*} C\right)^{\frac{1}{2}}\left(1-C C^{*}\right)^{\frac{1}{2}}\left(W^{n}\right)_{-1,0}+\frac{1}{2} T\left(W^{n}\right)_{0,0}= \\
& =\left(1-C^{*} C\right)^{\frac{1}{2}}\left(1-C C^{*}\right)^{\frac{1}{2}} C^{2} T^{n-1}+\frac{1}{4} T^{n+1} \\
& =\frac{1}{4} T^{n+1}+\frac{1}{4} T^{n+1}=\frac{1}{2} T^{n+1} .
\end{aligned}
$$

Here, besides the relation $\left(1-C^{*} C\right)^{\frac{1}{2}} C=\frac{1}{2} T$, the well-known formula (see [1] I-5)

$$
\left(1-C C^{*}\right)^{\frac{1}{2}} C=C\left(1-C^{*} C\right)^{\frac{1}{2}}
$$

is used. This completes the proof.

## Reference

[1] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland — Akadémiai Kiadó (Amsterdam—Budapest, 1970).

RESEARCH INSTITUTE OF APPLIED ELECTRICITY
HOKKAIDO UNIVERSITY, SAPPORO, JAPAN

