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1. Introduction 

The Banach—Steinhaus theorem essentially states that a family of bounded 
operators is convergent on a whole space if and only if the operators are uniformly 
bounded as well as convergent on a dense subspace. It is the purpose of this note to 
extend par t of the results of P. L. BUTZER—K. SCHERER [3], namely to give necessary 
and sufficient conditions upon a family of operators such that they tend to some 
limiting operator with a given order of approximation. This can be interpreted as 
the Banach—Steinhaus theorem equipped with a rate of convergence. The results 
are stated for locally convex spaces. They yield applications to weighted approxima-
tion, error estimates for quadrature formulae and the mean ergodic theorem. It 
is to be noted that all three applications are of a quite different structure. 

2. The Banach—Steinhaus theorem with rate 

Let X and Y be locally convex Hausdorff spaces with topologies generated by 
the families of filtrating seminorms {/?}, {<?}, respectively. • 

Let T0, Q = 0, T be bounded mappings defined on X i n t o Y such that Te—Tis 
sublinear for each £>S0, i.e. 

< ? [ ( T W ) ( / i + / 2 ) ] 7 " ) / I ] + < 7 [ ( ^ - 7 ) / 2 ] 

( 0 c,l(Te-T)(af)] = q[a(Te-T)f] 

for each q £ { q ) and f \ , f 2 , f ^ X , a £ R . Provided X is barrelled, the theorem of 
Banach—Steinhaus states: the family {TQf; e ^ O } converges to Tf in the topology 
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of 7 for each f £ X , i.e. for each q€{q) one has 

(2) lira q [Tgf— T f ] = 0 ( V / € * ) 
Q-+OO * 

if and only if 

(3, i) {TQ; e S O } is uniformly bounded, i.e. to each q€{q] there exists { p } and a 
constant 0 such that 

sup q [(T, - T ) f ] ^ Mp ( / ) 

and 

(3, ii) {Tef; e=0} converges to Tf in the topology of Y for each f £ A , A being a 
total set in A". 

For the Banach—Steinhaus theorem, see H . G . G A R N I R — M . D e W I L D E — J . S C H M E T S 

[8 , p . 4 5 3 ] , N . B O U R B A K I [ 1 , p . 2 7 ] , H . H . SCHAEFER [ 1 4 , p . 8 6 ] . 

In order to study the rate of convergence of the given family, it is useful to 
introduce a quanti ty in place of the classical modulus of continuity, namely a modi-
fication of the ^-funct ional . It is defined for t > 0 , f £ X , p£ {p} and p£{p} by 

(4) K(t,f;X,A)prr = m { { p ( f - g ) + tp(_g)}, 
giA 

where (A, {p}) is a subspace of (X, {p}). 

T h e o r e m 1. Let (X, {p}), (A, {p}), (Y, {9}) be locally convex spaces with 
AcX. Let Te, g = 0, and T be bounded operators mapping X into Y such that TQ—T 
is sublinear for each Then to each q^{q] there exist p 6 {p} and pd {p} such that 

(5) d a r ^ s ^ f e j i f r t e J W e r ' . / i i i p ( V / e ^ r ) , 

where <P(O) and 1¡/(Q) are positive functions of Q, if and only if 

(6,i) q [ ( T e - T ) f ] ^ M<p{Q)p(f) ( V / € X ) 
and 

(6, ii) q[{Te-T)f]^D4>(Q)p(f) ( y f £ A ) , 

where C, D and M are constants independent of Q and f 
P r o o f . To establish the implication (5)=>(6), first note that 

(7 , i , i i ) K ^ X . A ) , , , * ^ l f
f f A 
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Then (5) implies by (7, i, ii) upon setting t=\l/(Q)[cp(g)] 1 

9 [ ( T - T ) f l * l 0 p ® p ( f ) > V/€JT 
« ; 7 J " V c ç > ( ( ? ) ^ ( ( ? ) [ v f e ) ] - 1 p ( / ) , v / M . 

This yields (6, i) and (6, ii) with M = D= C. 
To establish the converse, in view of the sublinearity of T — T one has by (6, i, ii) 

for each g.ÇA 

q [(7", - T ) f ] ë q [(Je- T ) ( J - g)] + q[(Te - T)g] S 

=S M<p(e)p(f-g) + Dil,(e)p(g)^ 

Smax(M,D)(p(Q){p(f-g) + ^(e)[cp(Q)]-1p(g)}. 

Taking the infimum over all g£A one has that for all f£X 

q[(Te-T)f)^max(M,D)cp(Q)K(iP(Q)[(p(e)]-i,f;X,A)prp. 

This proves the theorem. v 

. The sufficient direction of Theorem 1 in case A- is a Banach space with X~ Y, 
T=I, may be found in P . L . B U T Z E R — K . SCHERER [ 3 ] . In this case, for ij/(o) — 0 

as Q » , condition (6, ii) is referred to as a Jacksori-type inequality. In this respect 
note that P . O . R U N C K [13] has actually given necessary and sufficient conditions 
upon Te such that a Jack son-type inequality is satisfied. 

In the foregoing theorem the constants C, D, M were independent of / and o. 
In the following deeper and more theoretical version the corresponding constants C 
and D may depend upon the element / . 

T h e o r e m 2. Let (X, {/>}), (A, {/?}), (y, {q}) be locally convex Hausdorjf spaces 
such that A is continuously embedded in X, i.e. to each p £ {p} there is p £ {p} and 
c > 0 with p ( f ) = c p ( f ) for all f£A. In addition, let X as well as A be barrelled. If 
Te, g=0, and T are bounded operators mapping X into Y such that Te— T is sublinear 

for each Q =0, then the following two assertions are equivalent: 
(8) to each q£{q} there is p £ {/>} and p £ {p} such that (8 > 0 ) 

q[{Te-T)f}= 0[K{e-\f,X,A)pJ ( m n 

(9) to each q£ {q} there is p £ {/>} and 0 such that 

(9, i) s u ç q [ T - T ) f ] ^ M p { f ) ( V / 6 Z ) . 
e -o 

(9, ii) q[(Te-T)f}= 0{q-s) {Vf£A). 
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P r o o f . (8)=>(9): The estimate (8) together with (7, i, ii) implies (t=g~ ) 

fO( 1), v / e z 
q [ ^ - T ) f ] = W e - % M f t A . 

The second assertion is the- required (9, ii). T o obtain (9, i), apply the un i form 
boundedness theorem ( = necessary condition of classical Banach—Steinhaus theo-
rem) to q[(Ts-T)f] = 0 (1 ) , all f £ X , noting that X is barrelled. 

( 9 ) ^ ( 8 ) : A being barrelled, (9, ii) implies by the uniform boundedness principle 
that there exists p€{p} and D > 0 such that condition (6, ii) of Theorem 1 holds. 
(6, i) being valid here by assumption, one may therefore apply Thm. 1 with cp(g)= 1 
and \I/(Q)—Q~s. 

Concerning the structure of Theorem 2 in comparison with the Banach—Stein-
haus theorem, the assertions (2), (3, ii) on convergence per se are replaced by the 
assertions (8), (9, ii) involving an order of convergence. Indeed, if A is dense in 
X lim K(t,f; X, A)P P=0. This is the situation in the applications to follow. 

3. Weighted approximation 

The first application will be concerned with weighted approximat ion; it will 
turn out to be an actual example of approximation in a locally convex space. Here 
the space y will be seen to be equal to the locally convex space X and the limit opera tor 
will be the identity. The corresponding problem was first considered by J. KEMPER— 
R . J . NESSEL [ 1 0 ] using classical methods. 

Let E be the space of funct ions given on the reals R which are either uniformly 
continuous and bounded on R or measurable and p t h power integrable 
on R, and let E be normed in the usual fashion. Let £ l o c be those funct ions which 
are either continuous on R or p th power integrable on each compact subset of R. 

Let • 
X={feE[oc; | | e - > * 7 ( * ) l l £ - = + ~ , V/? > 0}; 

it is a locally convex Hausdorff space with respect to the family of norms 

P p ( f ) = l k - " 7 ( * ) l l E - ( V / € £ ) . 
Let 

A= { / € X ; / , / ' l o c . abs. continuous, f " £ X } 

and 

p , ( f ) = l k - ' x 7 " ( * ) l l E . ( v / e / 1 ) 

be a family of seminorms on A. 
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It is our purpose to consider the Weierstrass integral 

№/><*> = ^ / f i x — u) exp [— Q U ] du 
4 

for o=-0, f £ X . This defines a family of operators WQ on X into itself which converge 
in the topology of X towards the identity operator , i.e., for each / ? > 0 and each 

N o w We—I satisfies the hypotheses of Thm. 1. Indeed, taking g o > 0 arbitrary fixed, 
it is easy to verify, using [10], that fo r each / ? > 0 

\\e-ex2[(WJ)(x)-f(x)]\\E^(l + )f?)\\e-**2f(x)\\E fe i*Q0;Vfzx), 

where tj= 1/2 min (/?, qI/8). Thus (6, i) is satisfied with M = 1 + / 2 and (p(g)= 1. 
Likewise with (6, ii); indeed, for each j ? > 0 (see [10]) 

\ \ E - T X \ { W J ) { X ) - F { X ) ] \ \ E ^ 4 I 2 Q - 2 \ \ E - « * 2 F " { X ) L E (A ^ Q 0 \ F I A ) . 

Thus one may apply Thm. 1, (6, i, ii)=>-(5), to get fo r each / ? > 0 

The following lemma is of importance (compare [2, p. 192] in the case of semigroup 
operators) 

L e m m a . Under the preceding hypotheses we have 

f i X 
Km WJ)(x)-f{x)]\\E = 0. 

\\e-»2W,f)(*)-/(*)]«£ — 4 i2K{s-2,f- X, A), 

Kit2 J ; X,A\f S iœ2(t,f; X\ (t > 0 ; f £ X ) , 

where £ = min (tj, ft) and 

co2(i',/;X\ = sup He-?-2 [ / ( * + s) +f(pc-s)-2f(x)]\\È. 

P r o o f . It is obvious that 

t / 2 1/2 

- t / 2 - t / 2 

where 
( / 2 t / 2 

- t / 2 - t / 2 

This yields, first of all. 

3 A 
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Furthermore, since g"(x) = t 1[f{x+t)+f{x—t)—2f(x)}, we have 

Pp(.St) ^ t~2(o2(t,f;X)p. 

Combining the results, the desired inequality follows immediately. 

P r o p o s i t i o n 1. For each / ? > 0 there is rj(=l/2 min (/?, qI/8)) such that 

\\e-^Wef)(x)-f(x)-\\\E g 6 / 2 c o 2 ( 0 - 2 , / ; Z ) , . 

In particular, if co2(t,f; X),,= '0(t*) for each »/>0, where 0 < a ^ 2 , i . e . / 6 L i p 2 ( a ; X), 
then 

• \\e-l>x2[(JVef)(.x)~f(x))\\E= 0(e~a) ( V / ? > 0 ) . 

The latter result, a direct approximation theorem, as well as its converse, is 
already to be found in [10]. 

A more interesting related application would be the approximation of an oper-
ator T:Lp(R)->-L9(R) by bounded operators Te:Lp(R) -*Lq(R), 0, by some mod-
ulus of continuity, where both T and Te are singular integrals of Fourier convolution 
type, i.e. 

CTf)(x)= Jf(x-u)x(u)du, (TJ)(x) = J f ( x - u ) X e ( u ) ^ 

with i, xe£Lr(R), p~1 + r~1 S 1 and q~l = p~i + r~i—\. An open problem here 
would be to express conditions (6, i, ii) or (9, i, ii) of Thm. 1 or 2 equivalently in 
terms of the kernels y_, xe themselves. Whereas condition (i), namely xe being 
in LP(R) is satisfied by assumption, (ii) would be the difficult one. A solution would 
deliver conditions which are not only sufficient for an estimate by some modulus of 

. continuity but also necessary. 

4. Error estimates for quadrature formulae 

Our general theorem enables one to deduce estimates for numerical integration 
formulae as was pointed out to us by Dr . H. Esser. 

For f£C[a, b], the space of / i - t imes ( n = 0 , 1,2, ...) continuously dilierentiable 
functions on [a,b], let us set (compare V. I. KRYLOV [11]) 

(10) Qf = J J (x)dx, QZf= 2 Aiinf(xitn)+2 2Blnfw(*i«), 
i . . i = 1 V = 1 1 - 1 

with given nodes xi n, x j „ £ [a, b] and weights Aiy„, BJ „. Then Q and Q* define linear 
functionals on C"[a, b}. In order to obtain an error estimate of Qf by / f o r large n, 
one assumes that the quadrature formula Qf is exact for polynomials pm of 
fixed degree m(S/J), i.e. Q»„ pm= Qpm. 
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To apply Thm. 1 we take X= C"[a, b] and A= Cm+i [a, b], m^n, equipped with 
seminorms 

/>(/) = \ f \ c = sup | / W ( * ) | ( / € C " ) 
x 

and 
P ( f ) = l / l c — = s u p | / < m + 1 > ( * ) l ( / € C m + 1 ) , 

x 

respectively. In the setting of this example conditions (6, i, ii) of Thm. 1 may be 
rewritten as 

IfiS-filtcM.R«] == Mn'", \&-Q\v»*W\ ^ DrTm-1 

with Q the discrete n, (p («)=«"", \JJ{n)=n~m~l and 

* l e s z - e / k e S - G l C . R t ] = SUP . . 
/ € C ' \J\C> 
MO 

for l=fi and I — m+ 1, respectively. 
Now, in case / = 1, these quantities may be computed with the aid of the theorem 

of Peano asserting that 

b 
(11) Q S f - Q f = ff°Kt)xS.,-i(t)dt (f£C>[a,b];l = n,m + l , l ^ l ) , 

a 
where ° 

(12) 1 (0 = (Qs - e u * - ot1 

and 

f Y , y - i _ i i * — 0 1 " 1 , x ^ t , 
( x - ° + 0 , x ^ t , 

the index x in (12) meaning that the functional Q^—Q is applied to (x— i ) ' " 1 wi th 
respect to x. F r o m (11) we obtain 

b 
i e s - e i i c ' . R ' i = f\xn,i-i(n\dt (/ = /i, « i + i , / s i ) . 

a 

In case / = 0 , i.e. n=0, there holds 

\Qn-QVc,m = IE°![c,R>]+ I G I I C . R M = (b-a)+ 2 
i = l 

Concerning (5) of Thm. 1 we may estimate the .^-functional 

K(tm+1~",f; C"[a, b], Cm+1[a, b]) 
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by the (TW+1 —^)-th modulus of continuity (cf. H. J O H N E N [9]): 

where (m + 1 — /i = r ) 

= sup { sup i ( - l X - M " l / ( " > ( x + A:i)}. 

Combining these results one obtains 

T h e o r e m 3. Under the above definitions 

'•\QSf- f f ( x ) d x | ^ C / J ; m » - " a ) m + 1 _ , ( / i - 1 ; / ( ' " ) ( V / € C * [ a , b]) 
a 

holds if and only if 

(i) 
0« = 0 ) : i |A->n | 

= 0 ( « - " ) , ( i i ) J\$,m{t)\dt = 0(n-n-1). 

Let us note that (i) and (ii) may be verified for many examples, for instance 
in case / i = 0 for the composite Newton—Cotes formulae; cf. P . J . D A V I S — P . R A B I -

N O W I T Z [6] . 

For such examples our result would yield error estimates for the quadra ture 
formula Q ^ f ^ Q f which are entirely free of derivatives. The determination of the 
best possible constants C 0 m is another problem. 

Derivative-free error estimates, at least in the case of functions which are ana-
lytic, were originally investigated, by G. HAMMERLIN [8a, b]. Thm. 3 may be inter-
preted as a result in ESSER [ 7 ] now equipped with rate. See also [ 7 ] for literature on 
the subject. 

5. Mean ergodic theorem 

This application gives part of the results obtained by P . L . B U T Z E R , D . L E V I A T A N 

and U. WESTPHAL in [4, 5, 12], where the mean ergodic theorem was studied with 
respect to the rate of its convergence. 

Let be the Cesaro-means of order a ^ i of the iterates of a bounded linear 
operator T f rom a Banach space X (norm || • ||) into itself, i.e. 
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If II^"11 CAT, x] — M o , 1 , 2 , . . . , t h e n the m e a n e rgod ic t h e o r e m asserts 

lim \\al{T)f-Pf\\ = 0 ( V / e J T o ) , 

where X0 = N { I - T ) ® R ( I - T ) , N(I-T) d e n o t i n g the nul l space a n d R ( I - T ) 
the c losure o f t h e r ange of (/— T), a n d P is t he p r o j e c t i o n of X0 o n N(I— T) para l le l 
t o R(I— T). I f T0 = T/X0, def ine a l inear o p e r a t o r B wi th d o m a i n D(B) = N ( I - T) © 
@R(I—T0) a n d r ange in X0 by Bf=g, w h e r e gÇX,0 is un ique ly de t e rmined b y 
(/-/>)/= (f-T0)g a n d Pg=0. 

W e m a y t h e n app ly T h m . 1 to X0 n o r m e d b y y ; ( / ) = | | / | | a n d D(B) wi th semi-
n o r m p ( / ) = \\Bf\\. I ndeed , since the fo l lowing inequal i t ies a r e val id ( c o m p a r e [5, 12]) 

(0 \ № { T ) f - p f \ \ S (M0+ 1)||/|| ( M f e x 0 ) , 

(ii) hn{T)f-Pf\\^-~^{M0+\)\\Bf\\ ( y f£D{B)), • 

one conc ludes t h a t 

I K C O / - P / I I ^ CK(n-\f -,X^D{B)) ( V / € Z 0 ) . 

Def in ing a general ized Lipschi tz class by 

L i p («5; X0)= { f £ X 0 ; K(t,f; X0, D{B))= 0(t*)}, 
one has 

P r o p o s i t i o n 2. 7 / " / £ L i p («5; X0), 0 < ( 5 s l , then 

I K { T ) f - P f \ \ = 0(n~>). 
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