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1. Introduction

Given an infinite set E, call a function f a set mapping (on E)if f maps-E
into 2(E) (the set of all subsets of E) andis such that x4 f(x) for any x€ E. Call
“two elements x and y of E independent - (with respect to f)if x¢f(y) and y¢ f(x).
Say that a subset' X of E is free (with respect to f) if any two elements of X are
independendent. S. Ruzievicz [12] conjectured and A. HaiNAL [5] proved the fol-
lowmg if there is a cardinal p < |E| (this latter donetes the cardinality. of the set E)
“such that | f(x)] <pu holds for any x € E, then there is a free set XS E of cardinallity
[E|. A well-known ex_ample shows that the weaker assumption | f(x)| <|E| does not
even guarantee the existence of an independent couple. Still, one can weaken the
cardinality assumption on f(x) while ensuring the existence of a large free set by
‘imposing structural restrictions on the range of f. Before we dlSCUSS these restricti-
ons, we need a short review of

Notatlons and terminology. We work within ZFC, i. e Zermelo—Fraenkel set
theory with the Axiom of Choice. We use the usual notations of set theory, although -
there is one point to.be stressed: C always denotes str ict inclusion, i. e.

'xc_yex_gy & x#Zy.

As mentioned above, |x] is the cardinallity, and £ (x) is the set of all subsets, of the
.set x; dom(g) denotes the domain and range(g) the range of the functiong. The
definition -of the full inverse image f~ l(x) of a 'set X under .the set mappmgfwrll be
given in Definition 3. 3.
An ordinal is the set of its predecessors and cardinals are identified with their
initial ordinals. A cardinal pis inaccessible if it is a regular cardinal such that for
every cardinal v<p we have 2°<p. Finally, ‘the weak cardinal power p¥ is defined -

as Up_, 1.
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By Martin’s Axiom we mean, as usual, Proposition A in [10, p. 150] (cf. also
[16]), i.e. the following proposition:

For any notion C of forcing that satisfies the countable antichain condmon .
(often called countable chain condition), and for any set F of cardinality <2%
of dense open subsets of C, there exists an F-generic filter. '

As is well known, this proposition is consistent with ZFC+2% > g, "provided
ZFC itself is consistent (see [16]). Furthermore, it is to be noted that Martin’s Axiom
implies the regularity of 2% (see [10, Corollary 2 on p. 164]).

The followmg concept plays a key role in the discussions below.

Definition 1.1. Given an ordinat 7, we say that the set S satisfies the #-
chain condition (with respect to inclusion) if there is no sequence (s,:o<#) of elements
of § such that 5, Csp whenever x<f<mn.

2, Assﬁmptions on the set mapping and results

. Throughout this paper » will denote a regular cardinal and we shall assume:
that E=x; this amounts to the same as assuming that the cardmahty of E is x.
We shall consider a subset S of Z(x) satisfying one of the two conditions below.
These are the.conditions we shall usually 1mpose upon- the set mapprng f with

S= range (/).

(A) Every element of S has cardinality <x, and for each subset F of x, the set
{sNF:sc S} satisfies the x-chain condition (see Definition 1. 1).

The other. condition is apparently weaker:

-(B) Every element of S has cardinality <, and, moreover, for any t<x and any
: decomposmon %=U.<.E, of x into mutually disjoint sets E, of cardinality s,

. there is an ordinal y<t and a set FSE, of cardinality » such that the .
set {sN F:s¢ S} satisfies.the %-chain condition.

As we mentioned just before, it is clear that (A) 1mp]1es (B) But the converse

is not true:

Lemma 2. 1. (B) does not imply (A).

A Proof Split x into two disjoint sets each of cardmahty w: X=1{¢, a<%} and
Y= {n,:a<x}. Take ,
. S={lSuin: B <a}ia<sx}

- Then it is easy to check that (B) holds but (A) does not. In fact, as for (A), the set
{sNY:s€S} does not satisfy the x-chain condition. As for (B), take a sequence
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" (E,:a=t) of sets as described, and take a y<t such that |E, ﬂX | = ,{, then (B) is
fulfilled with F= E,NX. The proof is complete.
The following condmon is an alternative form of (B). The sllght change is that
here U, <. E, need only be “almost equal” to x, and we do not requlre that the sets
E, have cardmahty o ‘ »

{B") Every element of S has cardinality <x, and, moreover, for any T<x and any
sequence of mutually disjoint subsets E,, o<1, of » such that

1%_Ua<rEal = ;{5

* there is an ordinal y<t and a set FSE, of cardinality » such that the set
{sN F:s€ S} satisfies the x-chain condition.

Next we prove
Lemma 2. 2. (B) and (B’). are equivalent.

Proof. It is clear that (B’) implies (B). We show that the converse is also true.
To this end assume that (B) holds and, furthermore, let (E,:a<7) be such a sequence
as is described in (B) We may suppose that all the sets E, have cardmahty %, as
those of cardinality <x can simply be omitted. Assume first that

= U Bl =]
holds. Take mutually disjoint sets E, such that x=U,_,E, and such that E,CE!

and |E;— E,| = 1 hold for any a<t. By (B) there is @ y<x and an F’SE; of car-
dinality » such that {sN F’:s¢ S} satisfies the x-chain condition. It is then clear
that the conclusion of (B’) holds with F= F'(E,. This establishes the desired
result in case (%) holds. If this is not the case, then start with splitting an arbitrary
one of the sets E, into |x—U,_,E,| mutually disjoint sets of cardinality »; then -
() will hold, and the argument above can be used. The proof is complete.

We shall prove that (B) implies the existence of a countably infinite free set.
This has essentially been proved by G. Fopor and A. MATE [3, Theorem 2 on p. 4],
" although under slightly stronger assumptions (cbndition (B) of that paper requires

somewhat more than condition (B) of ours). If  is inaccessible and weakly compact,
then (B) 1mplles the existence of a free set of cardinality ». (A cardinal is weakly
compact if it is not strongly incompact; for the definition see [6, p. 312] or [14, Defini-
tion 1. 11 on p. 61]; cf. also Theorem 1.13 in [14, p. 62].) Not even (A) implies, how-
_ever, the existence of a free set of cardinality » in the following cases (m cases (i)
" and (11) we actually prove somewhat more): (i) for some cardinal A, x=At=27;
(i) =2% and Martin’s Axiom holds (see at the end of the Introductlon) and (111)
there exists a Souslin x-tree (the definition of Souslin tree is given in the next section).
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_A theorem of R. B. JENSEN [8, p. 292] says that, assuming the Axiom of Constructi- -
bility (see [4]), there exists a Souslin x-tree if and only if » is not weakly compact.
So, this last result in case (iii) and the result mentioned just before imply that, under-
the assumption of the Axiom of Constructibility, (A) (or (B)) implies’ the existence-
of a free set of cardinality x if and only if x is weakly compact (in the constructible:
universe . every weakly compact cardinal is inaccessible — see [6, Theorems 2 and
3 on pp. 315—316]). Finally we mention that the results and problems of this paper
are related to Problem 73 in [1, p. 46]. P. ERDOs and A. HAINAL have recently solved
this problem affirmatively. Their proof has not yet been pubhshed only an an-
nouncement was made in [2, p. 16]

_ 3. Existence of “large” free sets

* The aim of this section is to, establi_sh those of our results which confirm- that
condition (B) described in the preceding section implies the existence of large free:
sets. The basic tool of these.proofs is trees, so here we recall a few concepts concern--
ing them (we refer to [7] as an excellent exp051tory paper on trees; references to other
sources are given there). ’ :
A partially ordered set (7, <) is called a tree if for any x € T the set of predeces-
- sors of x, pr(x)=pr(x, (T, <))={y€T:y<x} is wellordered by < (we assume
that. < is irreflexive). We sometimes write T instead of (7, <). A subset linearly
. ordered by < of T is called a chaiﬁ (of or in T), a maximal-chain- a- branch, and,.
furthermore, a (not necessarily proper) lower segment of a branch is said to be a
‘path. An antichain is a set of elements mutually incomparable in < of T. For any
x€T, o(x)=o(x, (T, <)) denotes the order type of pr(x), and for any ordinal
a the set {x€T: o(x)=0a} is called the ath Jevel of T. The length of - a tree T is.
‘U {a+1: the ath level of T'is not empty}. An o-tree is a tree with length o.”
Assume g is a cardinal. An Aronszajn u-tree is a p-tree such that each chain.
and each level has cardinality <pu. A Souslin p-tree is a p- -tree such that each chain
‘and antichain has cardinality <u. p is said to have the Tree Property if there exists.
no Aronszajn p-tree. It is well known that, assuming u is inaccessible, p has the tree
property if and only if uis weakly compact (for a proof, see'e.g. [14 Theorem 1.13
on p. 62]). We need some further notions:

Definition 3.1. A tree (T", <’) is called a loose énd-exterzsion of another
one, (T, <), if 'Tg T’, the restriction of <’ to T equals <, and, furthermore, every
branch of T includes a branch of T as a lower segment. . )

. Assume now that we are given a regular cardinal » and a set mapping f on x. v
The following concepts depend on and f, although the terms . introduced will not

stress this explicitly:
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Defmltlon 3.2. A tree (T, <) such that TCx is called free if .each of its -
‘branches is a free set {with respect to f).
. Now; for a tree (T, <) and for a-path p of T denote by 1ms(p, T) the set of
3 jlmmedlate successors in < of p. (Note that the empty set is also a path.)

Definition 3.3, A free tree T is called regular if for every nonmaximal path
» of T we have [ims(p, T)|<x and :

A~ 1(&):cims(p, T)) = 0,

[N XnfOE0 XS

v

where

An important consequence of this definition is given by the next.lemma. (We
need this lemma only for p=0, but it does not- requlre any extra effort to establish .
;1t for any p)

~ Lemma 3.4 Assume Tisa regular free tree and p zs a path m T. T/ hen, with b
Funning over all branches of T, we have :

ﬂ{f Yb-p): PCb}—O

Proof. Given any f<x, we are going to show that & does not belong to the
above intersection. To t.his-end,'conSider"those path p” in T for which pSp” and .

EES7H P D).

- Note that p itself is such a path, and,' by Zorn’s lemma, there is a path that is maximal -
Aa'méng'those having this property. Assume that p/ is already such a maximal one.

If p” is a branch, then we are. ready. If not, then let" n €ims(p’, T) be such that .

£4 f - ({n}) (there is such an 5 by the regularlty of T) Then

EG¢ Y (pu{n}—p)

-‘which contradlcts the max:mahty of p’. The proof is complete .
Say that a regular free tree T is less than another one, 7", if 77 is a loose end-
- extension of T. Tt follows -easily from Zorn’s lemma that, under this partial ordering,
there is a maximal regular free tree (note that the empty tree is a regular free tree,
“and so is the union of a linearly "ordered set of regular free trees). Our key result
" 1n this section says that a maximal regular-free tree cannot be too. small provided
condition (B) (see the preceding section) holds for S=range ( f):

Theorem 3:5. Assume. condition -(B) /zolb’s for S=range (f). Let (T, <) be
a regular free tree having less than x branches and such that |T|<s. Then T has a
proper loose end-extension that is also a legular f/ee tree.
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For the proof We need a simple lemma, which occurs in [3] and [11]. It is im-
portant for this lemma that we assumed x to be a regular cardinal.

Lemma 3. 6. Let H be a set such that each of its elements has cardinality <:x -
and such that |JH|=x, and assume that H satisfies the x-chain 'condition (with re-
spect to inclusion). Then there is a subset X of cardinality < of ud such that X Th
holds for any he H.

Proof. H can be considered as a set partially ordered by inclusion. By a well-
known theorem of F. Hausdorff, there is a maximal linearly ordered subset of H,
say K. By another of his theorems, there is a wellordered subset M of K that is cofinal
to K. As H satisfies the x%-chain condition, we must have |M|<x. Now take an arbi-
trary element ¢ of JH—|JM, and put X= UM U {¢}. Itis clear that this set satisfies.
. the requirements of the lemma. »

Now we establish the announced theorem.

Proof of Theorem 3. 5. Let (byin<1) (T<A) be an enumeration of the -
branches in T, and put . : :

Go= =11 (b
E=G-M—UpGy (=7,
M= TUU£K®£€T}

It follows from Lemma 3. 4 with p=0 that ,<.E, = x— M. It is clear ‘that here
M| <=, as we assumed both |T|<x and |f(&)]<x for any E<x (this latter as a - .
‘part of (B)). So, in view of (B’) (which holds by its equivalence to (B), as established
in Lemma 2. 2) we can see that there exists an ordmal y<t and a set FCE, of car- '

’ dmallty % such that :

" and

where

{ﬂanﬂé<w

satisfies the x-chain -condition. So, by the lemma just proved, there is a set XS F
of cardmahty <% such that X g S(ENF holds for any é<x ie. such that -

n{/({s):6ex}y =o0.

Make the set 7" = TUX a tree by stipulating that_ T is a loose end-extension of T -
such that X=ims (b,, T”). It is clear that these stipulations define 77 as a tree un-
ambiguously, and, moreover, that 7" is a regular free tree. This completes the proof.
" As we mentioned above, there exists a maximal regular free tree. By the theo-
rem just proved, such a tree either must have cardinality » or it must have at least.
% branches. In either case, it cannot have only very short branches; as a branch
is a free set, we can thus establish the existence of a large free set. We first prove
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Theorem 3.7. Assume that p<x is a cardinal such that v&<x holds for any
cardznal v<x. Then any maximal regular Jree tree has a branch of cardmalzty =u.

- Proof. Take a maxrmal regular free tree 7, and assume that each branch of
T has cardinality <u. Then, in view of Theorem 3. 5., 7 must have at least x branches
(indeed, if T has less than x branches, then we also have: |T|=the sum of the car-
dinalities of all branches of T'<x). Let n=p be the least ordinal such that the tree
T'n has at least % branches (T} is, by definition, obtained from T by-omitting each
of its elements in or above the nth level). Then each level in Ty has cardinality <.
In fact, let a<x. Then T|« must have less than » branches by the minimality of #.
Since for any path p of T we have |ims (p, T)| < (this is stipulated in the definition
of a regular free tree), we can conclude from here by the regularrty of » that the ath
level in T has cardinality <x. .

So there is a cardinal v<x such that each level in Ty has cardinality =v.
Therefore, noting that each branch in T'|n has cardmahty < u, the number of branches
in T'|y is at most . _

, U{v"ﬂ:é =5 & &< y} =vt< ,
which is a cohtradiction, proving the theorem.

From this theorem we can 1mmed1ate1y conclude

Theorem 3. 8. Assume that » is an mﬁmte regular-cardinal and condition (B)
holds with S=range(f). Then '
() there exists a free set of cardinality 8,; _
(ii) if p is a cardinal <x such that for every cardinal v<sx we have v& <x, then
there exists a free set of cardinality u; '
(iii) if  is inaccessible and’ weakly compact, then there exists a free set of car-
a’mallty X. :

Proof. (ii) directly follows from the preceding theorem. We establish (iii).

As x is inaccessible in this case, the assumptions of the preceding theorem hold for
any cardinal p<x; so a maximal regular free tree T must have length =x. As
[ims (p, T)|<# holds for any path p in T (cf. Definition 3. 3.), it follows from the
inaccessibility of » that for.any a<x the ath level in T has cardinality <. As %
has the tree property (cf. e.g. [14, Theorem 1. 13 on p. 62]; note that although not
mentioned there, this is also trye in case »¥= &, — see [9]), T must have a branch
“of cardinality x. This being a free set, (iii) is proved. Finally, in case x> R, (i)-fol-
* lows from (ii), and in case x= R, it follows from (iii) (there is no harm in considering.
Ro 1naccessrble) The proof i is complete. :

]
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4. Nonexistence of “too large” free sets

In many cases we can prove that condition (B) (and even the stronger condition

(A)) does not ensure the existence of a free set of cardinality . But we cannot prove

" even in the simplest case that there is a cardinal p<x such that (B) does not imply
the existence of a free set of cardinality u. We start with the simple

Theorent 4. 1. Assume that is' a regular cardinal such that there exists a
Souslin x-tree. Then condition (A) with S=range(f) does not imply the existence of
a free set of cardinality x. ‘ '

Proof. A;sume (xt, 2) is a Souslin x-tree, and for any ¢<x put

1) = fa<x: 0 &) (= pr(d).

A subset of x is free with respect to this f exactly if it is an antichain in (%, <); so
there is no free set of cardinality x. We are going to show that S=range(f) satisfies
‘condition (A). Assume the contrary, and let F be a subset of » and (¢,:x<x) a se-
quence of ordinals <x such that .

f(fa)ﬂFCf(fp)ﬁF

- holds for any a<ﬁ</ (< indicates strict inclusion). Then it is easy to see that

a<x(f(€u)ﬂF)

is a chain of cardmahty % of (x; <). This contradicts the fact that the latter is a
Souslin x-tree. The proof is complete. ' = .

Next we show that, under the assumption of the Generahzed Contmuum_
- Hypothesis, condition (A) does not guarantee the existence of a free set of cardmallty
x if » is a successor cardmal Actually, we prove more:

Theorem 4. 2. Assume % and ). are infinite cardinals such that x=2* and ezt/zer ‘
(i) »=A", or (i) A=W, and Martin’s Axiom holds.  Then there is a set SSP(x) of
cardmalzty x% satisfying condition (A) of Section 2 such that f01 any set 'S S of car-",
dinality » we have |[x—|)S’| < 1.

An obv1ous consequence of this is

Corollary 4. 3. Assume that either (i) or (ii) of the p}ecedmg theorem holds
Then condition (A) wrth S= range (f) does not imply the existence of a free set of car-
~ dinality x. '

For the probf of the above theorem we need the following

Lemma 4.4. Assume that either (i) or (ii) of the precedmg theorem holds. Let
n</ be an ordinal and (A;: E<n> a sequence of sets of cardinality A. Then there is
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a set B,EU:<, A: such that B, meets each A, E<u, but does not include any of
‘them. o ’ ’ _ .

Proof. Ad (i). This case, due to F. BERNSTEIN, is well known and simple. We
may assume that n=A4; indeed, if this is not the case, the we can rearrange the se-
quence (4;:¢<n). Now define x; and y; by transfinite recursion so that x>y, and
: ] xg,J’¢€A;—{xa,J’a: a<€} (6<'7)’
and take B,= {x.:{<n}.

Ad (ii). Put
C= H(U¢<,,A¢,2),

that is, let C be the set of all functlons with 'values 0 or 1 the domains of which are
* finite subsets of |J:<,4,. Consider C as partially ordered by inclusion; then, as is
well known, C is a notion of forcing satisfying the_ countable antichain condition’
" (often ¢alled countable chain condition; cf. [13, Lemma 10. 3 on p. 372} — Shoen-
field’s termmology differs from ours, so that in order to agree with it we should
order .C by reverse inclusion). The set

P

D= {pEC 3x, y € 4[x, y€dom (p) & p(x)=0 & p(H=11}

is dense open for any. §<11, so, by Martin’s Axiom, there exists a {D,: é<r1} -generic
filter G. The set

B,= {XEdom Uo): (UG)(x)~1}

satisfies our reqnirements (note that UG is a function the domain of which Is in-
cluded in U§<,', o). The lemma is proved.

Proof of Theorem 4.2.. We deal with cases” (i) and (i) simultaneously.
Let {Ag:E<x) be an enumeration of all subsets of cardmahty A of x, and for each
n<ux.define B, as described in the lemma just proved: Put S= {B,:n<x}. We show
that S satlsﬁes (A). It is clear that each element of S has cardinality <x; assume
that the rest of (A) does not hold, and let F be a subset of % such that {B, N F:n<x}
does not satisfy the x-chain condition. Then it is easy to see that there ex15ts a set
IS% of cardmallty % such that :

B, nFcBI,nF

_ holds for any o, 3 €I with oc</3 Then for any a€/ w1th |ozﬂl| = i we obv10usly
- have |B, NFE| = 24; so, for some {<x, we have A € B,NF. Pick an n€I with
n>u, &. Then A,EB,, which contradicts the assumption 4, & B,NF < B,NF.
Thus we have shown that S satisfies (A).
Now take any subset' S” of cardinality % of S. We are about to show that
|—JS’| < 2. Assume the contrary; then there exists a & < such that A4, S »—US.-

6 A
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Take a B,€ S’ with r1>g Then 4A:MN B, # 0, which is a contradiction. The theorem
is proved. ’

We conclude this paper by pointing out a few problems. As mentloned in
Section 2, our discussion is complete as far as the existence of free sets of cardinality
» is concerned in case we assume the Axiom of Cdnstructibility. But without such
an assumption many problems remain open. The simples-sounding one is

Problem 1. Assume x=§&, and 2%=g§,. Does then (A) or (B) with S=
=range (f) imply the existence of a free set of cardinality »? .
- One may try to solve this problem even under the assumption of Martin’s
Axiom; the answer is unknown to us. Nothing is known about the nonexistence of
free sets of a cardinality less than x. E.g. one might ask-

" Problem 2. Assume x= 2% = x,, and assume that Martin’s Axiom holds.
Does then (A) or (B) with S=range (f) 1mp1y the existence of a free set of an un-
countable cardinality?

It is a well-known result of R. M. SOLOVAY that it is consistent re]anve]y to. the
existence of a measurable cardinal that 2% be real-valued measurable -(see [15,
Theorem 2 and Proposition 1 on pp. 398—399]; cf. also the remark on p. 67 in -
[14]). The fact that a real-valued measurable cardinal always has the tree property
(see [14, Theorem 1. 16 on p. 67]) makes the following problem interesting:

‘ Problem 3. Assume that x= 2", and, furthermore, that x is real-valued meas-
urable. Does then (A) or (B) with S— range N 1mply the existence of a free set of
cardinality ?

Added in proof. When the papcr had already been in pnnt we obtained the
'followmg results, which go a long way in settling Problems 1—3. For.an o_rdl_nal
1, denote by (4,) the assertion that for the set mapping f: % —~2(x) we have | f(a)| <x
whenever o <, and, for each subset F of x, the set {f(«) N\ F: o<z} satisfies the
n-chain condition. Then the following propositions are consistent relatively to ZFC:

(i) 2% = % = anything reasonable, (4,,) holds for f, and there is no free set of car-
dmahty R;; (i) 2% =2 is real-valued measurable, (4,,) holds for f, and there is no
free set of cardinality 8,. The following propositions are theorems of ZFC: (iii) If
% = 2% = &, and Martin’s Axiom holds, then there is an / satisfying (4, ,) (in fact,
V¢, n[é<n<a§2 ~ | NS()| <Kol). such that there is no free set of cardinality .
Rz; (V) If x = A% = 2*and cf () > w, then thereisan f satisfying (4, such that there -
is no free set of order type 1+ w;.(v) If: % = A* = 2*and Ais regular, then there isan
£ such that (4, ,) holds (in fact, V¢, [§<n<4—> !f(é)ﬂf(n)| <2) and there is no
free set of cardinality x.
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