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0. Introduction

- Let w(x) (—eo<x<w) be an. even weight function, and let {;z)n(w; x) =
= 7,(W)x"+--; n=0, 1, ...} be the sequence of orthonormal polynomials with re-
spect to w, i.e. : C : ' :

o o "prm(WEX)pn(§v;x)w(x)dx = {(1) 8: i Z;

Moreover, let X, (W)= x,,(w) be the greatest zero of p,(w; x). In part 1 of the present
note we express the order of X, (w) with the aid of the sequence {y,(w)} (see Theo-
rem 1). After deducmg some lemmas in part 2, we apply thlS result in part 3 to the
weight

(2) - a 2k(x) lxlge—xlk
where ¢=0andkisa positive integer. We prove the estimate Vo—1(W,, 2,\)/yv W,.20) =
= 0(v!/?¥) Wthh seems far from being. trivial and conclude from it that -

3 , X, (W, 26) ~ nM 2%y (W, 2] 70 (W, 20)-

‘'The relatlon (3) has several interesting 1mphcatlons in approxnmatlon theory,
we hope to return to them soon.

1. An lnequallty on X (w)

Theorem 1. For every even wezght Sfunction w(x) we have

(4) B Iﬁax MéX(W)gZ max _M_

1sk=n-1 Pr(W) 1=k=n—1 )’k(W)

Remarks. a) Let Wo (x) = (1— 2)‘”2 with support -1, 1] Then the first

three orthogonal polynomlals are ~—— V— I/ l/ (2x? —l), ie. yo(wo)/yl(wo) =
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= ﬁ = X,(wy). This example shows that the left-hand part of inequality. (4) is

precise. )
" b) In case wy,(x)=e"*" the orthogonal polynomials p,(w) are the orthonormal

Hermite polyno.mials h,(x), so that y,;_l(wozj/yn(woz) = l/ ; and X,(wo,)~ ;/27 )

This example shows that the factor 2 on the right-hand side of (4) can not be replaced
by any smaller constant.

Proof. By a classical result of P. L. CHEBYCHEV (see G. SzeGO [2], 7.7.2)
we have :

oo

[P P w)dx

® - X =max T —~,
| | / [Py () s

where P,_,(x) runs. over all polynomlals of degree = n—]1. Let us represent '
n l(x) as

B R . O n—1 .
® . - Py (%) = -_Z; cipi(w; x).
: : i
We recall that by th'e recursion formula applied to even'w we have

yl(‘z))pj+1( :x)‘l‘yj E())PJ 1 (w3 x)

' (7) | ‘1’1 (w; x)

REASS

(see e.g. G.- Freup [1], §I 2) :
Inserting (6) into (5) and takmg (1) and (7) into con51deratlon we obtam

n—1

: Vi— 1(W)
FOR X, (%) = 2 max =1 V‘f_‘”l)

2t
k=0

Cr—1Ck

’

where all the ¢. (k=0,1,...,n~1) run idependently over the reals. ‘Inserting
¢j-1=¢;=1and ¢=0if kj—1, j into the expression on the right of (8), we obtain

® . ,_Xn(»v)z%&g—‘;) (j':l,z,...n_n.
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In turn, by Cauchy’s inequality for every {c,} we have

"2' Yie—1 (W) Ye-1W) 1(W) 2 s =

Cr_1Cr = max
=1 Pe(w) o1t = 1=k=n—1 }’k(W) k=0

R A %) Z'

Timeane1 n) &
The left-hand 51de of (4) is implied by (9) and the nght hand s1de of 4)is a
consequence of (8) and (10), and so Theorem 1 is proved. .
2. Lemmata
” |
an E Wop () = [x[ee 1 (coo<x<eo).

‘Lemma. 1. For every QéO and f=0 we have

Com) B R e
a2 ')’n—1(Wep) - n+4,0 _'o/c: ?"(weﬁ’x)pn—l("eﬂ’x)x llx]ﬂweﬁ(x)dx’
where A '

13 4, =L

" Proof. We have
a0 D) Py (Weps D) wop (R dx =

= [ 110 00g) X" 1y (e X) wp () i =

f [ yjn?gff)) p"“l(weﬂ;x)'+Pn—2(x)]Pn—1(ng§x)wg,;(x)dx, |

where P,_, is a polynomlal of degree = n—2. Applylng the orthogonahty relatlons
(1) we get :

4y nyi% ) { Ph0eps )= (g3 9 g ) .
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Partial integration gives

f Pa(Weg3 X)Pn—1(Weg 3 X) weﬁ(x) dx = — f Pn (weﬁsx) [Pn- l(weﬂ’x)waﬁ(x)] dx =
(15) =B [ Pu(¥eps X) Pac s (Weg3 ) x ™ [xIP wop (x)dx ~

_Q fpn(wgﬂ;x)pn—l(wgﬁgx)x—l Wgﬂ(X)dx,

since [p, (w)p,(W)wdx=0 by (1).
If n is even, p,_;(w,g; %) is odd, and so x~!p,_ 1 (Wg; X) is.a polynomial of
degree n— 2. Consequently, the second integral on the right of (15) vamshes by ().

In this way, from (15) we obtained

P05 XY Py 93 XY Wop () dx =
(16) )

=B f Pn(Wops X) Pu 1 (Wep; X)x"HxPwyp(x)dx. - (niseven).

Let now n be odd. Then p,(w,; x) is odd, and so

_)g—j%g)—)p" 1(Weﬂ’x)+P" 2(%)

x"lp,,(wgﬁ;x) =
where P,_,(x) is a polynomial of degree = n— 2 Using the orthogonahty relatlon
(1) we see that

oo

an f PeWops X) Pue 1 (Weps X)X~ L wpp(x) dx = ﬁ%. (n is odd)

— 00

From (14), (15), (16), and (17) we see that (12) holds for both even and odd mtegers n.
QED. .

‘Lemma 2. For every posiiive integer k we have

[ ')’n- 1 (‘vg, 2k) ]Zk - n + QA,,

(1% 7o (e, 20) 2%

Remark. For k=1, o=0 we have equality in (18).
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Proof. We infer by induction from the recursion formula (7) that, for every
positive integer / and every even w, we have

) X py(ws %) = ZAn,,<w)p,(w x),

where all coefficients A, , ;(w) are nonnegatwe '
By (7) we have

\ . ’ Vn—1 (W)
20 Ay 1o () = Izt
( ) ' » , 1, 1( ) ,yn(w) )
~ Moreover, by a repeated application of the recursion formula (7) we obtain

21

‘ N _ i) Y22 (%) _ e
Ant,2,0-1(W) =.~_£x2pn_1(w,x)w(x,)dx__ v,%zw) + 73:(w) = y,%l(w) )

Multiplying (19) by x? and then applying the special case /=2 of the same
formula to the right-hand side, we get :

(22) Ap 142,01 (w) = A1 0 1(W) An—l,z,'n—l (W) :

From (21) and (22) we infer by induction that

oo

J X2 (w3 ) puc W3 X)W (X)X = Ay p g 0oy (W) =

_ v,,-l(w‘)]?f‘l 1o
.=[ ) s=1,2,..).

Let us now insert =2k in (12) and w=w, 5 in (23). Combining the two for-
mulas so obtained we get (18). Q.E.D. :
. We introduce the moments

23)

@9 wo = [¥e@ds ¢=01,..)
Lemma 3. For every even w we have
@5 - (X (W)]Z Z Han-2(W)/H2n- 4(”’)

_ Proof. Denotmg by X,(W)=x,,>x,,>+ >X,,= — X, (w) the zeros of p,(w; x),
-by the Gauss—Jacobi q_uadrature formula we have ' .

”Zn-Z(W) = Z; n(w)xzn 2 = [X (W)]Z Zl,m(w)xf: 4= [X (W)] #Zn 4(W)
j=
Q.E.D. :
We can also see that the sign of equality is valid in (25) iff n=2."
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;. <7 13, Estimates for Xn(wo. 2")

Theorem 2. For every ¢=0 and =0 we have
(6) 1 im n= VB X, (wep) = (2B,

Proof. We have

(27) #Zr(wqﬂ) =2 fxz’”e""’dx = F(g_r_igil_
1]

B
Insert (27) in (25) and apply Stirling’s formula to get the desired result.

] r=0,1,..).

Theorem 3. For eve}'j) ¢=0 and every positive integer k we have
28) | X, (W, 20) = 2(n/20)M1% |

Remark. Wehave X, (wo 2) = ¥2n. So the factor on  the rlght of (28) cannot be
replaced by any constant smaller than 2.

Proof. This is a consequence of Theorem 1 and Lemma 2. We see from Theo-
rem 2 and Theorem 3 that .
(29) ' O Xa(wp )~
holds for every ¢=0 and every positive integer k.

Theorem 4. For-every 9=0 and eiery positive integer k we have
’ ' = 2k-1
: 1/2k

o sl (1)1 ] 7
‘ - 7a(we,20) 2k :

Remark From (30) and the combmatlon of (28) and the left hand side of (4)
we see that :

'Yn— 1 (WQ 2k.)
31 BT N plf2k,

( ) . yn(wg,zk)
Proof. Consider formula (12). The expression p,(w,, »; x)p,,_,(wg, 2k X)X
is a polynomial of degree 2n+2k—2 < 2(n+k)— 1. Consequently the integral in
(12) can be calculated by the Gauss—Jacobi quadrature formula over the zeros of )

pn+k(wg’ x)

2k—1

n v.,(wg,zk) _ntod,  yi(We 20

% V1) 2k Paoi 020

= i, n+5(We, 21) xf,kn_+1kpn(wg 265 X, n48) Pum1(We, 263 Xj, n18) =
7

= [X, n+k(wq,2k)]2k I{Z )J n+k(wg 2k)Pn (“e 2k: Xj, n+k) X

ji=1

3
+
=

I
-

e

n+k B 1/2
X Z; 1j,n+k(we,zk)173—'1(wg,zk§xj,n+k)} = [Xn+k(we,2k)]2k_1:
J= / .
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since by the quadrature formula we have

nt+k ’ bt ] . :
'Zl'lj,ui»k(we,zk)prz(we, 25 Xj nik) = f P;-Z(Wg,zk§x) Wou(X)dx =1 (r=n—1,n).
J= — oo

Inserting estimate (28) into the right-hand side of (32), we obtain the desired estimate
(30) after reshuffling the factors. Q.E.D. :
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