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Introduction. Let C/be a strongly continuous unitary representation of a locally 
compact group G on a Hilbert space H. If \i is a probability measure on G, J Ug dp, 
is defined weakly so that ( J Ugf dfi, h)=f (Ugf, H)d\i for all h in H. For notation 
and terminology see [3]. 

P r o p o s i t i o n 1. If G is compact and ¡.i is Haar measure then J Ugf d\i=Pf 
where P is the orthogonal projection on the space K= {k\Ugk=k, Ugk=k, g^G}. 

P r o o f . J Ugfdn is invariant since 

(UgoJ Ugfdp,h) = ( / u j d f i , U*0h) - f ( U g o g f h ) = f (Ugf, h)dfi - (/Ugfdn, h) 

by the invariance of Haar measure. Since this holds for all h£H, JJa f Uafdu= 

/
00 J " 

VJdii. 

To complete the proof it must be shown that if k£K then/— J Ugf dfiLk. But 

( / - / Ugfdn, k) = ( f k ) - f ( f Ug-ik) dp = ( / , k) — J { f k) dfi = 0. 
Let fin be a sequence of probability measures on a locally compact Abelian 

group G. In B L U M and EISENBERG [ 2 ] the following theorem and corollary are proved. 

T h e o r e m . The following are equivalent: 
(i) For every continuous unitary representation U of G and every f in H, J Ugf d[in 

converges in mean to Pf 
(ii) For every character, x on G except that identically 1 the Fourier transforms 

fin(x)=f (x,g) dji„ converge to 0. 

(iii) nn considered as restrictions of measures on the . Bohr compactification G of 
G converge weakly to Haar measure on G. 

*) Research supported by N.S.F. Grant GP-25 736. 
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(iv) For every character x of infinite order the measures (i* induced by x on the 
unit circle in the complex plane converge weakly to normalized Lebesgue measure 
on the circle and for every character x of order m, m— 0, 1, 2 , . . . the measures ¡.tx

n 

converge weakly to Haar measure on the m'h roots of unity. (The measure ¡ix
n induced by 

x is defined so that nx
n(B)=pn({g\(x, g)£B}).) 

u(E fl gE) 
C o r o l l a r y . lfEn is a sequence of sets in G such that for all g in G, " " — 1, 

I1 (En) 
u (A H E„) 

where a is Haar measure, then the measures un(A) = rr,.n converge weakly to /*(£„) 
Haar measure on G. 

Proposition 1 and the theorem lead to the questions studied in this paper. 

Question one asks, does J(Ug f , li) d/.i=(Pf h) hold, where (Ugf, h) is a suitable 
c 

extension of (U f h ) to G and n is Haar measure on G? The theorem says that 
( p f h) = lim J ( U g f , h)dn„, where pn converges weakly to Haar measure on G and 

Proposition 1 says that the statement is true when G is already compact. If the answer 
is yes, there would be an interesting expression for Pf in terms of the action of Ug 

on / . 
Question two asks for which sequences of integers the mean ergodic theorem 

• 1 N 

holds; i.e., when is it true that — ^ T""f converges in mean to the projection of 
N 1 

f on the space of elements invariant under T for every unitary T. The theorem says 
that a sequence is ergodic if and only if the probability measure fiN giving measure 
1 to each integer ni,n2, ...,nN converges weakly to Haar measure on the Bohr 

compactification of the integers. 
Both questions relate to the study of the measure of sets in the Bohr compactifica-

tion of the integers. 

1. This section is concerned with the first question. It is seen that properties of 
the spectral resolution of U are crucial. 

P r o p o s i t i o n 2. If U has pure point spectrum then CPf h)= f (Ugf h) dp, 

where (JJgf, h) is the unique continuous extension of (Ugf h) to G and ¡.i is Haar 
measure on G. 

P r o o f . By Stone's theorem and the assumption on discrete spectrum (Ugf, h)= 

= f (x, g)d{Exf h)= ZCk(xt, S>> where^G is the dual group of G and Z I Q ^ 0 0 -
a 

Since | ( * t , g ) | = l , ( U g f , h ) is a uniform limit of almost periodic functions and 
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hence is almost periodic. It follows that (U g j \ h) is the restriction of a continuous 
function on G. By the theorem 

(Pf h) = lim f ( U J , h)dn„ = lim J(Ugf,h)dn„ = f (Ugf, h)d,i. 
G G G 

In fact, if a function <p(g) is. merely bounded and continuous a.e. dp on G, 

f(p(g)d/i„^f<p(g)dn. 

L e m m a . Let X be a normal topological space and p a finite regular measure 
on X. If weakly and if q> is bounded and continuous a.e. <://(, then J (pdfin — 
~*f <pdn. 

As the proof of this lemma is somewhat technical and independent of the 
rest of the paper it will be relegated to an appendix. 

For the remainder of the paper attention is limited to unitary groups generated 
by a single operator. 

P r o p o s i t i o n 3. If the maximal spectral type of T has no continuous singular 
part then 

¡(TfJi)dti = (Pfh), 

where (T"f, h) is a continuous a.e. dp extension of (T"f h). 

P r o o f . 
2n 2n 

(T"fh) = Jein'd(Etf,h) = f ein< Q(t)dt + lCkeint«, 

where J and £ | C t | < ° ° . 
o 

As in Proposition 2, 2 C k e " " k has a unique continuous extension to Z. By 
the Riemann—Lebesgue lemma f e""k g(t)dt0 as n — I t follows that if 

i(T"fh) on Z, 

on Z —Z, 

then ( T n f h) is continuous except on Z itself. That is, if nk — g £ Z— Z then 
f ein«'e(t)-~0 so that (T"kf h)^2Ckein'k(g)- But Z has measure 0 in Z so that 
(Tnf h) is continuous a.e. dp. By the theorem and lemma, 

(Pf, I') = l i m / ( T " f h ) d f i k = lim JWnJVh)dvk = J ( T " f h ) d f i . 

Finally T with continuous singular spectrum must be considered. It is no longer 
true that ( T " f , h ) - * 0 . However, (T"f h) does approach 0 "except on a sequence of 
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density 0. An increasing sequence nk has density 0 if * *—— —0. (If A is a set 

then &(A) is the cardinality of A.) If it could be shown that such sequences have 
closure of Haa r measure 0 in Z then by a similar argument to that in Proposi t ion 3 
it could be shown that J ( T n f , h)dp= (Pf\h), were ( T n j \ h) is defined as in Proposi-
tion 3. 

This leads to the problem of determining when the Haar measure of the closure 
of sets of integers in Z is zero. 

2. Question one leads to the question of which sequences have closure of 
measure 0 in Z. Question two asks which sequences induce measures converging 
weakly to Haar measure on Z. Such sequences must be dense in Z. Otherwise there 
is an open set 0 in Z containing no elements of the sequence. By Urysohn 's lemma 
there is a non-negative continuous function <p with support inside © such that 
Jcpdfi^O. But J<pdpn=0. It will thus be of interest to find conditions merely f o r 
denseness of sequences of integers in Z. 

P r o p o s i t i o n 4. Cosets of the subgroup H= {0, ±m, ±2m, ...} have disjoint 
closures in Z and each has measure 1/m. 

P r o o f . A neighborhood of g0 in Z is defined by {gj|(/i, g)—(i,-, g0)l e } where 

£ > 0 and Consider the character corresponding to t = — . Then if 
m 

g £ k+ H, (t, g) = e2niklm while if g'£k'+ H, (t, g') = e2nik'lm. If g0 6 k + H then (t, g0) = 
m 

= e2nikim while if g0^k' + H, (t,go)=e2nik'lm. Since U {k+H) is dense in Z and 
k= 1 

k+H and k' + H are translates of one another, n(k + H)= 1/m, k= 1 , 2 , . . . , m . 

C o r o l l a r y . The following sequences have closure of measure 0 in Z. 
(i) «!, 
(ii) a", where a is an integer, 
(iii) p„, the sequence of primes, 
(iv) nk, where k is a fixed integer S 2 . 

P r o o f . Since each integer has measure 0 and the topology is Hausdorff , a finite 
number of elements in the sequence can be neglected. 

(i) For h ! = 0 mod m. Hence / i ({n!})Sl /m since {n\\n^m} is a subset of 
{0, ± w , ± 2 m , ...}. But m is arbitrary. Hence //({/J!})=0. 

(ii) For n^m, a " = 0 mod a"1. Thus /¿({an})^ \/am. Again m is arbi trary so 

(iii) Consider the set of residues of all primes modulo m. For a given pr ime 
p either pSm or p ~ km+r, where k^ 1. In the latter case r is relatively pr ime 
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to m. Otherwise p would be divisible by the greatest common divisor of m and r. 
By the prime number theorem the number of primes less than or equal to m divided 
by m goes to 0. The number of integer r less than m and relatively prime to m is 

just the Euler <t> function of m. $(m) = m JJ 11——J, where m— q\l... q** is the 

<p(m) ( l \ 

prime factorization of m. ^ — JJ which can be made arbitrarily small 

since where p t is the sequence of primes (LEVEQUE [5], p. 100). Thus (m) 
'¡¿({Pi}) = m +o(m). Since m can be any product of primes, ¡.i({pi)}=0. 

(iv) By Dirichlet's Theorem (LEVEQUE [5], p. 76) there is an infinite number of 
primes of the form p = kn+1 as n goes through the integers. 

For such primes p, p— 1 is divisible by k. As a consequence of Theorem 4-14 

(LEVEQUE [4], p. 58) there are ~r~+ 1 residue classes occupied by the residues of kth 
K 

powers mod p. The fraction of classes occupied is — + — if 
p \ k ) k p 6 

k^2 and p > 3 . For a fixed k choose an infinite sequence of primes pm > 0 of the above 
form. By the Chinese Remainder Theorem 

Zpi P2 . . . P m — Zp, X ZP2 X • • • X Zpm 

via the m a p x — (x m o d p \ , x m o d p 2 , . . . , x mod/7m). 
Thus the number of residue classes occupied by &th powers modulo p{ ...pm 

is JJ ^ + 1 j • The fraction occupied is less than which can be made 

arbitrarily small by choosing m large enough. Hence>({«*})=: 0. 
If all sequences of density 0 had closures of measure 0 in Z question one would 

be answered. Unfortunately this is not the case as is shown in the next proposition. 
The question is still open as to whether the sequence where the Fourier transform of a 
continuous singular measure fails to go to zero can be of this type, namely, have 
closure of positive measure. 

P r o p o s i t i o n 5. Consider a set S of integers of the form C„+k, k = 0 ,1, 2, ... 

n— 
S= Z. 
..., n— 1, where Cn increases and ^ — 0. As a sequence, S has density 0 but 

P r o o f . The number of elements of S less than C„ is ^ , Thus on the 
subsequence C„ 

# {elemens of S which are less than C„} _ «(« + 1) 
~ C N : 2 C „ 
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Since there are relatively few terms of the sequence between C„ and C„+l, if n 
is large enough the oscillation in the density between C„ and C n + , goes to zero. Hence 
the sequence of elements of S has density 0. 

However, it is easy to check that the sequence of sets En of the first n elements 
of S satisfies the conditions of the corollary to the theorem in the introduction. 

That is, for any k, * ^n + k) i . (The fraction of elements of En with a /rth 
" . # (/4 f l £ ) 

successor approaches one.) By the corollary the measures n„(A) = — — — con-
verge weakly to Haar measure on Z and by the argument at the beginning of this 
section, S must be dense in Z. 

C o r o l l a r y . Mean ergodic theorems hold for some sequences of density 0. 

P r o o f . This follows f rom the theorem and the proof of this proposition. 
The sequence described in Proposition 5 is not only dense in Z, its induced se-

quence of measures converges weakly to Haar measure on Z. The remainder of the 
paper considers conditions for denseness alone. 

For this part of the work a generalized Kronecker Theorem is needed. As 
stated in RUDIN . [6], p. 98, G is a locally compact Abelian group. Fo r x € G, put 
S(x)= T if x has infinite order; if x has order q, put ,S(x)=the <?th roots of unity. 

T h e o r e m . Suppose E is a finite independent (in the group theoretic sense)-set 
in G,f is a function on E such that f ( x ) £ S(x) for all x 6 E and e >0. Then there exists a 
•y^T such that , 

| < x , y > - / ( * ) ! < £ (X€£) . 

A concrete Kronecker theorem is in KATZNELSON [4], p. 60. 
For our purposes G is the unit circle in C and T=Z. x has infinite order if it 

is of the form 2noc, where a is irrational and x .has finite order if x is of the form 
k 

2n — . The abstract Kronecker theorem gives a necessary condition for denseness 
m 

in the Bohr group. Namely, 

C o r o l l a r y . In order that a sequence of integers be dense in Z it is necessary 
that for every finite independent set E in T, and every f such that f ( x ) £ S(x), and 

there exist an nk in the sequence such that | / ( x ) — e'n"x\ < s for x£E. 

P r o o f . There is some integer « such that | / (x)—e'" x \ < E/2 for x£E. To ap-
proximate this integer n in the topology on the Bohr group there must be an nk 

such that \einx — clnkX\ < e/2 for x 6 E . By the triangle inequality \ f ( x ) — e'"kX\ < e 
for x£E. 

It also follows f rom the Kronecker theorem that covering every residue class of 
every integer is not sufficient for density in Z. 
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C o r o l l a r y . There exists a sequence nk with elements in each residue class of 
every integer with w({«t})=0, where n is Haar measure on Z-

P r o o f . Take a fixed irrational number a and an arbitrary integer m. By the 
Kronecker theorem, given any residue class j of m and any e > 0 there is an integer 

2 nin 2nij 

n with e « —em and |e2,t'OT— 1| < e. By varying j, m and e a sequence nk can 
be selected going through every residue class of every integer with e2m™k converg-
ing to 1. 

Such a sequence must have closure of measure 0. To see this note that 
if S is a set of integers such that \e

2 K" i n~ l | < g for n£S, then for any g in S, 
\(2na, g)— 1| e: Since e2n"xk is dense in the circle as k goes through the integers 

there exist translates of S with disjoint closures, where is the greatest 

integer less than Hence by the same argument as Proposition 4 //(S) S • 

. For the constructed sequence nk we can neglect a finite number of terms to show 

M({nk}) si 1 / j ^ - j for all £ > 0 . Hence ¿ i ( K } ) = 0 . 

Let nk be a sequence of integers and Em the set of the first m of them. Em+k is 
the shift of the set Em by k. Let 

(i) be the statement lim - ° E m + ^ = 1 for all k. . 
m = co m . 

¡: (/) n E ) 
(ii) be the statement ftm(A) = — converges weakly to Haar meas-

m 
lire on Z. 

(iii) be the statement that if x = 2na, a irrational then eiX"k is uniformly distrib-
uted on the unit circle and if x= 2nr, r a primitive ^th root of unity then e'*"" is uni-
formly distributed on the qth roots of unity. 

(iv) be the statement that the set {nk} is dense in Z, and 
(v) be the statement 

If £ i s a finite independent set on the circle and f ( x ) is a function on £"of absolute 
value one such that if x is a primitive ^th root of unity f ( x ) is a ^th roots of unity then 

. VE > 0 , there is an nk such that 

I / O ) - eiJC""| < g. 

Putting several results together we get 

T h e o r e m 1. (i)=>(ii)<=>(iii)=>(iv)=>(v). 

P r o o f . (i)=>(ii) is in BLUM—EISENBERG [2] and is stated in the introduction. 
(ii)=K"i) i s P a r t the theorem in the introduction. (iii)=>(iv) is f rom the argument 
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at the beginning of section 2. (iv) => (v) is the corollary to the abstract Kronecker 
Theorem. 

What is amazing about this result is that it says if the statement (i) is true then 
the sequence can be used to approximate functions in the Kronecker sense, (ii), 
(iii) and (iv) and (v) each seem very difficult to verify themselves, but (i) gives many 
sequences satisfying (ii) to (v). In fact, no sequences are known which satisfy, (ii) 
but not (i). 

Appendix 

L e m m a . Let X be a normal topological space and ¡i a finite regular measure 
on X. If n„ — ¡x weakly and if f is bounded and continuous a.e. dji, then J f d ^ n —J fd/u. 

P r o o f . Take an open set 0 in X. There is a closed set C c 0 with ¡i{0 — C) s C. 
By Urysohn's lemma there is a continuous function r with r = 1 on C, H = l , a n d 
r=0 on 0C. fin(0) & Jrdn„ - Jrdu & p(0)-s. Hence lim n„(0)^u(0). 

The set A= {a\p{x\f{x)= a) > 0 } is countable since p. is finite. Approximate 
f f d n „ and J f d f i by ^ i M ^ / ^ M a n d respectively, where 

\ai~bi\ < £ and at and bt do not belong to the countable set A. 
Let { a l < / - = i i } = C i . T f x£Cj— C, then e i t h e r / ( x ) = a; or bt or x is a point of 

discontinuity of / . Thus /¿(C,—C;) = 0 . 
Let x £ C;— C°. Then f(x)£(ah bt) while for each neighborhood of x there is a y 

with /()>H( f li> Hence x is a discontinuity point of / and /¿(Q— C?) = 0. Thu& 
M C ; - C ° ) = ' 0 , and p(Ci)=li(Ci)=n(Cf). But 

m n„ (C,.) ^ v(C,) = H(C,°) s ' ! y n (C,°). 

Thus l im/i„(C i )=/ i (C i ) . 
Hence 2 W n ( C d - » 2 Since f f d p n ~ 2 a i f * n ( C d and f f d n ~ 

~ 2 a i f l (Q), it must be that J f dpin — J f d p . 
We would like to thank G. EFROYMSON for some helpful conversations. 
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