
On the greatest zero of an orthogonal polynomial. I 

By GÉZA FREUD in Budapest 

Dedicated to Prof. Béla Sző kefalvi-Nagy on the occasion of his 60th birthday 

0. Introduction 

Let w(x) (— oo<x<°=) be an even weight function, and let {/?„(w;x) = 
— yn( w ) x "- \—; « = 0 , 1, . . .} be the sequence of orthonormal polynomials with re-
spect to iv, i.e. 

(1) f pm(w,x)pn{w;x)w(x)dx = j® ^ ^ "j' 

Moreover, let X„(w)=xin(w) be the greatest zero of p„(w; x). In part 1 of the present 
note we express the order of Xn (w) with the aid of the sequence {yv(w)} (see Theo-
rem 1). After deducing some lemmas in part 2, we apply this result in part 3 to the 
weight 
(2) we,2k(x) = • 

where Q=0 and k is a positive integer. We prove the estimate Vv_ i (we ^ 2k)l"h(w
e, 21) — 

= 0 ( v ' / 2 k ) which seems far f rom, being trivial and conclude from it that 

(3) X„(w,j,2k) ~ y„- , (W„, 2k)ly„(Wo, 2k)-

The relation (3) has several interesting implications in approximation theory; 
we hope, to return to them soon. 

1. An inequality on Xn(w) 

T h e o r e m 1. For every even weight function w (x) we have 

( 4 ) max ^ Xm(w) - 2 max ^ ' ^ 
T*(w) " lskSn-l ?*(w) 

R e m a r k s , a) Let w0{x) = (1 — x2)~1/2 with support [—1, 1]. Then the first 

three orthogonal polynomials are — x,] / -^-(2x 2— 1), i.e. yo(wo)/yi(wo) = 

y 71 i n I 71 
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= X2(w0). This example shows that the left-hand part of inequality. (4) is 
y ¿. 

precise. 

b) In case ( A ) = t h e orthogonal polynomials pn(w) are the o r thonormal 

Hermite polynomials h„(x), so that yn-i(w02)/yn(w02) = j / ^ and X„(w02)^^2n. 

This example shows that the factor 2 on the right-hand side of (4) can not be replaced 
by any smaller constant. 

P r o o f . By a classical result of P. L . CHEBYCHEV (see G . SZEGŐ [ 2 ] , 7 . 7 . 2 ) 

we have 
o© 

f x[Pn_1(x)]2w(x)dx 

(5) • A;(hO = m a x ^ ; — ; — : 

J'[Pn-i(x)]2w(x)dx 

where />
n_ l(.v) runs over all polynomials of degree = n—\ . Let us represent 

Pn-i(x) as 
n — 1 

(6) Pn-i(x) = 2 CjPj(w;x). 
y - o 

We recall that by the recursion formula applied to even' w we have 

(7) x p j ^ - x ) = + + 

( s e e e . g . G . F R E U D [1], § I . 2 ) . 
Inserting (6) into (5) and taking (1) and (7) into consideration we obtain 

"y n - i O ) 

(B) ^„0*0 = 2 max k = 1 ^ , 

Z d . 
fc=0 

where all the ck (k = 0, 1, . . . , «—1) run idependently over the reals. Inserting 
c j _ l = c j = 1 and c t = 0 i f k?±j— \,j- into the expression on the right of (8), we obtain 

(9) 
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In turn, by Cauchy's inequality for every {cfc} we have 

" i ^ - c ^ c ^ max ^ ^ Z K - t C ^ 
7* W ) YkW ft—o 

^ ma x l ^ Z c l 
lsksn-l VkW k = l 

The left-hand side of (4) is implied by (9) and the right hand side of (4) is a 
consequence of (8) and (10), and so Theorem 1 is proved. 

2. Lemmata 

Let 

(11) weP(x) = |jc|» «-W 

L e m m a 1. For every 0 and / J > 0 we have 

(12) -JÂ7w\ = „JA n f P»(W*P>X>Pn-1 K f ! *)*'1 \xfWeß(x)dx, 
y„Oe/Q _ ß 

»eß) 

where 

0 3 ) J n = I [ H L ( _ l ).+•!]. 

P r o o f . We have 

. fph(weß ;x)pn_1 (wBß ; x) wgß(x) dx = 
— CO * 

= / [nyn(weß)x"-1 + -]p„_1(weß;x)w(!ß(x)dx = 

- f yn(wep) 
y»- i W 

Pn-i(weß;x)weß(x)dx, 

where P„_ 2 is a polynomial of degree S n—2. Applying the orthogonality relations 
(1), we get 

(14) n = fp:(wefi;x)pn_l(we,;x)w<!,(x)dx. 
yn-i\Wqî>) -t, . . 
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Partial integration gives 
OO CO 

f p'n("on;x)Pn-i(wei,;X)wef(x)dx = - f pn(wefi;x)[p„.l(weP;x)wefi(x)]'dx = 

— OO — OO 

OO (15) = p fp„(wefi;x)p„_1(well;x)x-1\x\i>weP(x)dx-
— OO 

OO 

-Q f Pn(wep;*)/>„-1(woP;x)x~1 weP(x)dx, 

since Jpn(w)p'n(w)wdx= 0 by (1). 
If n is even, />„_ , (wefi; x) is odd, and so x~1p„-i (wef; x) is. a polynomial of 

degree n—2. Consequently, the second integral on the right of (15) vanishes by (1). 
In this way, f rom (i5) we obtained 

f Pn (w.n; x) p„ _ ! (w„n; x) wel! (x) dx = 

= P f Pn(w^;x)pn^1(wefi;x)x-1}x\llwe/l(x)dx. (n is even). 
— OO 

Let now n be odd. Then p„(we^;x) is odd, and so 

x~1pn(well;x) = p„-! (wi>p ;x) + Pn_2(x), 

where P„-2(x) is a polynomial of degree s n—2. Using the orthogonality relation 
(1) we see that 

(17) f Pn(wep; X)pn_, (weP; x)x-1wef(x) dx = (n is odd) 
in-1IV 

From (14), (15), (16), and (17) we see that (12) holds for both even and odd integers n. 
Q.E.D. 

L e m m a 2. For every positive integer k we have 

(18) yn-iO»,2k)l2l£ n + QA„ 

yn(we,2 k) . 2k 

R e m a r k . For k= 1, we have equality in (18). 
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P r o o f . We infer by induction f rom the recursion formula (7) that, for every 
positive integer I and every even w, we have 

n+.l 
(19) x'pn(w;x) = £ An, j(w)pj(w;x), 

,j=. o 

where all coefficients Anlj(w) are nonnegative. 
By (7) we have 

(20) • 

Moreover, by a repeated application of the recursion formula (7) we obtain 

(21) 

,« t i t -
Multiplying (19) by x2 and then applying the special case 1=2 of the same 

formula to the right-hand side, we get 

(22) S ^ n i / ) n _ 1 ( w ) ^ n _ l j 2 . n _ 1 ( w ) . 

From (21) and (22) we infer by induction that 

f x2s-lp„(w;x)pn_1{w;x)w(x)dx = ^ ^-i,,-!^) = 

( 2 3 > ' , , - P - , 

Iniw) J 

Let us now insert fi=2k in (12) and w=w6j2k in (23). Combining the two for-
mulas so obtained we get (18). Q.E.D. 

We introduce the moments 

(24) pr{w) = f xrw(x)dx (r = 0 ,1 , . . . ) -

L e m m a 3. For every even w, we have 

(25) [X„(w)]2 s li2n-2{w)lp2n^{w). 

P r o o f . Denoting by Xn(w)=xln>x2n>--->xm=—Xtt(w) the zeros of Pn(w; x), 
by the Gauss—Jacobi quadrature formula we have 

Vm-zW = Ê [Xn(w)]2 Z XJn(w)xjrA = [Xn(w)]2 fl2n_4(w). 
y = l 7 = 1 

Q.E.D. 
We can also see that the sign of equality is valid in (25) iff n~ 2. 

7* 



96 G. Freud 

; < " 3. Estimates for Xn(wrt 2k) 

T h e o r e m 2. For every g s O and/?>0 we have 

(26) • M n - i " > X n ( w e p ) ^ ( 2 I P ) l / i 1 . 
Tl-~<x> 

P r o o f . We have 

(27) n2r(wt,) = 2 / x » " e - « d x = (r = 0,1, ...). 

Insert (27) in (25) and apply Stirling's formula to get the desired result. 

T h e o r e m 3. For every QS0 and every positive integer k we have 

(28) X n ( w e ! 2 k ) ^ 2 ( n l 2 k y ' 2 k . 

R e m a r k . We have Xn(w0 2) ^ fin. So the factor on the right of (28) cannot be 
replaced by any constant smaller than 2. 

P r o o f . This is a consequence of Theorem 1 and Lemma 2. We see from Theo-
rem 2 and Theorem 3 that 
(29) Xn(we<2k)~n"2« 
holds for every gSO and every positive integer k. 

T h e o r e m 4. For every Q^O and every positive integer k we have 

yn(w e ,2k) [2k) { n\ 

R e m a r k . From (30) and the combination of (28) and the left hand side of (4) 
we see that 

( 3 D 
yn{Wg,2k) 

P r o o f . Consider formula (12). The expression pn(wQ lk; x)pn_l(we 2k; x)x2k~l 

is a polynomial of degree 2n+2k— 2 < 2(n + k)— 1. Consequently the integral in 
(12) can be calculated by the Gauss—Jacobi quadrature formula over the zeros of 

pn+k(we;x): n r-K») ^ n + QA„ yn(wer2k) 

2k j . - i i ^ j j ) 2k y„_i(vfe,2fc) 
n+k 

= 2 ^j,n + k(we,2k) xj,n + kPn(.WQ,2k:>xj,n + k)Pn-l{we,2k'> xj,n + k) S 

2fc— 1 
2k 

(32) 
j=1 

{ n+k 

2 ¿¡,,+iK, 2k)pi(we, 2k; xj,n+k) x 
j = 1 n+fc . . . . 1 1 / 2 

2 . /„, . v \ l __ r v Y124-1 
J= 1 
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since by the q u a d r a t u r e f o r m u l a we h a v e 

n + k 7 
2 ^j,n+k(we,2k)Pr(we,2k',Xj n+k) = J p?(we 2k;x)wg 2k(x)dx = 1 (r = n - l , n ) . 

j= 1 _ o o 

Inser t ing e s t ima te (28) i n t o t h e r i g h t - h a n d side of (32), we o b t a i n t h e des i red e s t i m a t e 
(30) a f t e r reshuff l ing the f ac to r s . Q . E . D . 

l i t e r a t u r e 
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