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1. Introduction 

A number of writers (e.g. [1—5]) have dealt with the existence and properties 
of linear transformations between function spaces obeying various functional equa-
tions. In almost all cases these equations are of a type that I have termed "appropriate" 
in my article [1]; this term will now be defined. 

Let A(X) be a space of functions defined on a set X. A linear transformation 
W on A(X) to. itself is called appropriate if for each x in X a n d / i n A(X) the value 
of Wf(x) depends exclusively on the value o f / at some point in X, say Vx, or (in 
the case of spaces of functions defined only up to sets of measure zero) if a similar 
statement is true in the limit for func t iona l on A(X) whose support tends to x. 
Equivalently, W is an appropriate transformation if Wf{x) = Q(x)f(Vx). An ap-
propriate group is a representation of a group by a group of appropriate transforma-
tions. 

A linear operator T f r o m a space A(X) to a space B(U) of functions on X and 
U respectively is said to obey an appropriate functional equation if it is an intertwin-
ing operator between appropriate groups of transformations on A(X) and B(U) : 
that is to say, if there is a group G represented by appropriate groups W(g) and 
W*(g) of transformations on A(X) and B(U) and if T obeys 

(1.1) TW(g) = W*(g)T, g£G. 

In [1] I have shown that if X and U are intervals of the real line, and G is the 
additive group of reals, then after possible splitting of X and U into intervals in-
variant in the groups V(g) and V*(g) and changes of variable in X and U al l 'ap-

*) My thanks are due to the Mathematics Department, University of Toronto for an appoint-
ment as Distinguished Visiting Scientist during the tenure of which this work was partly carried out. 
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propriate functional equations can be reduced to four canonical forms, of which the 
most important a re : 

L a + * ) ] ( „ ) » M l T O J M U * ^ 

II . a T[Pip^}
h) / ( * + A)} («) = <»> {Tf(x)}(«), u£E,h£R 

for some set E d R . 

If we replace A(X) by pA(X) and B(U) by qB(U) then I.a becomes 

I. [Tf{x + /0] (u) = [ 2 / ( * ) ] (u + h), u, h e R 

and if we make only the first of these transformations I.a. becomes 

II. [Tf(x + h)] (u) = e"« <»> (Tf(x)] (u),uiE,h£R. 

If X and U are sets in Rk, and G is the group of translations of Rk, then 
the situation is considerably more complicated and there can be many more essentially 
distinct forms of appropriate functional equations. The problem of classifying these 
may be of interest; but it is complicated by the fact that there can be, fo r example, 
periodic representations of the translation group. It remains of interest to s tudy 
equations I and I I ; I in particular has received considerable attention, notably in 
the work of HORMANDER [5], in which the existence of solutions mapping a space Lp 

onto a space Lq with respect to Lebesgue measure on Rk is studied. 
The reduction of the equation la to the fo rm I fo r t ransforms over integrat ion 

spaces involves a change in the measure on the space; and it is therefore of interest 
to investigate the equation for spaces Lp(JJ) and Lq(v) with general R a d o n meas-
ures. 

Writing T ( h ) f ( x ) = f{x—h), the equation I becomes Tx(h)=i(h)T. In general 
there is a difficulty in interpreting this equat ion; fo r the translation opera tor x(h) 
does not necessarily m a p Lp(ji) to itself, and if it does not the meaning of the equa-
tion is unclear. We therefore start our investigation by studying what propert ies 
on fi ensure that T (h) is always defined, and also some other properties of T (/;) tha t 
simplify the structure of fi. The following sections then give conditions tha t are 
necessary for the existence of nonzero T satisfying the equation I, and also discuss 
some properties of the solutions. 
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2. Conditions for existence of x(/;) 

Notation. If p is a positive Radon measure on Rk, ¿Cp(jj) is the space of all ¡i 
measurable functions f ( x ) such that | / ( x ) | p is pi summable, and Lp(p) is the corre-
sponding Banach space of functions modulo null functions. We write m for Lebesgue 
measure, m(dx)=dx, and if p=lm, that is n(dx)=).(x)dx, we write L(p, X) f o r 

A G O -

T h e o r e m 1. Let p be a positive Radon measure in Rk. The following conditions 
on p, for any p, are equivalent: 

(a) If f t i?p (n) then t (h)fe (p) for all h£Rk) 
(b) if f and g are in the same equivalence class in J?p(p) so are x(h)f and i(h)g 

for any h £Rk; 
(c) for any h, t(h) takes Lp(p) into itself; 
(d) x(h) is a continuous map of Lp(p) to itself for any h; 

(e) there is a positive Lebesgue measurable function ). (x), bounded with /. (x) ~1 

over any compact set of values of x, such that X(x)dx= p(dx) and II T (/?)!!£= sup 

is bounded over any compact set of values of It. 
(b) and (c) are clearly equivalent, and imply (a). Now l e t / and g be equivalent 

in ^Cpi/J.) and let r{x)= 0 i f f ( x ) = g ( x ) , r(x)= °° otherwise; then r is a ¡.i null funct ion, 
and so in Sfpip). If T ( h ) f ( x ) ^ T ( h ) g ( x ) , then T(h)r(x)= thus if (a) holds, the set 
with T ( h ) r ( x ) = co is a null set an so T ( h ) f ( x ) = r(h)g(x) almost everywhere: thus (a) 
implies (b) and (c). 

Let us now write T(Ji)n=nh , that is 

jf(x)n,,(dx) = f f ( x + h)n(dx). 

Our arguments show that (a), (b) or (c) imply that p is quasi-invariant [7]: fj. null 
sets translate into ¡i null sets and ¡ih is absolutely continuous with respect to ¡i, so 
that there is for each h a function q> (x, h) nonnegative and fi summable over any set 
of finite p measure as a function of x such that /.ih (dx) = <p (x, h)pi (dx); since ¡i is 
absolutely continuous with respect to fih it follows that 1 ¡<p (x, h) is also summable 
over any set with finite ph and so finite p measure. For a n y / a n d h J\f(x)\pp(dx) is 
finite if and only if J\f(x)\p(p(x, h)p(dx) is finite. Let (p„(x, h)=min (cp(x, h), n); 
then the m a p f(x)->-(pn(x, h)f(x) is bounded on Lp(p) to itself for any fixed n and h 
and the set {<pn(x, h)f(x); n= 1, 2, . . .} is bounded in Lp(p) for each / ; by the Ba-
nach—Steinhaus Theorem it is uniformly bounded, and so cp(x, h) is bounded for 
each h. This proves that x(h) is a bounded transformation of Lp(p.) to itself; if K(h)= 
= esssup {<p(x,h):x£Rk} then | ' |T(A)|| =K(h)llt', log | | T ( A ) j | = P _ 1 log K(h)=p~lL(h) 



38 J. L. B. Cooper-

say, and since T(/;)T(/;') = r{h+h') it follows that L(h) is everywhere finite, mea-
surable and subadditive. We now show that L(h) is bounded over any compac t set 
of h. If it is not bounded above, then there is a convergent sequence (/;„) fo r which 

— since, for any h, L(h+h„) ^ L(h„)—L(—h), we can find such a sequence 
convergent to any assigned h\ and we suppose tha t h has each coordinate h' positive. 
Fo r any such h let C(h)= {x:0rsxj^hJ, j= 1, 2, . . . , k}. Since L(hn) ^ L(x)+ 
+ L(h„—x), either L(x)>^L(hn) or L(h—x) S iL(h„) holds for any given x; and 
so m{x:L(x)^L(h„); x£ C(hn)}^imC(hn). We can choose the hn so tha t hJ

n~0 fo r 
all j and n, and L(h„)>n; then the set {.v:L(x) > x £ C(hn)} has for each n Lebes-
gue measure greater than imC(h„).-*$mC(h) and hence m{x:L(x)—°°, x f C ( / i ) } g 
\^mC(K)\ but this set is empty, so we have a contradict ion. If L is no t bounded 
below on a set C, it is not bounded above on — C; hence L is bounded on every 
compact . 

N o w by the Lebesgue—Vitali Theorem (e.g. [6], Vol. I, Theorem III . 12 .6) 

B(a,r) . . . 
l i m — — ^ = Ho) say 

exists f o r almost all a and is finite. Choose a in 5 ( 0 , r) so tha t this holds. A n y set E 
in B(0, r) can be covered by a finite number of translates of a ball B=B(a, r) with 
H(B) < (1(a)+ \)m(B), and hence p(E) < M(?.(a)+ l)m(E), where log M.is the 
upper bound of L(h) in B(0, 2 r ) . Thus /i is absolutely cont inuous with respect to 
Lebesgue measure m\n(dx)=X(x)dx with A bounded over any compact . Since then 

/(,,(dx) = k(x+h)dx, cp(x,h)= llT('J)llp = sup is bounded over 

every compact , and so is | | T ( / J ) | | _ I . 

This proves that (a) implies (d) and (e). On the other hand , it is easy to see tha t 
(d) or (e) imply (a). 

It is essential for the t ru th of this theorem that /><°° . If p~ then f o r (a) to 
hold p must be quasi-invariant, and if this is the case then ||T(A)/|| = | | / | | for any 
/ and h. We can conclude again that (dx)=l(x)dx with A locally summable , bu t 
no t that A is necessarily bounded over a compact or restricted in growth. 

In fu ture we write L(/>, A) for Lp(p) when ¡.i(dx)=).(x)dx. We define / ( x ) = 
= /(A, x ) = l o g A(x), L(h) = L(X, h) = ess sup [ / ( x + h)- /(*)]. 

T h e o r e m 2. Let ¡x obey the conditions of Theorem 1 for some p, 1 =/>< Then 
L(X, li) is subadditive and for any h 

( 2 . 1 ) , F ( A , / 0 = l i m i ^ 

exists. F(h)=F(X, h) is a continuous convex positive homogeneous function, everywhere 
finite: F(X,h)^-F(X,-h). 
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If | | T ( / J ) | | is continuous in h, then X(x) is continuous and l(x) and L(h) are uni-
formly continuous, and L(h) is continuous. The limit in (2. 1) exists uniformly in h 
over the sphere ||//||= 1. 

Theorem 1 shows that L(h) exists and is finite everywhere; it is obviously sub-
additive. Consequently 

L ((% + P)h) a L {all) p L(fih) 

a+P ~ a+P a +a+P P 

for any a, P and so L(ah)/a decreases with a for positive a, and this proves that 
F{h) exists and is less than Since L{ah)+L{— ah) = L(0) = 0, it follows that 
F(h)+F(-h) a 0 a n d hence F{h) ^-F(-h) Clearly F(fih)=lim L(aph)/oc= 
= PF{h) for any positive P and F(h+k) =§ lim L(ah)/a+lim L{fih)/P = F{h)+F(k). 
It follows that F is positive homogeneous and subadditive, hence that it is convex 
and so continuous. 

Since p log X(h) = ess sup {l(x+h)—l(x)} continuity of X(h) implies that the 
righthand side tends to 0 as h -»-0, that is 

(2.2) ess sup [A (x + h)/X (x)] -*l as h-*0 

I(x) is everywhere equal to lim pB(x, r)/mB(x, r) that is, to 
l*T— o 

lim J X{y)dylmB{x,r). 
Ilx—y|l-=r 

The corresponding integral for X{x+h) has y replaced with y+h and so since A(JC) 
is bounded over any compact and because of (2. 2), X is continuous. l{x) is then 
also continuous and so sup [l{x+h)~/(x)] = p log ||T(A)|| -*• 0 as h— 0, that is, /(x) 
is uniformly continuous. Uniform continuity of L(h) follows immediately: if ¿ > 0 
is such that / ( x + / z ) - / ( x ) < e when | |A||<5 then \L{h)-L{h')\ < s if \h-h'\ < 5. 

If the limit in (2. 1) does not exist uniformly over ||A||= 1, then for some e > 0 we 
can select a sequence (hn), convergent to a point h on the sphere, and indeed such 
that \\n{h—h„)\\ — 0 as n -<- so that for all n, 

L(nhn)>n[F{hn) + 38]. 

For each n we can choose x„ such that l(xn+nh„) — l(x„) > L{nh„) — s, and then 

n[F(h„) + 3e] <= l(xn + nhn)- /(x„) = l{xn + nh„) - l(xn + nh) + /(x„ + nh)-1(x) ^ 

^ L(nh„-nh) + L{nh) < L(nh -nh) + n[F{h) + E]. 

For some n0, L{nh„—'nh) < e and \F(h„)— F(h)\ < e if « > « 0 > a n d t h e n the 
lsfthand side is greater than n(F(h)+ 2e) and the righthand side is less than 
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E+Л[/•(/;)+£], so that the inequality cannot hold for all n. This proves the un i fo rm 
convergence in (2. 1). 

T h e o r e m 3. Let F(x) be the positive homogeneous convex function defined by 
(2 .1 ) . Then 

(a) for any h and any e > 0 there is an a 0 so that if a > a 0 

exp [ - « ( £ ( - / ? ) + е ) ] < Я(a/г) < exp {a(F(A)+e)}; 

(b) ;/||т(/г)|| is continuous in h then this holds uniformly over ЦЛЦ = 1, that is, there 
is an a0 so that //"||.x|| > a0 

exp [ - ( f ( * ) + e | M | ) ] < A(x) < e x p ( F ( x ) + £ | | x | | ) . 

By definition, — L(—ah) < I (ah)—1(0) < ¿(а/г) fo r all positive a and all /;, s o 
that for large enough а 

-x[F(-h)+s] < /(а/г)—/(0) < a[F(h)+e] 

and the first statement follows; the second is a consequence of this and of the uni form 
convergence of L (ah) to F(h) over the unit sphere. 

The problem of the existence of intertwining operators between representat ions 
of t(h) on integration spaces is clearly linked with the topological properties of the 
group T(/J) acting on these spaces: and more precise results can be f o u n d if t he 
behaviour of т (/г) is more closely specified. 

For any 0 let us write L(p, A, R) for the set of functions in L(p, A) whose 
supports are in B(0, R). We examine conditions under which the action of т(/г) is 
closely approximated by its action on L(p, A, R). 

If, for each £ > 0, there is an R such that, for any h 

then we say that т is compactly approximated: and if there is an R so tha t 

then т is inversely compactly approximated. 

T h e o r e m 4. If x is compactly approximated then for any £ > 0 there is for any 
h an а0(Л, E) and a constant A so that if а > а 0 
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and if ||t(/?)|| is continuous in h, there is an a0(e) so that if\\x\\ >a0 

AeF(x>S,l(x)^eF(x)+e,,xl1. 

If x is inversely compactly approximated, then these equations become 

e-(F(-a«+£cr) ^ y(ah) Ш Ae~F<-~x^, 

е-(Я-л)+г11х11) g A(x)Ae-F(-*\ 

respectively. 

It is easy to see that sup '-f£L(p, X, Л)} is equal to 

s u p p C x + Z O / ^ ^ M I S * } 

and so that r is compactly approximated if and only if there is for each e > 0 an Л 
such that, for all h 

L(h) S sup {l(x+h)-l(x):\\x\\ < R} ss L(h)~s. 

In that case one has on the one hand that /(ос/г)—/(0) S L(ah) and on the other 
that 

/(а/г) = I (ah) - l(x+ah) + l(x) + l(x+ah) - l(x) Ш 

L(-x)+l(x)+l(x+ah)-l(x) == sup { / ( x ) - L ( - x ) : ||x|| < R}+L(ah) + e = 

= A'+L(ah)-e, 
say. Now for a>a0(h, s), <x(F(h)+s) Ш L(ah) Ш aF(h) so that F(h)+A'/a^ 
S I (ah)/а ё l(Q)/a+F(h)+e, and so 

AeF(oA) g / ( а / г ) g gF(ah) + ea^ 

The second inequalities follow f rom the uniform convergence of L(<xh)/a if 
\\x{h)\\ is continuous. 

The last two inequalities follow by a similar argument, based on the observa-
tion that 

s u p { 1 | T ( - 1 ) / 1 1 S U P - A) ] 1 ^ : IIJC|| < * } • • 

The importance of these results to our later arguments is that they give condi-
tions under which the growth of X(x) as ||хЦ—°° is regular. The approximations 
to X(x) in these formulae give examples of the E functions defined in the following. 
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D e f i n i t i o n . E(X,h) is an upper E function for A if X(x+h)/X(x)E(X, h) is 
bounded for all x and h and if for all x 

X(x+h) . 
hmSUpX(x)E(X,h) 

as h tends to infinity along any ray; 
E{X, h) is a lower E function for X if 

. , X(x + h) ^ . 
lim inf S i 

X(x)E(X, h) 

as h tends to infinity along any ray: 

T h e o r e m 5. If E(X, h) is an upper E function for X, then for any f^O 

^ t t S ^ « 1 - ' 
1 i m , i m i i m / + < - h ) f \ \ _ , 

l!/| |(£(A,A) + £(A, - h ) 1 1 " ) ' 

h tends to infinity along any ray. If E(X, h) is a lower E function then the same 
inequalities hold with signs reversed and lim sup replaced by lim inf. 

For any h we have 

when r>R, if S(x, h, R) = sup {X(x+ rh)/X(x)E(X, rh):r > R). Since this is bounded 
and has a limit not greater than 1 as R — 

and this proves the first statement. To prove the second and third, we note tnat f o r 
any s>~ 0 we can find fL such that f2 — / - / , has norm less than e and f i has compact 
support. Then if h is large enough the supports of / 1 ; ~t{h)fi and T ( — / 0 / I are dis-
joint, so that 

II/I + T W / i I I " = I I / I ! ! p + \ \ m M p , 

\ \ m A + ^ - h ) f r = \ H h ) f l r + \ n - h ) f l r . 
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Thus, for A sufficiently large in any direction 

| | / + r ( A ) / | | =s | | / i + t ( A ) / 1 | | + 1 | / 2 | | + 1 | T ( A ) / 2 | | & 

S ll/H (1 + £ ( A , A ) ) 1 / p ( l + s) + 3 + KE(X, h f ' n 

S | | / | | ( 1 + £ ( ; A ) ) " ' ( 1 + e) + tfe(l +E{X, A ) ) 1 " , 

where K = sup {k(x+h)/E(X, h)X{x)}, and this leads to the second inequality. The 
third inequality follows in the same way. 

The inequalities for a lower ¿ ' func t ion follow similarly; but the proof relies on 
Fatou 's lemma, and does not need boundedness. 

3. Existence of continuous translation invariant operators 

We now consider conditions on X(x) and p(x) that are necessary for there 
to be a nonzero continuous linear T mapping L(p, X) to L(q, p) and obeying 

(3.1) [Tf(x+h)](u) = [Tf(x)](u+h), u, h€R. 

Our first results depend on the following general theorem, which includes many 
of the special criteria that have been used in such problems. 

T h e o r e m 6. Let S be a directed set and for all s in S let V(s) and W(s) be 
bounded linear operators on normed spaces A and B respectively, mapping each space 
to itself, and let v(s) and be positive valued functions such that, for all f £ A and 
gdB 

( 3 . 2 ) . i m s u p i ^ l i s . , l t a M l ^ r i . , 1 . 
s tf(S)||/L s w ( i ) | | g | | f l 

Then if there is a continuous nonzero linear T:A -+B such that TV(s)= W(s) T for all 
s € S we must have 

(3.3) l i m i n f - ^ - s 1. . 

These statements remain true for a general set S if lim sup and lim inf are replaced 
by sup and inf respectively throughout. 

If a T obeying the conditions exists, then for any / and e > 0 there is an element 
s { f , e) after which 

— ~ = ! - £ > . t . s M y n + 
" W i l l * ~ ' » ( i ) l l / l l 

so that 
E / I I B ^ L|RR(5)/||B V(s) 1 + e ^ r L + 8 v ( s ) 

I I f h - ^WII/IIk W(s) 1 - 6 - 1 - s w(s) 
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W e can c h o o s e / s o that the lefthand side is greater than 1 — £ | | r | | and this leads 
to (3. 3). 

With Theorem 5, this leads to the following criteria. 

T h e o r e m 7. Let E(X, h), E(j.i, h) be, respectively, upper and lower E functions 
for X and ¡i. In order that a nonzero continuous solution of (3. 1) exist it is necessary 
that 

„ « r • , £ ( W P • , r • f(l + E(X,h))l"> _ , 

/7 « r • c{E(X,h) + E{p, - h)Yl" 
(3. 5)• lim i n f — — ,.{..„ s 1 V ' (E(ji,h) + E(ji, -h))1'« 

as h tends to infinity in any direction. 

These result follow on taking V(h) and W(li) to be T ( / 0 , \ + x(h), T ( A ) + T ( — h) 
respectively, and then applying Theorems 5 and 6. 

Impor tan t cases are those with X(x) = eaM (or (1 + ||x||)a) and A(JC) = 
= e i l l x l l(or (1 + ||x||)6). E(X, h) and E(p, h) can then be taken to be X(h) and n(h) 
respectively; and we find that for a solution it is necessary tha t qa—pb S 0, using 
the first inequality in (3. 4). If a=b=0 the first inequality gives no result: the second 
then shows that we must have p ^ q , a result due to Hormander ([5], Theorem 1. I). 
If qa—pb — 0, (3. 5) shows tha t we must have p=q. 

Sufficiency of the conditions. The conditions given in Theorem 7 are not usually 
sufficient for the existence of solutions. Somewhat stronger conditions are sufficient 
if p ^ q , as the following theorem shows. 

. T h e o r e m 8. In order that the identity be a continuous imbedding of L(p, A) 
into L{q,n) it is necessary and sufficient that p = q and that X.~9np£L1I<-P~q). 

For the imbedding to be continuous we must have 

(3. 6) ( / f H ' d x ) l l q ^ K(ff>Xdyy"> 

f o r all / and some fixed constant K. 
Take f(x)= M_ < i ;(R(X), where yR is the characteristic function of the ball 

B(0, R). Then i f p < k / a < q the lefthand side of (3. 6) is infinite, and the r ighthand side 
finite; hence for (3. 6) to hold it is necessary that p ^ q . N o w take 
Substituting in (3. 6) gives 

PI 

•driving the necessity of the second condition. 
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On the other hand, if the conditions hold, then by Holder 's inequality, for any 
fiL(p,X) 

( f p f i d x ) 1 " 1 si (ff>Mxyi>(fn"<'-*H-*H'-«dx)~, 

so that the conditions are sufficient. 
If A(x)=eaM, p(x)=^Ux\ the condition becomes qa-pb > 0. If A(x) = 

= (1 + M ) a , p(x) = (l + ||x||)6, they become qa-pb > k(p-q). 
The study of the sufficiency of the conditions in other cases depends on ex-

amining more complicated transforms such as the Hilbert transforms or Riesz 
potentials. 

If T is a bounded translation invariant operator f rom L(p, A) to L(q, p) then 
there is a unique distribution k £ D ' such that 

Tu = k*u, u£D. 

If A(x)= O ||x||m as ||x|| — oo, for some m, then k is in S'. 
Here D is Schwartz' space of infinitely d i f ferent ia te functions with compact 

support, S his space of functions with the seminorms sup {||x||r|Z)' //(x)|}, and D', 
S' the corresponding duals. The argument is close to that of Hormander, Theorem 
1. 2; modified to allow for the-fact that S need not be in L(p, A). 

For any u£D and any differential operator DJ, TD'u= DJTu. Since Dju£ 
£L(p, A), TD1 u£L(q, A) and so by the Sobolev imbedding theorem (cf. [5] Lemma 
1. 1) Tu(x) is continuous after correction on a set of measure zero and (after cor-
rection) 

7 w ( 0 ) s c 2 ( / \ D J u \ " d x y / " S c ' Z \ \ D J u \ \ p ^ , 
l / ' i ^ * I IXl lc l •' 

for some constants C, C'. If u tends to 0 in the distribution sense, so does \\D'u\\p ^ 
and hence u^Tu(0)£D'; it follows, that for some distribution k, Tu(0)=(k* w)(0) 
and hence, by translation invariance, that Tu=k* u. 

If, for some m, A(x)= 0 ( | | x | n then if u£S, D'u£L(p,X) for any j, and the 
argument above goes through with S and S' replacing D and D'. 

4. Scope of a transformation 

The map ug: f -*{f, g)=Jfgdx is an element of the dual of L{p, A) if g A - 1 is 
in L(p',X) and its norm is the norm of g X i n that space, that is ||w(g)|| = 
= (f\g\p'X-p'lpdxylp'. Writing p".= \/(p-l) = p'lp, we see that g is an element 
of L(p', A -" ' ) and that ||«(g)|| is the norm of g as an element of that space. 

Now let T map L(p, A) to L(q, n). The dual of the latter space is represented 
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by elements h£L(q', p q"), and for such an h (Tf\ h) is cont inuous i n / , so that there 
is a T'h in L{p\>r"') such that {Tfh)={f T'h). 

T is represented by a distribution in D': T f = k f i f f ^ D . We have already pointed 
out that T is in S' if 5 is contained in L(p, A), that is to say, if A(x) is of not more 
than polynomial growth as | j x | | — T h e result we have jus t proved enables us to 
show that this also holds if p{x)~l is of not more than polynomial growth. 

I f / a n d h are in D then 

{Tf h) = ( k * f , h) = ( / , k*ti) 

where k(x)=k(—x). It follows that h-~k*h maps L(q', p~q") to L(p', A~p') and if 
H~Q" is of not more than polynomial growth k and so k is in S'. 

We sum up and extend these results in the following theorem. 

T h e o r e m 9. Let T be a continuous transformation linear from L(p0, A0) to 
L (q0, fi0) with norm M0 and from , A,) to L(q, //,) with norm M , . For Os/s 
-. 1. let 

— = — + — , — = + — , A / / ' . = A^-o/Po.A'/p, 
Pt Po Pi <7/ tfi 

H\lpt = nU-'VPotflp,. 

Then T is a continuous translation invariant map from L(pt, A,) to L(qt, /¿,) and from 
L(q't,n~q"') to L(p't, /.~p"<) with norm not greater than MX

Q~'M[. 
I f , for any t, )., and fi, or their reciprocals grow at infinity not faster than a poly-

nomial, then T is represented by a convolution with a distribution k in S'. 

This theorem follows f rom the previous arguments together with the theorem 
of Stein and Weiss on interpolation of operators with change of measure [9]. The 
importance of the last result is that it extends the range of t ransformations to which 
the Fourier t ransform methods of the next section apply. 

5. Fourier transforms of solutions 

Explicit characterizations of transforms can be obtained by Fourier t ransform 
methods for t ransforms acting between spaces on both of which ||T(/Z)|| is a cont inuous 
function of h and z is either compactly approximated or inversely compactly ap-
proximated on both. Theorem 4 shows that in that case A (x) and n (x) are approx-
imated by functions of the form e x p ± / " ( x ) u p to multiples of order exp£ | |x | | . W e 
shall suppose in what follows that A and p. are exactly of these forms. The results 
that follow apply without change if A and p are of this fo rm up to multiplication by 
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functions that are bounded above and below by positive constants. In the general 
case the arguments need some modifications, but will go through if the hypotheses 
in Theorem 10 that C(p)/q is contained in C(X)/p is replaced by the hypothesis that 
C(p)lq is in the interior of C(X)/p. 

Let us suppose that A(x)=exp F(X, x), p(x)=exp F(X, x), where F(X, x) and 
F(p, x) are as in section 2. These functions are positive homogeneous and convex, 
and hence are the support functions of closed convex sets C(X), C(p) respectively: 
F(X, x) = sup {y • x : v 6 C(X)}. 

If f£L(p,X) then its Fourier transform for w = u+iv is given by 

(6. 1) (2n)ik f(w) = f f ( x ) e~iwx dx = J f ( x ) e°x~iux dx 

Now 
f\f(x)\Pe""xdx = f\f\'"!'>-*-F«-xn-(x)dx 

so that f(x)evx is in Lp i f p v . x ^ F ( X , x ) for all x, that is, if v is in C(X)Jp. If v is an 
interior point of C(X.)lp let the distance of v f rom the exterior C(X)/p be o > 0 , so that 
pvrx— F(X, x) ^ a for all x ; then f(x)e*'x g L, for 

f | / ( x ) | e-Xdx = f | / ( x ) | e"-x-F^'x^PX(xyiPdx ^ 

^ U\\p,dfe~p'aimdxYl1'' = Ca-x'p', 

by Holder's inequality, with C a constant depending only on k and p. 
f(w) therefore exists if yg C(X)/p whenever p^2 and, as a function of u,f(u+iv) 

is the Fourier transform of a function in Lp, that is, is in Lp. In general f(u) is analytic 
for v in the interior of C(X)/p and is the Fourier transform of a function in L when 
considered as a function of u, and has a supremum for fixed t) of the order of a~klp' 
with a the distance of v from the boundary of C(A)/p. 

Now let T:f — k*f be a map from L{p, X) to L{q, p); then the adjoint T' 
can be represented as a m a p / — k*f f rom L(q',p~q") to L(p',X~p") and k is a 
distribution in S', ew, where ew(x)=e~iwx, is in L(g',p~q") if q'v.x—q"F(p, x) 0 
for all x, that is provided that qvZC(p), and then ( k * e w ) ( x ) = e~iwx{2n)ikk(w) 
is in L{p', X~p"). This implies that k{w) exists and that v^C(X)/p. Thus for a nonzero 
map T to exist we must have that C(X)/q<zC(p)/p and k(w) must be analytic for v 
in the interior of C(p)/w. 

The problem of maps from spaces with measures of form exp (— F(X, x)) to 
those with measures of similar form reduces to the one just discussed: this is, in the 
notation above, the question of a map from L(p, X~l) to L(q, p-1) and this is equi-
valent to a map from L(q', pq") to L(p', Ap"); the condition for.this is that p"C(X)lp' c 
aq"C(p)/q', that is, that C(X)/pczC(p)lq. 

4' 
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We now investigate conditions for a multiplier function to give such a map. 

D e f i n i t i o n . For amO let Mq
pa be the set of all m{u) such that m(u)f(u) is 

in Lq whenever / is in L(p, eaM). If m(u)f{u)=g(u) then we write Mq
pa{m) (or 

Mq
p a (w («)) when it is necessary to specify the variable in rri) for the no rm of the 

map f~g on L(p, eaM), to Lq. 
Since L(p, eaM) decreases as a increases, and since the norm of a fixed element 

increases with a, M"p a increases with a, and the norm of a fixed m decreases with a. 
These monotonicities are strict. Thus in particular if p>q, Mq

pa is empty if a—0, 
but contains the unit function if a =- 0. 

T h e o r e m 10. Let A(x)=exp F(l, x), ¿¿(x)=exp F(fi, x), where F(l, x), F{p, x) 
are support functions of closed convex sets C(A), C(p). Let pF(X,.x)^qF(p, x) for 
all x. Let m(w) be analytic ifv£C(p)/q and for each v in C(p)/q let.m(u+iv) be in 
Mq

pb with Mq
pd(m(u+iv)) =; K8~y where K, y are constants independent of v, y 

and 5 is the distance of v from the boundary of C{X)lp. Let C(p)/q be not entirely 
contained in the boundary of C(X)/p. Then if q=2 themapf-*g, where g{w)~m{w)f{w) 
for v£C(p)/q is a bounded translation invariant map from L(p, I ) to L(q, p). 

If2<q<<=° the same holds provided that m(w) is uniformly bounded for v in C(p). 

According to the hypotheses there is for each v in C{p)lq an element x) £Lq 

such that 

(6.3) (2n)ik g(u + iv) = fg(v,x)e-iuxdx, 
and 

(6.4) \ \ g ( v , - ) \ \ q ^ 8 - y K { f \ f ( _ x ) \ P e ^ d x y i P . 

Our first aim is to prove that this g is essentially independent of v, that is, g(v, x ) = 
— g(x)evx for some g in L(q, p). 

Choose a, b, v in C(p)/q so that a, = = b r for all r \ we may as weir suppose 
the inequalities strict, since there is nothing to prove unless some are strict and we 
can ignore the coordinates for which ar, br, vr are equal. Letting wr = ur+ivr, for 
iarge enough T Cauchy's theorem gives 

• C(T) ; 

where P{z, w) = (2rJ)~kn(zr-wr), and where C{T)=nCr{T) with Cr{T) the rect-
angle with vertices at iar±T,. ibr±T described positively. Calling the integral on 
the right I(T) it follows that . 

T+l ' 

g(w) = f I(t)dt = J(T) + R(T), 
r 
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where J(T) is the part of the integral in (6: 4) over the product of the horizontal sides 
of the rectangles, and R(T) is a sum of terms of the forms 

T+1 ib + T T.+ l t 

[ dt [ j v d z a h d [ dt f £ ( i a + x \ d X 
J J P(z,w) J J P(ia + x,w) 
T ia + T T T 

together with others obtained by replacing T and T+ 1 by — T, — T— 1 and a by b. 
The terms of the first, type are not greater in modulus than 

(6.6) 

i /« 

T a T 

b T+1 

^ A T - x f d y ^ f \g(t + iy)\*dt 
a T 

for some constant A. If g S 2 the inner integral is not greater than Cq\\g(y, -)||9 

where Cq is the norm of the Fourier transform as a map f rom Lq to Lq.. Moreover, 
g(u+ iv) = m(u+iv)h(u) where k(x)=f(x)evx and then 

,f\h(x)\"eSMdx= J\f(x)\PeP" x+ixdx ^ f |/(x)|" eF^dx, 

because x) = sup {v.x:v£C(X)} = pv.x+3 ||x|| since all points within 8 of v are 
in C(A). Then by (6- 4) ||g(i?, 

We can suppose without loss of generality that at most one point of [a, 6], say 
b 

a, lies in the boundary of C(X)/p. The integral in (6. 6) is of the order of J 5~ydy 
a 

where 5 is the distance of y f rom the boundary of C(l)jp. If a is not in the boundary, 

this is bounded; if a is in the boundary, it is of the order of the integral f rk~1~y dr 
o 

with r = ' || j — a n d is again bounded if y<k as required by hypothesis. Hence the 
term (6.6) is 0(T~k) as 

This argument fails if q< 2; however, in that case under the strengthened hypoth-
esis that m(u+iv) is bounded we can consider the side terms in the integral (6. 5) 
directly. According to (6. 2), assuming again that a is in the boundary of C(A)/p, 
\f{u+iv)\ is bounded by a constant multiple of d~klp' and, arguing much as above, the 
integral is of the order of T~k multiplied by the integral of f r t ( 1 - 1 ' p ' ) - 1 i / r and 
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since p > 1 this is bounded. Once again the side terms tend to 0 and we can write 
? W = 1 a - h where 

oo 

y=a — <*» 

= J g{a,№ J g(a, 
— oo . y = a 0 

and similarly 0 

(2n)*Ib = - f g(b, O e - ' W d t . 

On comparison with (6. 3), it follows that g(x)=g(v, x)e~v x is independent of v 
and then 

(/\g{x)\qp(dx)yi" = (J|g(v, X)\9e-9o'x + F0.,xidxyiq £ 

(f\g{v, x^dxyi" s K5-rf„, 
when the point v is chosen arbitrarily in the interior of C(X)/p. Thus the m a p f—g is 
continuous on L(p, X) to L{q, p). 

Note that the conclusions of the theorem are valid if <73= 2 even if C(fj)lq is 
entirely contained in the boundary of C(X)/p provided that y can be taken to be zero. 

Sufficient conditions for a map generated by m to be continuous L(p, X"1) -* 
->~L{q,ii~l) follow from this theorem, by using the duality arguments. These are 
that C(X)/pc:C(n)/q, that C(X)/p is not completely contained in the boundary of 
C(p)/q, that if p^2m(u+iv) is .in M£s and that M£s(m(u+iv)) < K5~y where 5 
is the distance from v to the boundary of C{p)lq and K, y are-as before. If /?< 2 we 
need in addition that m(u+iv) is uniformly bounded for v£C{p)jq. 

These conditions are unaltered by translations of C(X)/p, C(p)/q through the 
same displacement. This is a particular case of the following observation: 

If the kernel k generates a continuous transformation f rom L(p, X) to L(q, p) 
then the kernel k{x)e?'x generates a continuous transformation from L{p,Xe~pax) 
to L(q, pe-qa x). 

The effect of the change in measures involved in this statement is to alter F(X, x) 
to F(A, x)~pa-x and F(p, x) to F(fi, x) — qa-x and so to displace both C(X)/p 
and C(fi)/q. by —a. 

We give some applications of these arguments to particular, kernels. 
a) The one-dimensional Hilbert transform has k(x)=l/nx, k(u)=sgn u. This 

has no analytic extension, so that H cannot map any L(p, A) continuously to L(q, p) 
if C(p) contains any nonzero v: that is to say, if p is in the class we are considering 
in this section, it must be constant. 
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b) The Riesz potentials are the transforms Rx with kernels ||x||<z_':, 0 < a < i , 
apart f rom a constant multiple; the Fourier t ransform m(u) is a constant multiple 
of ||w||-01. This has no analytic extension and the same conclusions apply as for the 
Hilbert t ransform. 

c) Let <?(x)=e_ l | x". Then e(w) = (1 + analytic for | |I; | |<1, and uni-
formly bounded on any region || u|| < 1 — 5, if d > 0. Conditions sufficient in order that 
the map T, 

T f ( x ) = f e-\*-y\f(y)dy, 

act continuously L(p, A) -*L(q, p) a re : 
A. F(p, x)<q\\x\\ for all x and B: if p^q^l, pF(p,x) ^ (qFX,x) and if 

p > q, pF(p, x) < qF(X, x) for all x. 
Dually, the conditions that T a c t continuously f rom L(p, p-1) to L(q, A - 1 ) are 
A' . F(X, x)<=/> ||x||; B' if q<=p^2, qF(X, x)SpF(p, x) for all x, if p>q 

qF(X, x) <pF([i, x) for all x. 
d) For the kernel &(x)=e - 1 1*"2 the conditions are the conditions B and B' 

above. 
e) If q<p and C(u)/q is contained in the interior of C(/.)/p then the identity is a 

continuous map L(p, X)-*L(q, p). 
This follows easily enough f rom the theorem, or directly f rom Theorem 8, 

for if the conditions hold then there is an e neighbourhood of C(p)/q in C().)lp 
and so F(X, x)/p— F(p, x)/q > e[|x|| for all x, so that the conditions of Theorem 8 
hold. 

The theorem also allows us to state some cases in which the class of translation 
invariant maps f r o m L(p, X) to L(q, p) is vacuous, that is, consists only of the zero 
map. Among these are the following: 

a) C{p)jq is not in C(X)jp, that is, pF{p, x)>qF(X, x) for some x. 
b ) p>q and C(p)/q contains a boundary point of C(X)/p, that is pF(p, x) = 

= qF(X, x) for some x. 
For suppose that there is a v common to the boundaries; for this v, 6=0, and if 

m(w) generates a m a p L(p, A) —L(q, p) then m(u +iv).£Mq
p and this, as we have 

seen, is vacuous if p > q. 
On the other hand, the class of maps is never vacuous if C(p)/q is in the interior 

of C(X)lp; for then if p>q the.identity is a continuous m a p L(p, X)—L(q, p) and 
i f p = q the function m(w)=e~w2 is a multiplier generating a nontrivial continuous 
map. 

Lastly, with X and p of the same forms, there remains the question of the existence 
of map L(p, X) —L(q,p^i) and L(p, A - 1 ) — L (q, p). Here the functions in one space or 
the other are very large at infinity, and do not have Fourier t ransforms: nor do 
the functions involved in the dual problem in the other space. The problem can be 
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considered by other methods, and some results may be obtained by using generalized 
Fourier transforms. However, the following result is obvious, as consequences of 
previous theorems. 

For the map L(p, A~i)-<-L(q, //) the comparison functions of Theorem 7 are 
E(A~l, h)= — exp (— F (A, h)), E(p, A ) = e x p F(p, h) so that L(p, A - 1 ) p) is 
vacuous unless A and p are 1. 

The question of maps f rom L{p, A) to L(q, p~l) reduces to that of maps f rom 
L{p,Aepax) to L(q, eqa x) according to the argument above, where a is any 
point. If a is common to C(A)/p and — C(-p)/q, 0 is a common point of the correspond-
ing regions after displacement: for the equivalent F's F(A, x)^0, Fiji, for all 
x. Assuming this to be the case, we have the continuous imbeddings L(p, A)cLp, 
LqaL(q, ¡i"1), and so any continuous map Lp-*Lq induces one from L(p, A) to 
L(q, I f p = q there are always such maps that are not zero. If p>q, the identity 
is a map from L(p, A) to L(q, p~l) if a is interior to C(A)/p. 
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