Structure of operators with numerical radius one

By T. ANDO in Sapporo (Japan)

Dedicated to Professor Béla Sz.-Nagy on his sixtieth birthday

1. Introduction

The numerical radius w(T) of a bounded linear operator T on a Hilbert space \mathfrak{H} is defined by

$$w(T) = \sup \{ |(Th, h)| : ||h|| \le 1 \}.$$

Important characterization of operators with numerical radius not greater than one was discovered by Berger and subsequently generalized by Sz.-Nagy and Foias (see [1] I-1): $w(T) \le 1$ if and only if there is a unitary operator W on a Hilbert space \Re , containing \Re as a subspace, such that for all $h \in \Re$ and $n \ge 1$

$$T^n h = 2PW^n h$$

where P is the projection from \Re to \Re . W is called a unitary 2-dilation of T.

The key result of the present paper is an intrinsic characterization of operators with numerical radius not greater than one (Theorem 1): $w(T) \le 1$ if and only if there are a selfadjoint contraction A and a contraction B such that $T = (1+A)^{\frac{1}{2}}B(1-A)^{\frac{1}{2}}$. This factorization theorem makes it possible to construct a unitary 2-dilation in simple matricial form just as the Schäffer description of a unitary dilation of a contraction (Theorem 2).

2. Factorization

 \mathfrak{H} is a Hilbert space, and $\bigoplus_{j=-\infty} \mathfrak{H}_j$ denotes direct sum of copies of \mathfrak{H} in which \mathfrak{H} is identified with $\cdots \oplus 0 \oplus \mathfrak{H}_0 \oplus 0 \oplus \cdots$ in the canonical way. A bounded linear operator S on $\bigoplus_{j} \mathfrak{H}_j$ can be represented by its matricial components, $[S_{j,k}]$, where $S_{j,k}$ is an operator on \mathfrak{H} , considered as an operator from \mathfrak{H}_k to \mathfrak{H}_j .

Lemma 1. If $w(T) \le 1$, there is a positive contraction X such that

(1)
$$(Xh, h) = \inf_{g} \left(\begin{bmatrix} 1 & \frac{1}{2}T^* \\ \frac{1}{2}T & X \end{bmatrix} \begin{bmatrix} h \\ g \end{bmatrix}, \begin{bmatrix} h \\ g \end{bmatrix} \right).$$

Moreover X is the maximum of all positive contractions Y for which $\begin{bmatrix} 1-Y & \frac{1}{2}T^* \\ \frac{1}{2}T & Y \end{bmatrix}$ is positive.

Proof. Suppose that W is a unitary 2-dilation of T on a Hilbert space $\mathfrak{R} \supseteq \mathfrak{H}$. Let $X_0 = 1$ and X_n be the compression of $1 - Q_n$ to \mathfrak{H} where Q_n is the projection to $\bigvee_{j=1}^n W^{*j}(\mathfrak{H})$. This means that

$$(X_{n}h, h) = \inf_{h_{1}, \dots, h_{n} \in \mathfrak{H}} \left\| h + \sum_{j=1}^{n} W^{*j}h_{j} \right\|^{2} =$$

$$= \inf_{h_{1}, \dots, h_{n}} \left\{ (h, h) + \left(h, \sum_{j=1}^{n} W^{*j}h_{j} \right) + \left(\sum_{j=1}^{n} W^{*j}h_{j}, h \right) + \sum_{j, k=1}^{n} (W^{*j}h_{j}, W^{*k}h_{k}) \right\} =$$

$$= \inf_{h_{1}, \dots, h_{n}} \left\{ \left(\frac{1}{2}T^{*} \cdots \frac{1}{2}T^{*n} \right) \cdot \left(\frac{h}{h_{1}} \right) \cdot \left(\frac{h$$

Since

$$\begin{bmatrix} \frac{1}{2}T & \cdots & \frac{1}{2}T \\ \frac{1}{2}T & \cdots & \vdots \\ \vdots & \ddots & \vdots \\ \frac{1}{2}T^{n} & \cdots & \frac{1}{2}T & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2}T^{*} & 0 & \cdots & 0 \\ 0 & 1 & \vdots & \vdots & \vdots \\ -\frac{1}{2}T & 1 & \ddots & \vdots \end{bmatrix}$$

 X_n admits the alternative representation

$$(X_{n}h, h) = \inf_{h_{1}, \dots, h_{n}} \left\{ \begin{bmatrix} 1 & \frac{1}{2}T^{*} & 0 & \cdots & 0 \\ \frac{1}{2}T & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \frac{1}{2}T^{*} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{1}{2}T & 1 \end{bmatrix} \begin{bmatrix} h \\ h_{1} \\ \vdots \\ h_{n} \end{bmatrix}, \begin{bmatrix} h \\ h_{1} \\ \vdots \\ h_{n} \end{bmatrix} \right\}$$

The corresponding representation for X_{n-1} yields

(2)
$$(X_n h, h) = \inf_{g} \left(\begin{bmatrix} 1 & \frac{1}{2} T^* \\ \frac{1}{2} T & X_{n-1} \end{bmatrix} \begin{bmatrix} h \\ g \end{bmatrix}, \begin{bmatrix} h \\ g \end{bmatrix} \right).$$

Since X_n converges decreasingly to some X, transfer to limit in (2) leads to the relation (1).

Now if
$$\begin{bmatrix} 1-Y & \frac{1}{2}T^* \\ \frac{1}{2}T & Y \end{bmatrix}$$
 is positive, $X_{n-1} \ge Y$ implies by (1) and (2) $(X_n h, h) \ge \inf_g \left(\begin{bmatrix} 1 & \frac{1}{2}T^* \\ \frac{1}{2}T & Y \end{bmatrix} \begin{bmatrix} h \\ g \end{bmatrix}, \begin{bmatrix} h \\ g \end{bmatrix} \right) \ge (Yh, h),$

hence $X_n \ge Y$. Now $X \ge Y$ follows from $X_0 = 1 \ge Y$.

Theorem 1. The numerical radius of T is not greater than one if and only if T admits a factorization

$$T = (1+A)^{\frac{1}{2}}B(1-A)^{\frac{1}{2}}$$

with a selfadjoint contraction A and a contraction B. Moreover in the set of such A there exist the maximum A_{max} and the minimum A_{min} and the corresponding B_{max} (resp. the adjoint of B_{min}) is isometric on the range of $1 - A_{\text{max}}$ (resp. that of $1 + A_{\text{min}}$).

Proof. Suppose that T admits the factorization. Then

$$|(Th,h)| = |(B(1-A)^{\frac{1}{2}}h, (1+A)^{\frac{1}{2}}h)| \le \frac{1}{2}\{\|(1-A)^{\frac{1}{2}}h\|^2 + \|(1+A)^{\frac{1}{2}}h\|^2\} = \|h\|^2,$$
 which shows $w(T) \le 1$.

Conversely, if $w(T) \le 1$, by Lemma 1 there is a positive contraction X with (1). Since (1) is equivalent to

$$\|(1-X)^{\frac{1}{2}}h\| = \sup_{q} \frac{|(\frac{1}{2}Th, g)|}{\|X^{\frac{1}{2}}g\|}$$

with convention 0/0=0, to each h there corresponds uniquely f in the closure of the range of X such that

$$X^{\frac{1}{2}}f = \frac{1}{2}Th$$
 and $||f|| = ||(1-X)^{\frac{1}{2}}h||$.

Thus there is a contraction B_{max} which is isometric on the range of 1-X and $\frac{1}{2}T = X^{\frac{1}{2}}B_{\text{max}}(1-X)^{\frac{1}{2}}$. Now $A_{\text{max}} = 2X-1$ meets the requirement. Given any factorization with A and B it follows with $Y = \frac{1}{2}(1+A)$ that

$$\begin{bmatrix} 1 - Y & \frac{1}{2}T^* \\ \frac{1}{2}T & Y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 - A & T^* \\ T & 1 + A \end{bmatrix} =$$

$$= \frac{1}{2} \begin{bmatrix} (1 - A)^{\frac{1}{2}} & 0 \\ 0 & (1 + A)^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} 1 & B^* \\ B & 1 \end{bmatrix} \begin{bmatrix} (1 - A)^{\frac{1}{2}} & 0 \\ 0 & (1 + A)^{\frac{1}{2}} \end{bmatrix}.$$

14 T. Ando

Since $||B|| \le 1$ is equivalent to $\begin{bmatrix} 1 & B^* \\ B & 1 \end{bmatrix} \ge 0$, $\begin{bmatrix} 1 - Y & \frac{1}{2}T^* \\ \frac{1}{2}T & Y \end{bmatrix}$ is positive. Then Lemma 1 shows $Y \le X$, hence $A \le A_{\max}$. The minimum operator A_{\min} can be obtained so as $-A_{\min}$ is the maximum operator for T^* . This completes the proof.

In general A_{max} is different from A_{min} . This is shown with the simple 2×2 matrix $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. In this case

$$A_{\max} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}$$
 and $A_{\min} = \begin{bmatrix} -1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$.

In terms of the unitary 2-dilation W the maximum and the minimum operators are given by the following formulas:

$$A_{\text{max}} = 1 - 2PQ - P$$
 and $A_{\text{min}} = 2PQ + P - 1$

where P is the projection to \mathfrak{H} and Q_+ (resp. Q_-) is the projection to $\bigvee_{n=1}^{\infty} W^n(\mathfrak{H})$

$$\left(\text{resp. }\bigvee_{n=1}^{\infty}W^{-n}(\mathfrak{H})\right).$$

Theorem 2. The numerical radius of T is not greater than one if and only if there is a contraction C such that

(3)
$$T = 2(1 - C^*C)^{\frac{1}{2}}C.$$

Under such factorization a unitary 2-dilation W is realized as an operator on $\bigoplus_{j=-\infty}^{\infty} \mathfrak{H}_j$ with components:

$$\begin{split} W_{k+1,k} &= 1 \quad for \quad k \ge 1 \quad or \quad k \le -3, \\ W_{-1,-2} &= (1-CC^*)^{\frac{1}{2}}, \quad W_{-1,-1} &= C(1-CC^*)^{\frac{1}{2}}, \quad W_{-1,0} &= C^2, \\ W_{0,-2} &= -C^*, \quad W_{0,-1} &= (1-C^*C)^{\frac{1}{2}}(1-CC^*)^{\frac{1}{2}}, \quad W_{0,0} &= (1-C^*C)^{\frac{1}{2}}C, \\ W_{1,-1} &= -C^*, \quad W_{1,0} &= (1-C^*C)^{\frac{1}{2}} \end{split}$$

and $W_{i,k} = 0$ for other j, k.

Proof. If $w(T) \le 1$, by Theorem 1

$$T = (1 + A_{\text{max}})^{\frac{1}{2}} B_{\text{max}} (1 - A_{\text{max}})^{\frac{1}{2}}$$

and B_{max} is isometric on the range of $1-A_{\text{max}}$. Let $C=2^{-\frac{1}{2}}B_{\text{max}}(1-A_{\text{max}})^{\frac{1}{2}}$. Then

$$1-C^*C=1-\frac{1}{2}(1-A_{\max})=\frac{1}{2}(1+A_{\max});$$

hence

$$T = 2(1 - C^*C)^{\frac{1}{2}}C.$$

Suppose conversely that T admits a factorization (3). It is well known (see [1]

I-5) that a unitary dilation U of C is realized as the operator on $\bigoplus_{j=-\infty} \mathfrak{H}_j$ with components

$$U_{k+1,k} = 1$$
 for $k \ge 1$ or $k \ge -2$,
 $U_{0,0} = C$, $U_{0,-1} = (1 - CC^*)^{\frac{1}{2}}$,
 $U_{1,0} = (1 - C^*C)^{\frac{1}{2}}$, $U_{1,-1} = -C^*$,

and $U_{j,k}=0$ for other j, k. Then W in the assertion is written in the form $W=VU^2$ where V is the backward shift, that is,

$$V_{i,k} = \delta_{i,k-1}$$
 for all j, k ;

hence W is unitary. W is a unitary 2-dilation of T if

(4)
$$(W^n)_{0,0} = \frac{1}{2}T^n \qquad (n=1,2,\ldots).$$

To prove (4) by induction, assume that

$$(W^n)_{-k,0} = 0$$
 $(k \ge 2)$, $(W^n)_{-1,0} = C^2 T^{n-1}$ and $(W^n)_{0,0} = \frac{1}{2} T^n$,

which is valid for n=1 by definition. Matrix multiplication shows

$$(W^{n+1})_{-k,0} = (W^n)_{-k-1,0} = 0 \quad (k \ge 2),$$

$$(W^{n+1})_{-1,0} = C(1 - CC^*)^{\frac{1}{2}}(W^n)_{-1,0} + C^2(W^n)_{0,0} =$$

$$= C(1 - CC^*)^{\frac{1}{2}}C^2T^{n-1} + \frac{1}{2}C^2T^n = \frac{1}{2}C^2T^n + \frac{1}{2}C^2T^n = C^2T^n$$

$$(W^{n+1})_{0,0} = (1 - C^*C)^{\frac{1}{2}}(1 - CC^*)^{\frac{1}{2}}(W^n)_{-1,0} + \frac{1}{2}T(W^n)_{0,0} =$$

 $(r - f)_{0,0} = (1 - C - C)^{2} (1 - C - C)^{2} (r - f)_{-1,0} + \frac{1}{2} T (r - f)_{0,0} - \frac{1}{2} (1 - C - C)^{\frac{1}{2}} (1 - C - C)^{\frac{1}{2}} C^{2} T^{n-1} + \frac{1}{4} T^{n+1}$ $= \frac{1}{4} T^{n+1} + \frac{1}{4} T^{n+1} = \frac{1}{2} T^{n+1}.$

Here, besides the relation $(1-C^*C)^{\frac{1}{2}}C=\frac{1}{2}T$, the well-known formula (see [1] I-5)

$$(1 - CC^*)^{\frac{1}{2}}C = C(1 - C^*C)^{\frac{1}{2}}$$

is used. This completes the proof.

Reference

[1] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland
— Akadémiai Kiadó (Amsterdam—Budapest, 1970).

RESEARCH INSTITUTE OF APPLIED ELECTRICITY HOKKAIDO UNIVERSITY, SAPPORO, JAPAN

(Received September 8, 1972)

and