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1. Introduction. Assume we are given two regular cardinals Q and x with 
and let us assign to each ordinal ç < x that is cofinal to q a principal sequence 

of order type Q, i.e. a sequence of ordinals that is strictly monotonie and continuous 
and tends to Ç. A natural question to ask whether there are many among these se-
quences which have the same beginning. This type of question was first raised by 
B. Rotman. The method we use in answering this problem as far as we can is a ge-
neralization of that of ROTMAN [4] and F O D O R [3]. 

2. Notations and terminology. Our considerations below can most naturally 
be carried out in the framework of Zermelo—Fraenkel set theory with the Axiom 
of Choice.' We usé the usual set-theoretical conventions and notations. Thus we 
consider an ordinal as the set of its predecessors, and a cardinal is identified with 
its initial ordinal. Ordinals are usually denoted by lower case Greek letters, and 
the sign + denotes ordinal addition, dom ( / ) denotes the domain, and f f x the re-
striction to the set x of the func t ion / . Braces {,} are used to define sets, and angle 
brackets ( , ) to define functions; that is, i f / i s a function, then by definition we have 

/ = < / ( * ) : x e d o m O O ) . ' 

A sequence is a function whose domain is an ordinal. The word monotone is 
meant in the wider sense; if we mean strictly monotone, then we say so. A monotone 
sequence of ordinals tends to ç if ç = U A principal sequence is 

a strictly monotone sequence of ordinals that is continuous; here a monotone se-
quence a.<r\) of ordinals is called continuous if = IJ + 1 holds for any 

a <rj. 
Given a regular cardinal x>~a>, a set XQx is called stationary (in x) if it meets 

every closed, unbounded subset of x. (Here the topology on x is that generated by 
its natural ordering; unbounded means cofinal to x.) A key fact proved by the 
author is that the nonstationary subsets of x form a normal ideal on x; that is, if a 
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function / sending ordinals to ordinals is called regressive whenever / ( a ) - = a holds 
for all nonzero a in its domain, then we have (see [2, Satz 2 on p. 141]): 

2. 1. T h e o r e m . Any regressive function the domain of which is a stationary 
set (in some fixed regular cardinal) is constant on a stationary set. 

3. The next lemma, which is a generalization of results in [3] and [4], will be 
useful in dealing with our main problem outlined in the introduction. The lemma 
may be interesting in itself, and it has other applications as well (it enables one to 
derive special cases of Solovay's decomposition theorem [5] which says that every 

. set stationary in a regular cardinal x > to can be split into x stationary sets (cf. [3]). 

3. 1. L e m m a . Assume Q and x are two infinite regular cardinals, £><x, and S 
is a set stationary in x of ordinals less than x and cofinal to Q. Assume, further, that 
for every (fx(t;):a<e) is a monotone sequence tending to t. Then.there exists 
an ordinal v0 < Q such that, for every v with v 0 S v < ^ there is a set F(v) ^ x of car-
dinality x such that the set 

{ c € S : / ; . ( c ) - y } 
is a stationary for each y £ F(v). 

P r o o f . Call a function / mapping a subset of x into x essentially bounded if 
there exists an ordinal a < x such that 

{ c ! £ d o m ( / ) : / ( c ) < a } 

is nonstationary. We assert that at least one of the functions / is not essentially 
bounded. In fact, assuming that av is an essential bound f o r / , , we see that a = U av 

V - C O 

is a common essential bound for each f . ; moreover, it is clear that the set 

H = {te S: 3v < eif-m > «]} ( i U U € S:fv(0 > *v}) v<g 
is nonstationary. On the other hand H = S—a, as by .our assumptions we have 

= (J / v (£) for every This contradiction implies that there is indeed a v 0 < g 

such that / v is not essentially bounded. 
Now take an arbitrary v with Obviously,/,, is not essentially bounded, 

as/VQ ( 0 ^ / ( 0 holds for every S. Put F(v) = {y < x:{££S:fi,(0 = y] is stationary}. 
We are going to show that F(v) is cofinal to x, and so it has cardinality x. Indeed, 
take any a A s / , is not essentially bounded, the set 

is stationary. So, applying Theorem 2. 1 to the function f f X, we see that there is a 
y S a such that the set 

K € S : / v ( i ) = ?} 
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is stationary. This means that y £ F(v), showing that F(v) is cofinal to x, as asserted 
. above. 

This completes the proof. 

4. N o w we are in position to establish the main result of these notes : 

4. 1. T h e o r e m . Assume, Q and x are two infinite cardinals such that Q<X and 
T" holds for any two cardinals a and r with <J<Q, Let S be a set stationary 
in x of ordinals less than x and cofinal to Q. For every £_£ S, let (/„(£): v<i?) be a 
principal sequence tending to C. Then there exists an ordinal v0 < Q such that for every 
v with v 0 S v < g there is a set G(v) of principal sequences of type v of ordinals such 
that the set • {^^S'.^f^Y.p < v) = J } is stationary in X for each S£G(V). 

P r o o f . Observe that it is enough to prove this theorem for any v of fo rm /7+1 . 
such that v 0 <v<i?> for some v0<£>. In fact if t] is a limit ordinal and G(i]+1) has 
already been defined in a way complying with the requirements of the theorem, 
then we can take •• 

G(ri) = {sfri: s£G(t1 +1)}. 

One should only note here that the cardinality of G(tj) is x, for if s2£G(r] + 1) 
and Si^ri = s2f 1 then also i , = s2 by the continuity of these sequences. 

N o w take v0 to be that of the preceding lemma, and let rj be an ordinal with 
Vq = ¡1 < q. Select an arbitrary y £ F(r]), this latter set having been defined in the 
preceding lemma. In view of the assumption that z a < x holds for any two cardinals 
-t<x and <7<i> we can see that there are less than x different ones among the se-
quences 

(MO- /< - >1) 

as £ runs over the elements of the stationary set 

So there is a sequence sy such that the set 

is stationary. Set 

G{n + \) = {sy: y£F{r,)}. 
The proof is complete. . 

4. 2. It is not difficult to see that the assumption that T f f <x holds for any two 
cardinals T and Q with O<Q is essential. More exactly, we have 

T h e o r e m . Assume Q and x are two infinite regular cardinals, and and 
<J<Q are cardinals such that Let S be the set of all ordinals £ cofinal to Q for 
which t+n = i < k. Then for every c £ S, there exists a principal sequences s. tending 
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to £ such that for any sequence s of type =<? of ordinals there is at most one £ 6 5 for 
which s is an initial segment of . 

P r o o f . Clearly, one can take y. different principal sequences of type a+ 1 of 
ordinals = T ; let S) be an enumeration of these sequences. Fo r any £ £ S" 
continue the sequence T^ to a principal sequence ss of type Q that tends to T. The 
proof is complete. 

5. If •ii and s2 are two principal sequences of type Q, where Q is a cardinal, 
then ¿i and s2 (or, rather, their ranges) have less than Q elements in common. I t 
would, however, be interesting to know the answer to the following 

P r o b l e m . Assume q and a are regular cardinals, Let S be the set of all . 
ordinals <x that are cofinal to Q. Is then there a principal sequence for each S 
such that, for some cardinal X<Q, the sequences sn and s( have less than X elements in 
common whenever £ and >7 are different elements of S. 

By Theorem 4. 1, the answer is in the negative if t °<>i holds for any cardinals 
cr< g and k k . We conjecture, however, that the answer is always in the negative, 
and remains to be so even if we take S to be any stationary set of ordinals < x that 
are cofinal to Q. 

References 

[1] H. BACHMANN, Transfinite Zahlen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band I, 
1967. 

[2] G. FODOR, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math., 17 (1956), 
' 204—206. 

[3] G- FODOR, On stationary sets and regressive functions, Acta Sci. Math., 27 (1966), 105—110. 
[4] B. ROTMAN, A note on principal sequences, Proc. of the Glasgow Math. Association, 6 (1963—64), 

133—135. 
[5] R. M. SOLOVAY, Real-valued measurable cardinals, in: Axiomatic Set Theory, Proceedings of the 

Symposia in Pure Math., Vol. XIII, Part I, Amer. Math. Soc. (Providence, Rhode Island, 
1971), 397—428. 

BOLYAI INSTITUTE 

SZEGED, HUNGARY 
(Received September 12, 1972) 


