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1. Introduction. Assume we are given two regular cardinals ¢ and x with
o<, and let us assign to each ordinal ¢ < that is cofinal to ¢ a principal sequence
of order type g, i.e. a sequence of ordinals that is strictly monotonic and continudus
and tends to ¢. A natural question to ask whether there are many among' these se- .
'quences which have the same beginning. This type of question was ﬁrst ralsed by
B. Rotman. The method we use in answering this problem as far as we camis a ge-

" neralization of that of ROTMAN [4] and Fopor [3].

2. Notatlons and termm_ology. Our con51derat1ons below can most naturally
be carried out in the framework of Zermelo—Fraenkel set -theory with the Axiom
of Choice. We usé¢ the usual set-theoretical conventions and notations. Thus we
consider an ordinal as the set of its predecessors, and a cardinal is identified with
its initial ofdinal. Ordinals are usually denoted by lower ccase Greek letters, and
the sign.+ denotes ordinal addition. dom (/) dénotes -the domain, and f/ x the re-
striction to the set x of the function f. Braces {,} are used to define sets, and angle
brackets (. ) to define functions; that i is, if fis a function, then by definition we have

S = {f(x): xedom()).

A sequence is a function whose domain is an ordinal. The word monotone is
meant in the wider sense; if we mean strictly monotone, then we say so. A monotone
usequence (& a<n) of ordmals tends to ¢ if ¢ = J &,. A principal sequence is

a<n .

a strictly monotone sequence of ordinals that is continuous; here a monotone se-

quence (£,:a<n) of ordinals is called continuous if &, = |J &, holds for any
. B B<a ’ : .

oz<r;. . .

Given a regular cardinal x> w, a set X S x is called stationary (in ) if it meets
every ‘closed unbounded subset of ». (Here the topology on x is that generated by’
its natural ordering; unbounded means cofinal to x».) A key fact proved by the
author is that the nonstationary subsets of x form a normal ideal on x; that is, if a
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function f sending ordinals to ordinals is called regressive whenever f(a)<a holds
for all nonzero « in its domain, then we have (see [2, Satz 2 on p. 141]):

2.1. Theorem. Any regressive funct:on the domain of which is a stanonary
set (in some fixed regular cardinal) is constant on a stationary set.

3. The next lemma, which is a generalization of results in [3] and [4], will be
useful in dealing with our main problem outlined in the introduction. The lemma
~ may be interesting in itself, and it has other applications as well (it enables one to

derive special cases of Solovay’s decomposition theorem [5] which says that every
. set stationary in a regular cardinal %> can be split into x stationary sets (cf. [3]).

3.1. Lemma. Assume ¢ and % are two infinite regular cardinals, o<, and S
is a set stationary in % of ordinals less than » and cofinal to 9. Assume, further; that .
" for every €S (f,(£):a<g@) .is a monotone sequence tending to &. Then.there exists
an ordinal vy<g such that, for every v with v05v<g there is a set F(v)&x of car-
dinality » such that the set '
._{éeS:ﬁ(é) =)

is d stationary for each ye F(v).

Proof. Call a function J mapping a subset of x into x essentially bounded if
there exists an ordinal ¢ <x such that

{e€dom(f):f(&) < a}

is nonstationéry We assert that at least one of the functions £, is not essentially '
bounded. In fact, assuming that o, is an essentlal bound for.f,, we see that o« = {J «,

vy<n

is a common essential bound for each f,; moreover, it is clear that the set

= {¢es: E!v<g[f(f)>ot]}(C U{fES [ =a})

is nonstatnonary On the other hand H S—a, as by our assumptlons we have
&= U £.(¢) for every é¢ S. This contradiction implies that there is indeed a vo<g

V<0

such that /., 1s not essentially bounded.

Now take an arbitrary v with Vo= v<g. Obviously, £, is not essentlally bounded
asf, (&)=f,()holdsforevery{ € S. Put F(v) = {v =#:{€€S: £,(§) = v} isstationary}.
We are going to show that F(v) is cofinal to x, and so it has cardmahty A Indeed
take any a<x. As f, is not essentially bounded the set

={eS: O =a}

is stationary. So, applying Theorem 2. 1 to the function f/X we see that- there is a
y=a such that the set

{§€S:fv(é) = v}
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" is stationary. ThlS means that y € F(v), showmg that F(v) is ¢ofinal to », as asserted

". above.

This completes the proof. _
4, Now we are in position to establish the main result of these notes:

4.1. Theorem. Assume. 0 and % are two infinite cardinals suc/z that g<x and
1< holds for any two cardinals ¢ and t with <, t<wx. Let 'S be a set stationary
in ' of ordinals less than x and cofinal to ¢. For every £€ S, let (f,(¢):v<g) be a
principal sequence tending to {. Then there exists an ordinal vy<o such that for ever 'y
v with vo=v<g there is-a set G(v) of principal sequences of type v of ordinals such
~ that t/ze set. {£€S: (fu(é) u=<vy=ys} is stationary in xfor each s¢ G(v)

Proof. Observe that it is enough to prove this theorem for any v of form y+1 . .

such- that vo<v<g, for some vy<g. In fact if 5 is a limit ordinal and G(11+ 1) has
already been defined in a way complymg with the requlrements of the theorem,

then we can take .
GO = {shn: SEG(n+1)}-

One should only note here that the cardinality of G(n) is », forif sy, 5,€G(H+1)
and s,pn = 5,/ n then also s,=s5, by the continuity of these sequences. ' '

Now take v, to be that of the preceding lemma, and let # be an ordinal with
vo=n<g. Select an arbitrary y€ F(n), this latter set having been defined in the
preceding lemma. In view of the assumption that 7°<x holds for any two cardinals -
7<x and g<g we can see that there are less than x different ones émong the se-
quences :

(L@ p=m)

‘asf runs over the elements of the stationary set '
{£€S: £,(O =)

So there is a sequence s-y such thatbthe set |

{¢es: (f,l(f) p=n)= S}

is stationary. Set .
-G+ = {Sy: v€F('1)}1

The proof is complete'

4.2, It is not dlﬁicult to see that the assumption that t° <z holds for any two
cardinals 7 and ¢ with t<x, o< is essential. More exactly, we have

Theorem. Assume ¢ and % are two infinite regular cardmals, and t<x and .

a<g are cardingls such that ©°=x. Let S be the set of all ordinals & cofinal to. o for
which t+0 = £ < x. Then for every £€ S, there exists a principal sequences s; tending
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to & such that Jfor any sequence s of type =g of ordinals there is at most one £€ S for
. which s is an initial segment of 5.

Proof. Clearly, one can take x different principal sequences of type g+ 1 of -
ordinals =t; let (#,:£€S) be an enumeration of these sequences. For any £€ S
continue the sequence #; to a principal sequence s; of type ¢ that tends to &. The
proof is complete :

5. If 5, and s, are two principal sequences of type ¢, where ¢ is a cardinal,
then s, and s, (or, rather, their ranges) have less than ¢ elements in common. It
would, however, be interesting to know the answer to the following:

Problem. Assume ¢ and % are regular cardinals, o<x. Let S be the set of all .

_ordinals <x that are cofinal to 0. Is then there a principal sequence s; for each £€ S

such that, for some. cardinal A<g, the sequences s, and s; have less than A elements in
common wheneber & and n are di ﬂerent elements of S.

By Theorem 4. 1, the answer is in the negative if 77 <x holds for any cardinals
o<¢ and T<x. We conjecture, however, that the answer is always in the negatrve
and remains to be so even if we take S to be any. stationary set of ordlnals <x that
.are coﬁnal to o.
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