
Bernstein-type inequalities for families of multiplier 
operators in Banach spaces with Cesáro decompositions. 

I. General theory 
By E. GORLICH, R. J. NESSEL and W. TREBELS in Aachen (FRG) 

Dedicated to Professor B. Sz.-Nagy on the occasion of his 60th birthday on July 29, 1973, 
in admiration 

1. Introduction 
n 

Let (nn)2rt be the set of all trigonometric polynomials f ( x ) = £ cke,kx of 
k=-n 

degree n. The classical Bernstein inequality states that 

(1.1) \\(dldx)rf(x)\\x^ rf\\f(x)\\Xln (fCAnn)2n), 

where X2LT is any of the spaces LP
2N, 1 or C2N of periodic functions (cf. Sec-

tion 3). As is well known, this inequality plays a central role in the proof of inverse 
theorems concerning best approximation by trigonometric polynomials. In a very 
general setting it was recently shown in some basic work of BUTZER—SCHERER 
[3,4] (see also [6, 7]) that one may always obtain inverse approximation theorems, 
provided an inequality of type (1. 1) is available. In their spirit we may formulate 
the following problem: 

Let X be an arbitrary (real or complex) Banach space, [A'] the Banach algebra 
of all bounded linear operators of Z i n t o itself, and let { r ( ^ )}„ > 0 c f A ' ] be a family 
of operators depending on a parameter q > 0 (tending to infinity). Suppose B to 
be a closed linear operator with domain D(B) c Z a n d range in X. The family 
is said to satisfy a Bernstein-type inequality (with respect to B) if T(Q) (X) c D (B) 
for each and if there exists Q(q)>0, defined on (0, °=), and a constant A>0 
such that v • 

0 - 2 ) \\BT(Q)f\\^AQ(Q)\\f\\ ( f d X , Q > 0 ) . 

In this paper we would like to study (1. 2) in the setting of [2], i.e., the operators 
in question are generated via multipliers in connection with Fourier expansions 
corresponding t o general decompositions of Banach spaces. Then Bernstein in-
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equalities of type (1. 2) in fact lead to a study of uniformly bounded multipliers 
(cf. (2. 4)). This is considered in Section 2 which gives convenient sufficient criteria 
in connection with Cesaro-(C,/ ^decompositions. The most concrete version regard-
ing uniform bounds is given in Corollary 2. 4 for multipliers of Fejer's type. This 
is in fact induced by a fundamental work of S Z . - N A G Y [ 1 2 ] on the representation 
of functions as trigonometric integrals. Indeed, the case j= 1 of Corollary 2. 4 may 
be considered as an elementary version of general results in [12] which are in turn 
used there as multiplier criteria to establish far reaching direct approximation theo-
rems for trigonometric polynomials. Section 3 is concerned with particular choices 
of {TXi?)} a n d B for arbitrary spaces X and decompositions. At the end of this sec-
tion the trigonometric system is considered, mainly to discuss the question to which 
extent the classical inequalities may be covered by the present methods. The main 
bulk of concrete applications, however, will follow in Part II, thus illustrating the 
usefulness of this simple but nevertheless general and unifying approach to the 
subject. Finally, let us emphasize that we do not plan to reconstruct the (sometimes) 
long development of certain instances of Bernstein-type inequalities; for a brief 
historical account one may consult [10] (seemingly the latest paper on the subject of 
a survey nature). 

The authors are very grateful to Professor P. L. B U T Z E R who inspired the work, 
read the manuscript, and made many valuable suggestions. The contribution of 
W . TREBELS was s u p p o r t e d b y a D F G fe l lowship . 

Let Z, P, N be the sets of all, of all non-negative, of all positive integers; re-
spectively. Let {Pk } t £ P be a total sequence of mutually orthogonal continuous 
projections on X, i.e., (i) Pk£ [X] for each (ii) Pkf= 0 for all A:£P imp l i e s /= 0, 
(iii) PjPk=dJkPk, 8jk being Kronecker's symbol. Then with each f€_X one may 
associate its unique Fourier series expansion 

With s the set of all sequences y= {yk}kiP of scalars, y is called a multiplier for 
X (corresponding to {/>

t}) if for each f£X there exists an element fy£X such that 
ykPkf=Pkf for al l fcCP, thus 

2. Bernstein-type inequalities 

(2.1) 
• k=o 

(2.2) f y ~ 2 y k P k f (/€*). 

Obviously, Gf= f defines a bounded linear operator G on X by the closed graph 
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theorem. Conversely, operators T on X which permit an expansion of type (2. 2)r 

i.e. Pk(Tf)=xkPkf are called multiplier operators. Denot ing the set of all multipliers, 
for Xby M=M(X; with the natural vector operations, coordinate-wise mul t i -
plication, and norm 

(2.3) . llyllM = s u p { | | / l | / 6 X , 11/113=1}, 

M is a commutat ive Banach algebra, isometrically isomorphic to the subspace 
[X]M cr [Z] of multiplier operators on X. 

Let a £ j be arbi trary and let X* be the set of all f£X fo r which there exists. 
f f X such that <xkPkf=Pkf* fo r all P . Obviously, if B" is the operator with, 
domain A ' * c : Z a n d range in Xdefined by B " f = f , then B" is a closed linear o p e r a t o r 

for each a g i . Fur thermore , if is fundamenta l , i.e., the linear span of U Pk(X) 
k = o 

is dense in X, then B" is densely defined for each a £s. 
On restricting oneself to operators with the above multiplier structure one 

may rephrase problem (1. 2) in terms of the corresponding sequences, namely 

T h e o r e m 2. 1. Let a£s arid {7Yo)} c [X]M be a family of multiplier operators 
with associated multipliers x (g). If ax (g) € M for each ¡?>0, and if there exists Q(Q)>0< 
and a constant A > 0 such that 

(2-4) \\ax(g)IQ(g)\\M^A 

uniformly for o > 0 , then {¿(¡9)} satisfies the Bernstein-type inequality 

(2.5) \\B*T(g)f\\ =g 11/11 ( f £ X , g > 0). 

Indeed, let U"iQ)€ [X]¥ be associated with ax(g). Then for any f £ X , Q > 0 , . 
and P 

Pk{U*Wf) = akxk{Q)Pkf=akPk{T(Q)f), 

so that T(e)(X)czX" and BxT(g)f= U*x(rj)f. In view of (2. 3—4) this implies (2. 5). 
Therefore, in the present setting, the problem is to verify the multiplier c o n -

dition, particularly (2. 4), thus to establish convenient criteria concerning uniformly 
bounded multipliers. To this end we follow u p the lines of [2] (see also the literature-
cited there), assuming (essentially) that {Z^} is a Cesaro-(C, y^decomposi t ion o f 
X. For basic facts concerning those decomposit ions (and bases) one may consult: 
[8], [9], [11]. 

Let the (C,y)-means of (2. 1) be defined for P by 

(2.6) (CJ)„f = (Ai)-1 2 A{_kPkf A{ = (:"'+J1. 
k = 0 ( n ) 
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Obviously (C, /')_ coincides for j= 0 with the nth partial sum operator S(n) = 2 Pk-*=o 

For some fixed y '€P assume that (C,j)n is uniformly bounded, i.e. 

(2 .7) I K C . A / M Cj 11/11 ( / 6 JO, 

the constant C j ( S l ) being independent of « £ P a n d / f X 

R e m a r k . In many cases of interest (cf. Par t II) one deals with Fourier series 
in A'associated with a total biorthogonal system { / , / £ } > { / k } c ^ > { / t i ^ * * (the 

-dual of X). Then (2. 1) and (2. 2) read 

(2. 8) / - 2 f k * C O f k , k = 0 
T f ~ 2 * k f k ( J ) f k , 

k= 0 

respectively; Pk(X) is the one-dimensional linear space spanned by fk. If, fur ther-
more, { f k } is fundamental , then it is clear by the Banach—Steinhaus theorem tha t 
(2. 7) for j= 0 is equivalent to the assumption that { / } is a Schauder basis, i.e., 
for every / € X 

lim 2 f k ( f ) f k - f 
k = 0 

0, 

whereas for j= 1 condition (2. 7) is equivalent to the statement that { / J is a Cesàro 
.basis, i.e., for every / 6 X 

lim 
H-*"» 

y \ l — 
Ûo{ n + 1 

f k ( J ) f k ~ f = 0. 

To study multipliers in connection with systems {Z^} satisfying (2. 7), let us 
introduce the following spaces of (scalar-) sequences: 

•(2.9) bvJ+1 = { k / ~ | ||VIL,+1 = W 1 ^ lim 
I k= 0 \ J ) m—co 

/ " = {-y€^| sup*€p|y*| < 4 Ayk = yk-yk+1, Aj+l = AJA. 

Note that y£l°° and the convergence of the series in.(2. 9) imply the existence of the 
limit l i m m ^ M y m = 7 0 0 . Furthermore, bvj+lczbvj in the sense of cont inuous embed-
ding (cf. [5]). Obviously, bvJ + i is the space of all sequences of bounded variat ion 
if j= 0, and the space of all bounded, quasi-convex sequences if j= 1, respectively. 

T h e o r e m 2. 2. Let {Pk} cz be a total sequence of mutually orthogonal pro-
jections satisfying (2. 7) for some P. Then every y£bvJ+l is a multiplier and 

<2. 10) Mm^CJM*,,^ 
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Indeed, to each f£X one may associate (cf. [211]) 

/ ' = j? [* t-7'] JJ+1 Vk• (C,j)kf+ y . f . 
k=0\ J J 

Therefore, to verify (2. 4) one has to check whether (for suitably chosen q(Q)) 
the bvj+l-norms of the sequences {^kik(Q)IQ(o)}kfV are uniformly bounded for 
q > 0 . For this purpose, let BVJ+1 be the class of all bounded continuous functions 

/ on [0, for which / , . . . , / 0 _ 1 ) are locally (i.e. on every compact subinterval) 
absolutely continuous on (0, °°) and f(j> is locally of bounded variation on (0, 

such that J xJ\df(j)(x)\<oo. 
o 

Then one may use the following result (cf. [211]) 

T h e o r e m 2 .3 . Let yds be such that there exists a function g£BVi + 1 with 
yk=g(k). Then y£bvj + 1 and 

(2.11) Z { k + J ) \ A j + 1 y k \ ^ D f x J \ d g < » ( x ) \ , 
k 01 J ) 5 

the constant D being independent of y and j. 

As an immediate consequence one has the following criterion concerning uni-
formly bounded multipliers. 

C o r o l l a r y 2. 4. Let the system {P t} satisfy (2. 7) for some P . Let { j ( e ) } c j 
be such that there exists {ge}c.BVj + i with limx^^ge(x)=0 and yk(g)=ge(k) for each 
/fe£P, Then 

(2.12) \\y(Q)\\M^CjDf #\dg^Xx)\-
o 

In particular, if ga is of Fejer's type, i.e., there exists G£BVJ+1 such that gs(x)= 
= G(x/g), then {y(i?)} is ct family of uniformly bounded multipliers. 

3. Particular operators in arbitrary spaces 

Let X be an arbitrary Banach space and {P f c}c[Z] be any total system of 
orthogonal projections satisfying (2.7) for some P. In this section we would 
like to discuss certain particular choices of families {7Xe)} and sequences a. Through-
out this section A stands for constants which may generally be distinct. 
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First, let us consider Bernstein inequalities of the classical type (1. 1). Here it is 
essential that the elements / only belong to the direct sum 

rather than to the whole space X. In reducing this situation to that of Theorem 2. 1, 
we will have to restrict ourselves to the cases j= 0 or j= 1. 

In case j= 0 one has ||f(w)||jvf = Co by hypothesis, o(ri)Ç.Af being associated 
with the partial sum operator S(ri). For given non-negative a£s consider aa(n), 
the continuous parameter Q being replaced by the discrete one n. Since ao(n)~ 
= P(n)a(n) with fik(ri)=ak. for O ë i S n , =oc„ for k>n, Theorems 2. 1—2 imply 

provided ||/?(")IL. =Actn for all w£P. In particular, if a is monotonely increasing on 
P , then W(n) \ \ b v '= an — a 0 . 

In case j= 1 consider the family {/(»)} <=[X]M with associated i(n) Ç M , defined 
by ik(ri)=l for O^s&Sn, = 2 - ( k i n ) for n<k^2n, = 0 for k>2n. Then i(n)£bv2 

uniformly f o r « 6 P , and the restriction of I(n) to J7„ is the identity mapping. For 
given non-negative a£s consider ai(ri). Since ai(n)=t](n)i(n) with 

(3.2) t]k(n) = at for 0 s i: s 2n, = a2„ for k > 2n, 

it is sufficient to examine \\t](n)\\bV2 in order to apply Theorems 2. 1—2.2. Thus 
for the restriction of B"I(n) to Jl„ we have 

P r o p o s i t i o n 3. 1. Let the system {P^} satisfy (2. 7) for j= 1. Let be non-
negative and assume that r](n) is defined by (3 .2) and satisfies \\ri(n)\\bv^Aa2n for 
all « € P. Then 

In particular, Proposition 3. 1 immediately applies to concave sequences a. 
For, then a is monotonely increasing so that also rj (n) of (3. 2) is concave, and thus 
||»?(n)||to = «2n— a 0 . Concerning convex sequences a compare the remarks at the 
end of this section. 

In this paper we restrict ourselves to three illustrative examples of sequences a, 
the significance of this choice in approximation theory being exhibited in [6, 7]. Let 
c«r»0 be arbitrary, fixed. Then 

(3.1) \\B*f\\ S Aan 11/11 ( f e n n ) , 

(3. 3) \\B«f\\tzAoi2n\\f\\ ( /6 i7„ ) . 

(3. 4) (i) a = {*®}4€P, (ii) a = { log( l+/c r a )}^p, (iii) a = {e°(k>}k(P, 

where a(x) is a non-negative function, defined and monotonely increasing on [0, 
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Obviously, (3. 1) applies to (3. 4) (iii) in case j= 0. Concerning examples (3. 4) 
(i), (ii) it follows for the corresponding rj(n) (cf. (3.2)) that \\r]{ri)la2n\\bD = A uni-
formly for n > 0 by Corollary 2. 4 (for (ii) cf. (2. 12)). Thus 

C o r o l l a r y 3. 2. (a) Let the system {Pk} satisfy (2. 7) for j= 0. Given a(x) as 
specified in (3.4) (iii), then for any f £ X , n£ P 

(3.5) 2 e"(k)Pkf t=o 
Aea<"> I P J 

k=0 

(b) Let the system satisfy (2. 7) for /'= 1. Then for any a » 0 and f £ X , n£ P 

(3.6) 

(3.7) 

2 k"Pkf k = 0 

fc=0 

S An" ZPkf 
k=0 

2Fkf k= 0 

In each case the constant A is independent of f £ X , « € P. 

Now, let us apply Theorem 2. 1 directly to several particular families {Tfe)}. 
We consider the Abel—Cartwright means of order %>0 of the Fourier series (2. 1) of / 

(3. 8) 0) Wx(Q)f~ 2 E-(kh)XPJ ( / € * , Q > 0), 
i=o 

the Bessel potentials of order JOO 

(3.8) 

and the Riesz means of order x, A^O ,(o = n + l £ N being discrete) 

(ii) Lx(e)f~ 2 (i +WQ)2y"2Pkf ( f e x , Q >o), 
k = 0 

(3. 8) (iii) 2 1 
t= o № 

Pkf ( / € X « £ P ) . 

Since (cf. [211]) \\Pk\\m^Ak} in case (2. 7) holds for P, one has equality for all 
in (i) for x>0, in (ii) for x > j+ 1, and trivially in (iii) for x, ¿ > 0 . Furthermore, 

LAe) i [X} M for all x > 0 since (l + x2)"*'2 £BVJ+1. 
For these families {r(o)} let us consider « = {ka}, <a>0, with 0(g)= g10. For 

the corresponding ar (g) one has 
x m exp ( -**) , 
Xa(l+X2)-x/2, 

jx^C l-x*)\ o ^ x s l , 
\ Ö , x > l , 
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respectively. Since G£BVJ+l for each oi, j i > 0 in case (i), for each 0 < c o < x in case 
(ii), and for each A s / and co, J O O in case (iii), it follows by Corollary 2. 4 tha t 

C o r o l l a r y 3. 3. Let the system {.P*} satisfy (2. 7) for some P . Then for every 

(3.9) 

(3.10) 

2 V e - ^ " P k f 
*=o 

WB^LMfW s A0°> ¡/ii (0 < o> < *), 

where for 0 co < x—j—1 the corresponding sum exists and therefore 

(3.11) 

2 k°>(\+{kie)2)-*l2Pkf 
: = 0 

SAg°>\\f\\ (0<c»<x-/-l), 

Analogously, Bernstein-type inequalities may be derived for fur ther sequences a. 
R e m a r k . The methods employed here may also be used to treat the following 

counterpar t to the general problem (1 .2) : 
Let {r ( 1 ) (e)} 5 {r ( 2 )(e)}<=[X] be two families of operators and B a closed 

linear operator with domain D(B)cXand range in X. The family {T(1)(É>)} is said to 
satisfy a Bernstein-type inequality (with respect to B and {T(2)(&)}) if T W ( Q ) ( X ) C 

<zD(B) for each f>>0, and if there exists i 2 ( e ) > 0 such that 

(3,12) \\BT^(e)f\\ ^ a te) II t(2) i6)f\\ (fex,e>o). 

From the point of view of applications following in Part II, however, formula-
tions (1. 2) and (3. 12) are parallel. 

Furthermore, note that (2. 5) may be interpreted as a weak and (3. 1), (3. 3) 
as s trong Bernstein-type inequalities, respectively, as introduced in Butzer—Scherer 
[3,4]. However, for commutative operators (as considered here), (2 .5) may be 
sharper than (3. 1), (3. 3), as the particular de la Vallée Poussin process shows 
(cf. [3]). In the noncommutat ive case, strong Bernstein-type inequalities seem to be 
essential. 

So far, we have discussed the results of Section 2 in connection with certain 
particular choices of families {T(g)} and sequences a for arbitrary Banach spaces X 
and systems {/>*}. Thus it remains to specify X and However, this will be 
examined in detail in Par t II, devoted to explicit applications to classical or thogonal 
expansions. Here we only consider the trigonometric system in order to provide 
a feeling to which extent the classical results are covered by the present approach. 
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Let X2N=LP
2N, or C2K be the Banach space of 27i-periodic functions 

with standard norm II • |L : 

Jt 
( / \f(x)\>dxy*{\^ / > < « ) , ess. sup | / (* ) | , m a x | / ( * ) | , 
— It 

respectively. Defining the system by 

(3.13) (P0f)(x)=r(0), (Pkf){x) = f" (k)e^+r(~k)e~ik* N), 

(k) being the usual Fourier coefficient 

/ - ( £ ) = (1/2ti) ff(x)e-ik*dx {k£Z), 
— it 

is a total sequence of mutually orthogonal continuous projections on X2n and 

(3.14) Z P k f \ = i r ( k ) e A (fex2n). 

It is well known that {Pfc} satisfies (2. 7) withy '=0 in case X2N=LP
2N, 1 and 

with j= 1 in all -spaces. Thus an application of (3. 6) yields for any a ) > 0 

(3.15) ' 2 \k\mckeikx 
k=-.n 

Ä Ano: 
2 ckeik 

k— —n Xi„ 

Note that 2 I k \ a c k e , k x corresponds to the coth Riesz derivative (x) of the 

trigonometric polynomial tn(x) = 2 cke'kx (for the definition and basic properties 
k = - n 

of this fractional derivative see.[l, Sec. 11. 5]). 
Obviously, apart f rom the constants, (3. 15) coincides with the classical in-

equality (1.1), thus with 

(3.16) 2 (ik)rcke 
k=-n 

ikx ^ ft 
X 2rc 

2 cke" 
k~—n Xzn 

only in case of even values of r. The case of odd values, particularly r= 1, is not 
covered for arbitrary X2n-spaces. 

Of course, there are several proofs of (3. 16) for r= 1 and all spaces X2rt, using 
particular features of the trigonometric system. Here we may mention the classical 
proof of F. RIESZ. In its extended form (cf. [6, 7]) it deals with (even or odd) se-
quences — oo > non-negative and convex on P with a o = 0 . Taking into account 
addition formulae, specific for the trigonometric system, the proof of the inequality 

2 ak ck e' 
'k=-n 

ikx si 2a„ 2 cke 'k 

k=-n X2 n 
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r e d u c e s t o a ver i f ica t ion o f t h e convexi ty o n P o f t h e s equence a„_ k / a„ f o r 0 ^ k s n, 
0 f o r k>n. W h e t h e r th i s m e t h o d o f p r o o f m a y b e e x t e n d e d t o m o r e gene ra l s y s t e m s 

r e m a i n s o p e n . 

F ina l ly , let u s obse rve t h a t t h e classical B e r n s t e i n inequa l i t y (3. 16) f o r r= 1, 
X2LT= C 2 K , f o r example , m a y of c o u r s e b e der ived b y u s i n g d i f f e r en t m e t h o d s a s a 
(d i rec t ) c o n s e q u e n c e o f t h e o r e m s in a r b i t r a r y B a n a c h spaces . T h u s , f o r e x a m p l e , 
o n e m a y t a k e (3. 16) f o r r= 2 a n d i n t e r p o l a t i o n t e c h n i q u e s i n o r d e r t o e s t ab l i sh (3. 16) 
f o r a n y 0 < r < 2 (see [13]). 
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