On the greatest zero of an orthogonal polynomial. I

By GÉZA FREUD in Budapest

Dedicated to Prof. Béla Szökefalvi-Nagy on the occasion of his 60th birthday.

0. Introduction

Let $w(x)(-\infty<x<\infty)$ be an even weight function, and let $\left\{p_{n}(w ; x)=\right.$ $\left.=\gamma_{n}(w) x^{n}+\cdots ; n=0,1, \ldots\right\}$ be the sequence of orthonormal polynomials with respect to w, i.e.

$$
\int_{-\infty}^{\infty} p_{m}(w ; x) p_{n}(w ; x) w(x) d x= \begin{cases}0 & (m \neq n) \tag{1}\\ 1 & (m=n)\end{cases}
$$

Moreover, let $X_{n}(w)=x_{1 n}(w)$ be the greatest zero of $p_{n}(w ; x)$. In part 1 of the present note we express the order of $X_{n}(w)$ with the aid of the sequence $\left\{\gamma_{v}(w)\right\}$ (see Theorem 1). After deducing some lemmas in part 2, we apply this result in part 3 to the weight

$$
\begin{equation*}
w_{\varrho, 2 k}(x)=|x|^{e} e^{-x^{2 k}} \tag{2}
\end{equation*}
$$

where $\varrho \geqq 0$ and k is a positive integer. We prove the estimate $\gamma_{v-1}\left(w_{e, 2 k}\right) / \gamma_{v}\left(w_{e, 2 k}\right)=$ $=O\left(v^{1 / 2 k}\right)$ which seems far from being trivial and conclude from it that

$$
\begin{equation*}
X_{n}\left(w_{\varrho, 2 k}\right) \sim n^{1 / 2 k} \sim \gamma_{n-1}\left(w_{\varrho, 2 k}\right) / \dot{\gamma}_{n}\left(w_{\varrho, 2 k}\right) \tag{3}
\end{equation*}
$$

'The relation (3) has several interesting implications in approximation theory; we hope to return to them soon.

1. An inequality on $X_{n}(w)$

Theorem 1. For every even weight function $w(x)$ we have

$$
\begin{equation*}
\max _{1 \leqq k \leqq n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} \leqq X_{n}(w) \leqq 2 \max _{1 \leqq k \leqq n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} \tag{4}
\end{equation*}
$$

Remarks. a) Let $w_{0}(x)=\left(1-x^{2}\right)^{-1 / 2}$ with support $[-1,1]$. Then the first three orthogonal polynomials are $\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}} x, \sqrt{\frac{2}{\pi}}\left(2 x^{2}-1\right)$, i.e. $\gamma_{0}\left(w_{0}\right) / \gamma_{1}\left(w_{0}\right)=$
$=\frac{1}{\sqrt{2}}=X_{2}\left(w_{0}\right)$. This example shows that the left-hand part of inequality. (4) is precise.
b) In case $w_{02}(x)=e^{-x^{2}}$ the orthogonal polynomials $p_{n}(w)$ are the orthonormal Hermite polynomials $h_{n}(x)$, so that $\gamma_{n-1}\left(w_{02}\right) / \gamma_{n}\left(w_{02}\right)=\sqrt{\frac{n}{2}}$ and $X_{n}\left(w_{02}\right) \approx \sqrt{2 n}$. This example shows that the factor 2 on the right-hand side of (4) can not be replaced by any smaller constant.

Proof. By a classical result of P. L. Chebychev (see G. Szegö. [2], 7. 7. 2) we have

$$
\begin{equation*}
X_{n}(w)=\max \frac{\int_{-\infty}^{\infty} x\left[P_{n-1}(x)\right]^{2} w(x) d x}{\int_{-\infty}^{\infty}\left[P_{n-1}(x)\right]^{2} w(x) d x} \tag{5}
\end{equation*}
$$

where $P_{n-1}(x)$ runs over all polynomials of degree $\leqq n-1$. Let us represent $P_{n-1}(x)$ as

$$
\begin{equation*}
P_{n-1}(x)=\sum_{j=0}^{n-1} c_{j} p_{j}(w ; x) \tag{6}
\end{equation*}
$$

We recall that by the recursion formula applied to even w we have

$$
\begin{equation*}
x p_{j}(w ; x)=\frac{\gamma_{j}(w)}{\gamma_{j+1}(w)} p_{j+1}(w ; x)+\frac{\gamma_{j-1}(w)}{\gamma_{j}(w)} p_{j-1}(w ; x) \tag{7}
\end{equation*}
$$

(see e.g. G. Freud [1], § I. 2).
Inserting (6) into (5) and taking (1) and (7) into consideration we obtain

$$
\begin{equation*}
X_{n}(w)=2 \max \frac{\sum_{k=1}^{n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} c_{k-1} c_{k}}{\sum_{k=0}^{n-1} c_{k}^{2}} \tag{8}
\end{equation*}
$$

where all the $c_{k}(k=0,1, \ldots, n-1)$ run idependently over the reals. Inserting $c_{j-1}=c_{j}=1$ and $c_{k}=0$ if $k \neq j-1, j$ into the expression on the right of (8), we obtain

$$
\begin{equation*}
X_{n}(w) \geqq \frac{\gamma_{j-1}(w)}{\gamma_{j}(w)} \quad(j=1,2, \ldots n-1) \tag{9}
\end{equation*}
$$

In turn, by Cauchy's inequality for every $\left\{c_{k}\right\}$ we have

$$
\begin{aligned}
\sum_{k=1}^{n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} c_{k-1} c_{k} & \leqq \max _{1 \leqq k \leqq n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} \sum_{k=0}^{n-1}\left|c_{k-1} c_{k}\right| \leqq \\
& \leqq \max _{1 \leqq k \leqq n-1} \frac{\gamma_{k-1}(w)}{\gamma_{k}(w)} \sum_{k=1}^{n-1} c_{k}^{2}
\end{aligned}
$$

The left-hand side of (4) is implied by (9) and the right hand side of (4) is a consequence of (8) and (10), and so Theorem 1 is proved.

2. Lemmata

Let

$$
\begin{equation*}
w_{Q \beta}(x)=|x|^{\rho} e^{-|x|^{\beta}} \quad(-\infty<x<\infty) \tag{11}
\end{equation*}
$$

Lemma. 1. For every $\varrho \geqq 0$ and $\beta>0$ we have

$$
\begin{equation*}
\frac{\gamma_{n}\left(w_{\varrho \beta}\right)}{\gamma_{n-1}\left(w_{e \beta}\right)}=\frac{\beta}{n+\Delta_{n} \varrho} \int_{-\infty}^{\infty} p_{n}\left(w_{e \beta} ; x\right) p_{n-1}\left(w_{e \beta} ; x\right) x^{-1}|x|^{\beta} w_{\varrho \beta}(x) d x \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{n}=\frac{1}{2}\left[1+(-1)^{n+1}\right] \tag{13}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} p_{n}^{\prime}\left(w_{\varrho \beta} ; x\right) p_{n-1}\left(w_{\varrho \beta} ; x\right) w_{\varrho \beta}(x) d x= \\
& \quad=\int_{-\infty}^{\infty}\left[n \gamma_{n}\left(w_{\varrho \beta}\right) x^{n-1}+\cdots\right] p_{n-1}\left(w_{\varrho \beta} ; x\right) w_{\varrho \beta}(x) d x= \\
& =\int_{-\infty}^{\infty}\left[n \frac{\gamma_{n}\left(w_{\varrho \beta}\right)}{\gamma_{n-1}\left(w_{\varrho \beta}\right)} p_{n-1}\left(w_{\varrho \beta} ; x\right)+P_{n-2}(x)\right] p_{n-1}\left(w_{\varrho \beta} ; x\right) w_{\varrho \beta}(x) d x
\end{aligned}
$$

where P_{n-2} is a polynomial of degree $\leqq n-2$. Applying the orthogonality relations (1), we get

$$
\begin{equation*}
n \frac{\gamma_{n}\left(w_{e \beta}\right)}{\gamma_{n-1}\left(w_{Q \beta}\right)}=\int_{-\infty}^{\infty} p_{n}^{\prime}\left(w_{Q \beta} ; x\right) p_{n-1}\left(w_{Q \beta} ; x\right) w_{\varrho \beta}(x) d x \tag{14}
\end{equation*}
$$

Partial integration gives

$$
\begin{gather*}
\int_{-\infty}^{\infty} p_{n}^{\prime}\left(w_{e \beta} ; x\right) p_{n-1}\left(w_{e \beta} ; x\right) w_{e \beta}(x) d x=-\int_{-\infty}^{\infty} p_{n}\left(w_{e \beta} ; x\right)\left[p_{n-1}\left(w_{e \beta} ; x\right) w_{e \beta}(x)\right]^{\prime} d x= \\
=\beta \int_{-\infty}^{\infty} p_{n}\left(w_{e \beta} ; x\right) p_{n-1}\left(w_{e \beta} ; x\right) x^{-1}|x|^{\beta} w_{e \beta}(x) d x- \tag{15}\\
-\varrho \int_{-\infty}^{\infty} p_{n}\left(w_{\varrho \beta} ; x\right) p_{n-1}\left(w_{e \beta} ; x\right) x^{-1} w_{\varrho \beta}(x) d x
\end{gather*}
$$

since $\int p_{n}(w) p_{n}^{\prime}(w) w d x=0$ by (1).
If n is even, $p_{n-1}\left(w_{o \beta} ; x\right)$ is odd, and so $x^{-1} p_{n-1}\left(w_{e \beta} ; x\right)$ is a polynomial of degree $n-2$. Consequently, the second integral on the right of (15) vanishes by (1). In this way, from (15) we obtained

$$
\begin{align*}
& \int_{-\infty}^{\infty} p_{n}^{\prime}\left(w_{\varrho \beta} ; x\right) p_{n-1}\left(w_{\varrho \beta} ; x\right) w_{\varrho \beta}(x) d x= \tag{16}\\
& =\beta \int_{-\infty}^{\infty} p_{n}\left(w_{\varrho \beta} ; x\right) p_{n-1}\left(w_{\varrho \beta} ; x\right) x^{-1}|x|^{\beta} w_{\varrho \beta}(x) d x . \quad \text { (} n \text { is even) }
\end{align*}
$$

Let now n be odd. Then $p_{n}\left(w_{Q \beta} ; x\right)$ is odd, and so

$$
x^{-1} p_{n}\left(\dot{w}_{\varrho \beta} ; x\right)=\frac{\gamma_{n}\left(w_{\varrho \beta}\right)}{\gamma_{n-1}\left(w_{\varrho \beta}\right)} p_{n-1}\left(w_{\varrho \beta} ; x\right)+P_{n-2}(x)
$$

where $P_{n-2}(x)$ is a polynomial of degree $\leqq n-2$. Using the orthogonality relation (1) we see that

$$
\begin{equation*}
\int_{-\infty}^{\infty} p_{n}\left(w_{e \beta} ; x\right) p_{n-1}\left(w_{e \beta} ; x\right) x^{-1} w_{Q \beta}(x) d x=\frac{\gamma_{n}\left(w_{Q \beta}\right)}{\gamma_{n-1}\left(w_{e \beta}\right)} . \quad(n \text { is odd }) \tag{17}
\end{equation*}
$$

From (14), (15), (16), and (17) we see that (12) holds for both even and odd integers n. Q.E.D.

Lemma 2. For every positive integer k we have

$$
\begin{equation*}
\left[\frac{\gamma_{n-1}\left(w_{\varrho, 2 k}\right)}{\gamma_{n}\left(w_{\varrho, 2 k}\right)}\right]^{2 k} \leqq \frac{n+\varrho \Delta_{n}}{2 k} \tag{18}
\end{equation*}
$$

Remark. For $k=1, \varrho=0$ we have equality in (18).

Proof. We infer by induction from the recursion formula (7) that, for every positive integer l and every even w, we have

$$
\begin{equation*}
x^{l} p_{n}(w ; x)=\sum_{j=0}^{n+l} A_{n, l, j}(w) p_{j}(w ; x) \tag{19}
\end{equation*}
$$

where all coefficients $A_{n, l, j}(w)$ are nonnegative.
By (7) we have

$$
\begin{equation*}
A_{n, 1, n-1}(w)=\frac{\gamma_{n-1}(w)}{\gamma_{n}(w)} \tag{20}
\end{equation*}
$$

Moreover, by a repeated application of the recursion formula (7) we obtain

$$
\begin{equation*}
A_{n-1,2, n-1}(w)=\int_{-\infty}^{\infty} x^{2} p_{n-1}^{2}(w ; x) w(x) d x=\frac{\gamma_{n-1}^{2}(w)}{\gamma_{n}^{2}(w)}+\frac{\gamma_{n-2}^{2}(w)}{\gamma_{n-1}^{2}(w)} \geqq \frac{\gamma_{n-1}^{2}(w)}{\gamma_{n}^{2}(w)} \tag{21}
\end{equation*}
$$

Multiplying (19) by x^{2} and then applying the special case $l=2$ of the same formula to the right-hand side, we get

$$
\begin{equation*}
A_{n, l+2, n-1}(w) \geqq A_{n, l, n-1}(w) A_{n-1,2, n-1}(w) \tag{22}
\end{equation*}
$$

From (21) and (22) we infer by induction that

$$
\begin{gather*}
\int_{-\infty}^{\infty} x^{2 s-1} p_{n}(w ; x) p_{n-1}(w ; x) w(x) d x=A_{n, 2 s-1, n-1}(w) \geqq \\
\geqq\left[\frac{\gamma_{n-1}(w)}{\gamma_{n}(w)}\right]^{2 s-1} \quad(s=1,2, \ldots) . \tag{23}
\end{gather*}
$$

Let us now insert $\beta=2 k$ in (12) and $w=w_{\ell, 2 k}$ in (23). Combining the two formulas so obtained we get (18). Q.E.D.

We introduce the moments

$$
\begin{equation*}
\mu_{r}(w)=\int_{-\infty}^{\infty} x^{r} w(x) d x \quad(r=0,1, \ldots) \tag{24}
\end{equation*}
$$

Lemma 3. For every even w, we have

$$
\begin{equation*}
\left[X_{n}(w)\right]^{2} \geqq \mu_{2 n-2}(w) / \mu_{2 n-4}(w) \tag{25}
\end{equation*}
$$

Proof. Denoting by $X_{n}(w)=x_{1 n}>x_{2 n}>\cdots>x_{n n}=-X_{n}(w)$ the zeros of $p_{n}(w ; x)$, by the Gauss-Jacobi quadrature formula we have

$$
\mu_{2 n-2}(w)=\sum_{j=1}^{n} \lambda_{j n}(w) x_{j n}^{2 n-2} \leqq\left[X_{n}(w)\right]^{2} \sum_{j=1}^{n} \lambda_{j n}(w) x_{j n}^{2 n-4}=\left[X_{n}(w)\right]^{2} \mu_{2 n-4}(w)
$$

Q.E.D.

We can also see that the sign of equality is valid in (25) iff $n=2$.

13. Estimates for $X_{n}\left(w_{e, 2 k}\right)$

Theorem 2. For every $\varrho \geqq 0$ and $\beta>0$ we have

$$
\begin{equation*}
\therefore{\underline{\prod_{n \rightarrow \infty}}} n^{-1 / \beta} X_{n}\left(w_{Q \beta}\right) \geqq(2 / \beta)^{1 / \beta} . \tag{26}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\mu_{2 r}\left(w_{\varrho \beta}\right)=2 \int_{0}^{\infty} x^{2 r+e} e^{-x \beta} d x=\Gamma\left(\frac{2 r+\varrho+1}{\beta}\right) \quad(r=0,1, \ldots) . \tag{27}
\end{equation*}
$$

Insert (27) in (25) and apply Stirling's formula to get the desired result.
Theorem 3. For every $\varrho \geqq 0$ and every positive integer k we have

$$
\begin{equation*}
X_{n}\left(w_{\varrho, 2 k}\right) \leqq 2(n / 2 k)^{1 / 2 k} . \tag{28}
\end{equation*}
$$

Remark. We have $X_{n}\left(w_{0,2}\right) \approx \sqrt{2 n}$. So the factor on the right of (28) cannot be replaced by any constant smaller than 2 .

Proof. This is a consequence of Theorem 1 and Lemma 2. We see from Theorem 2 and Theorem 3 that

$$
\begin{equation*}
X_{n}\left(w_{e, 2 k}\right) \sim n^{1 / 2 k} \tag{29}
\end{equation*}
$$

holds for every $\varrho \geqq 0$ and every positive integer k.
Theorem 4. For every $\varrho \geqq 0$ and every positive integer k we have

$$
\begin{equation*}
\frac{\gamma_{n-1}\left(w_{Q, 2 k}\right)}{\gamma_{n}\left(w_{Q, 2 k}\right)} \geqq 2^{-2 k+1}\left(\frac{n}{2 k}\right)^{\dot{1 / 2 k}}\left(1+\frac{k}{n}\right)^{\frac{2 k-1}{2 k}} \tag{30}
\end{equation*}
$$

Remark. From (30) and the combination of (28) and the left hand side of (4) we see that

$$
\begin{equation*}
\frac{\gamma_{n-1}\left(w_{\ell, 2 k}\right)}{\gamma_{n}\left(w_{\ell, 2 k}\right)} \sim n^{1 / 2 k} . \tag{31}
\end{equation*}
$$

Proof. Consider formula (12). The expression $p_{n}\left(w_{\Omega, 2 k} ; x\right) p_{n-1}\left(w_{\varrho, 2 k} ; x\right) x^{2 k-1}$ is a polynomial of degree $2 n+2 k-2<2(n+k)-1$. Consequently the integral in (12) can be calculated by the Gauss-Jacobi quadrature formula over the zeros of $p_{n+k}\left(w_{e} ; x\right)$:

$$
\begin{align*}
& \frac{n}{2 k} \frac{\gamma_{n}\left(w_{\varrho, 2 k}\right)}{\gamma_{n-1}\left(w_{\ell, 2 k}\right)} \leqq \frac{n+\varrho \Delta_{n}}{2 k} \frac{\gamma_{n}\left(w_{\Omega, 2 k}\right)}{\gamma_{n-1}\left(w_{\varrho, 2 k}\right)}= \\
& =\sum_{j=1}^{n+k} \lambda_{j, n+k}\left(w_{\varrho, 2 k}\right) x_{j, n+k}^{2 k-1} p_{n}\left(w_{\varrho, 2 k} ; x_{j, n+k}\right) p_{n-1}\left(w_{\varrho, 2 k} ; x_{j, n+k}\right) \leqq \\
& \leqq\left[X_{n+k}^{\vdots}\left(w_{\varrho, 2 k}\right)\right]^{2 k-1}\left\{\sum_{j=1}^{n+k} \lambda_{j, n+k}\left(w_{e, 2 k}\right) p_{n}^{2}\left(w_{\varrho, 2 k} ; x_{j, n+k}\right) \times\right. \tag{32}\\
& \left.\times \sum_{j=1}^{n+k} \lambda_{j, n+k}\left(\hat{w}_{e, 2 k}\right) p_{n-1}^{2}\left(w_{e, 2 k} ; x_{j, n+k}\right)\right\}^{1 / 2}=\left[X_{n+k}\left(w_{\varrho, 2 k}\right)\right]^{2 k-1},
\end{align*}
$$

since by the quadrature formula we have
$\sum_{j=1}^{n+k} \lambda_{j, n+k}\left(w_{Q, 2 k}\right) p_{r}^{2}\left(w_{Q, 2 k} ; x_{j, n+k}\right)=\int_{-\infty}^{\infty} p_{r}^{2}\left(w_{Q, 2 k} ; x\right) w_{Q, 2 k}(x) d x=1 \quad(r=n-1, n)$.
Inserting estimate (28) into the right-hand side of (32), we obtain the desired estimate (30) after reshuffling the factors. Q.E.D.

Literature

[1] G. Freud, Orthogonale Polynome. Joint edition of Birkhăuser Verl., Deutscher Verl. der Wiss.' and Akadémiai Kiadó (Basel, Berlin, and Budapest, 1969); English translation: Pergamon Press (New York-Toronto-London, 1971).
[2] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., vol. 23, 2nd ed. (New York, 1959).

