О некоторых обобщениях теории сильно демпфированных пучков на случай пучков произвольного порядка

А. С. МАРКУС, В. И. МАЦАЕВ и Г. И. РУССУ (Кишинев и Москва, СССР)

Посвящается академику Б. С.-Надь к его шестидесятилетию

Введение

Решение методом Фурье различных задач математической физики естественно приводит к изучению разложений по собственным векторам, отвечающим части спектра самосопряженного операторного пучка, т. е. полинома

$$L(\lambda) = \sum_{k=0}^{n} \lambda^{k} A_{k} \qquad (A_{k}^{*} = A_{k}).$$

Общей спектральной теории такого рода пока не существует.

Необходимо отметить, что спектральная теория одного важного класса несамосопряженных пучков успешно развивается уже на протяжении более 20 лет, начиная с основополагающей работы М. В. Келдыша [1]. В то же время, построение общей теории самосопряженных пучков началось, по существу, только в 1964 году, когда появилась фундаментальная работа М. Г. Крейна и Г. Лангера [2], посвященная систематическому изучению самосопряженных квадратичных пучков. Одна из основных идей этой работы заключается в сопоставлении пучку $\lambda^2 I + \lambda B + C$ операторного квадратного уравнения $Z^2 + BZ + C = 0$ и в отыскании корня этого уравнения, спектр которого совпадает с некоторой частью спектра пучка.

Результаты работы [2] по спектральной теории самосопряженных квадратичных пучков получили дальнейшее развитие в работах Γ . Лангера [3, 4]. В недавней работе Γ . Лангера [5]*) были получены некоторые общие результаты по спектральной теории самосопряженных пучков произвольного порядка. Постановка задач в [5] близка к нашей.

^{*)} Авторы благодарны Г. Лангеру за предоставленную им возможность ознакомиться с рукописью этой работы. Это позволило упростить некоторые доказательства в нашей статье.

Настоящая статья посвящена, в основном, обобщениям на пучки n-го порядка теории одного из классов квадратичных пучков, изученных в [2, 3], — сильно демпфированных пучков*). В отличие от работ [2—5], основной подход статьи заключается не в изучении корней операторного уравнения n-го порядка, а в факторизации пучка, т. е. представлении его в виде $L(\lambda) = L_+(\lambda)(Z-\lambda I)$, где спектр оператора Z совпадает с некоторой частью σ спектра $L(\lambda)$, а $L_+(\lambda)$ — пучок n-1-го порядка, обратимый на σ . Эти два подхода тесно связаны между собой (см. ниже замечание 1).

В работах [2—5] систематически используются методы и результаты теории операторов в пространстве с индефинитной метрикой, в особенности теоремы о существовании специальных инвариантных подпространств. В нашей статье используются не геометрические, а аналитические методы. Основным инструментом являются недавние результаты И. Ц. Гохберга и Ю. Лайтерера о факторизации оператор-функций.

Объект исследования этой статьи — гиперболический пучок. Так мы называем самосопряженный пучок $L(\lambda)$, квадратичная форма которого имеет при любом $f\neq 0$ простые вещественные корни, а старший коэффициент A_n — равномерно положительный оператор.

Оказывается, что, как и в случае n=2, корни квадратичной формы $(L(\lambda)f,f)$ образуют неперекрывающиеся промежутки — спектральные зоны. Установлению этого факта и некоторых других утверждений о спектральных зонах посвящен первый параграф.

Основным результатом статьи является доказанная в § 2 теорема 4, в которой утверждается, что всякой спектральной зоне гиперболического пучка, замыкание которой не пересекается с замыканиями других зон, отвечает факторизация пучка $L(\lambda)$, причем соответствующий оператор Z подобен самосопряженному. Отметим, что при n=2 эта теорема вытекает из теоремы Γ . Лангера [3].

В этом же параграфе строится пример, показывающий существенность условий теоремы 4 для подобия Z самосопряженному оператору. Здесь же рассматриваются обобщения теоремы 4 на случай, когда A_n не является дефинитным.

В последнем параграфе указываются некоторые ограничения на коэффициенты пучка, обеспечивающие выполнение условий теорем § 2. В заключение рассматривается один класс пучков, не являющихся гиперболическими, а именно, самосопряженные пучки, полученные малым возмущением линейного пучка $A - \lambda I$.

Авторы выражают благодарность И. Ц. Гохбергу и М. Г. Крейну за денные обсуждения.

^{*)} В матричном случае теория сильно демпфированных пучков была построена Даффином [6].

§ 1. Свойства спектральных зон

1. Пусть \mathfrak{H} — гильбертово пространство, \mathfrak{R} — множество всех линейных ограниченных операторов, действующих в \mathfrak{H} , и \mathfrak{S}_{∞} — множество всех вполне непрерывных операторов из \mathfrak{R} . Если $A \in \mathfrak{R}$, то через im A обозначается множество значений оператора A, а через ker A — его ядро. Как обычно, $\sigma(A)$ обозначает спектр оператора A, а W(A) — его числовой образ, т. е. W(A) = = $\{(Af,f): \|f\|=1\}$. Неравенство $A\gg 0$ будет обозначать, что оператор A равномерно положителен, т. е. существует число $\delta>0$ такое, что $(Af,f)\geq \geq \delta(f,f)(f\in\mathfrak{H})$.

Полиномиальным операторным пучком называют операторный полином

$$(1.1) L(\lambda) = \lambda^n A_n + \lambda^{n-1} A_{n-1} + \dots + \lambda A_1 + A_0$$

с коэффициентами из \Re . Если $A_k^* = A_k$ (k = 0, 1, ..., n), то пучок $L(\lambda)$ называется самосопряженным.

Через $\sigma(L)$ обозначим спектр пучка $L(\lambda)$, т. е. множество всех комплексных чисел λ , для которых оператор $L(\lambda)$ не обратим. Если уравнение $L(\lambda_0)\varphi=0$ имеет решение $\varphi_0\neq 0$, то λ_0 будем называть собственным числом пучка $L(\lambda)$, а вектор φ_0 — соответствующим ему собственным вектором. Вектор φ_k называется присоединенным вектором пучка $L(\lambda)$, соответствующим собственному числу λ_0 , если существуют векторы $\varphi_0(\neq 0)$, $\varphi_1,\ldots,\varphi_{k-1}$ такие, что

$$\sum_{j=0}^{m} \frac{1}{j!} L^{(j)}(\lambda_0) \varphi_{m-j} = 0 \qquad (m = 0, 1, ..., k).$$

2. Самосопряженный пучок (1.1) будем называть гиперболическим, если $A_n \gg 0$ и при любом $f \neq 0$ все корни многочлена $(L(\lambda)f,f)$ вещественны и различны.

Корни многочлена $(L(\lambda)f,f)$, занумерованные в порядке убывания, обозначим $p_k(f)$ $(k=1,2,\ldots,n)$. Так как $p_k(\alpha f)=p_k(f)$ $(f\neq 0,\alpha\neq 0)$, то можно рассматривать функционалы $p_k(f)$ на единичной сфере S пространства \mathfrak{H} . Очевидно, $p_k(f)$ является ограниченным непрерывным функционалом на S, и поэтому множество его значений Δ_k является непустым связным ограниченным подмножеством вещественной прямой, т. е. некоторым промежутком (или точкой). Этот промежуток Δ_k назовем k-ой спектральной зоной пучка $L(\lambda)$.

Установим вначале некоторые простые свойства гиперболических пучков.

1°. Спектр гиперболического пучка $L(\lambda)$ вещественный, причем $\sigma(L)\subset$ $\subset \bigcup_{j=1}^n \overline{A}_j$.

B самом деле, при ||f|| = 1

(1.2)

$$||L(\lambda)f|| \ge |(L(\lambda)f, f)| = (A_n f, f) \prod_{j=1}^n |\lambda - p_j(f)| \ge ||A_n^{-1}||^{-1} \prod_{j=1}^n \varrho(\lambda, \Delta_j),$$

где $\varrho(\lambda, \Delta_i)$ — расстояние от λ до Δ_i .

Подставляя в неравенство (1. 2) $\bar{\lambda}$ вместо λ , получим

$$||[L(\lambda)]^*f|| \ge ||A_n^{-1}||^{-1} \prod_{j=1}^n \varrho(\lambda, \Delta_j).$$

Отсюда и из (1. 2) непосредственно вытекает, что если $\lambda \in \bigcup_{j=1}^n \bar{\Delta}_j$, то оператор $L(\lambda)$ обратим.

 2° . Если $L(\lambda)$ — гиперболический пучок, то у него нет присоединенных векторов.

В самом деле, допустим что существуют число λ_0 (вещественное в силу 1°) и векторы $\varphi_0(\neq 0)$ и φ_1 такие, что

$$L(\lambda_0)\varphi_0=0$$
, $L(\lambda_0)\varphi_1=-L'(\lambda_0)\varphi_0$.

Умножая последнее равенство скалярно на φ_0 , получим

$$(L'(\lambda_0)\varphi_0,\varphi_0) = -(L(\lambda_0)\varphi_1,\varphi_0) = -(\varphi_1,L(\lambda_0)\varphi_0) = 0.$$

Так как $(L(\lambda_0) \varphi_0, \varphi_0) = 0$, то отсюда следует, что λ_0 является кратным корнем многочлена $(L(\lambda) \varphi_0, \varphi_0)$, а это противоречит условию гиперболичности.

3. Здесь мы установим основное свойство спектральных зон гиперболического пучка, состоящее в том, что они не перекрываются. Для квадратичного пучка это свойство было установлено в случае $\dim \mathfrak{H} < \infty$ Даффином [6] и в общем случае М. Г. Крейном и Г. Лангером [2] (см. также [4, 7]).

Нам понадобится следующее простое предложение ([7], лемма 1. 1).

Лемма 1. Пусть A и B — ограниченные самосопряженные операторы. Если для некоторых векторов f_1 и f_2

$$(Af_1, f_1) = (Af_2, f_2) = 0, \quad (Bf_1, f_1) > 0, \quad (Bf_2, f_2) < 0,$$

то найдется вектор $f \neq 0$ такой, что (Af, f) = (Bf, f) = 0*).

^{*)} Как заметил Б. С. Митягин, эта лемма вытекает из теоремы Теплица—Хаусдорфа о выпуклости числового образа оператора. В самом деле, полагая C = B + iA и $f_k = f_k / \|f_k\| (k = 1, 2)$, получаем, что $(Cf_1, f_1) > 0$, $(Cf_2, f_2) < 0$, и поэтому существует вектор $f(\|f\| = 1)$, такой что (Cf, f) = 0. Обратно, из леммы 1 с помощью аффинного преобразования без труда выводится теорема Теплица—Хаусдорфа.

Теорема 1. Если $L(\lambda)$ — гиперболический пучок, то его различные спектральные зоны не пересекаются.

Доказательство. Так как все корни многочлена $(L(\lambda)f, f)$ $(f \neq 0)$ вещественны и различны, то его производная в соседних корнях имеет противоположные знаки, и, следовательно,

$$(1.3) (-1)^{k-1} (L'(p_k(f))f, f) > 0 (k = 1, 2, ..., n; f \neq 0).$$

Допустим, что утверждение теоремы неверно. Тогда $\Delta_k \cap \Delta_{k+1}$ непусто для некоторого k, т. е. найдутся вещественное число α и ненулевые векторы φ, ψ такие, что

$$(L(\alpha)\varphi,\varphi) = (L(\alpha)\psi,\psi) = 0,$$

причем $\alpha = p_k(\varphi) = p_{k+1}(\psi)$. В силу (1. 3)

$$(1.5) (L'(\alpha)\varphi,\varphi)(L'(\alpha)\psi,\psi) < 0.$$

Из (1. 4) и (1. 5) согласно лемме 1 вытекает, что $(L(\alpha) g, g) = (L'(\alpha) g, g) = 0$ для некоторого $g \neq 0$, что противоречит простоте корней многочлена $(L(\lambda) g, g)$. Теорема доказана*).

4. Для получения основных результатов этой статьи свойство неперекрываемости спектральных зон оказывается недостаточным.

Будем говорить, что две спектральные зоны *отделены*, если их замыкания не пересекаются.

Следующая теорема идейно близка к теореме 1. Она показывает, что из существования равномерного зазора между соседними корнями многочлена $(L(\lambda)f,f)$ вытекает, что соответствующие спектральные зоны отделены.

Теорема 2. Пусть $L(\lambda)$ — гиперболический пучок. Если для некоторого k ($1 \le k \le n-1$) найдется положительное число ϱ такое, что $p_k(f)-p_{k+1}(f) \ge \varrho$ для любого вектора $f \ne 0$, то спектральные зоны Δ_k и Δ_{k+1} отделены.

Доказательство. Допустим, что утверждение теоремы не имеет места, т. е. что $\sup \Delta_{k+1} = \inf \Delta_k$. Обозначим это число через γ и докажем вначале существование положительных чисел ε , δ и μ таких, что из соотношений

$$|(L(\lambda)f,f)| < \varepsilon, \quad ||f|| = 1, \quad |\lambda - \gamma| < \mu$$

вытекает $|(L'(\lambda)f, f)| > \delta$.

В самом деле, если это не так, то найдутся нормированная последовательность векторов $\{f_j\}_1^{\infty}$ и сходящаяся к γ последовательность вещественных чисел $\{\gamma_i\}_1^{\infty}$ такие, что

$$\lim_{j\to\infty} (L(\gamma_j)f_j, f_j) = \lim_{j\to\infty} (L'(\gamma_j)f_j, f_j) = 0.$$

^{*)} Аналогичное рассуждение для квадратичного пучка проведено в [4] (лемма 2.4).

Тогда, очевидно,

(1.6)
$$\lim_{j \to \infty} (L(\gamma)f_j, f_j) = \lim_{j \to \infty} (L'(\gamma)f_j, f_j) = 0.$$

Так как коэффициенты многочленов $Q_j(\lambda) = (L(\lambda)f_j, f_j)$ ограничены, то (выделяя подпоследовательность и не меняя обозначений) можно считать, что последовательность $Q_j(\lambda)$ сходится (равномерно на любом компакте) к некоторому многочлену $Q(\lambda)$. При этом $Q(\lambda) \not\equiv 0$, так как коэффициент при λ^n положителен.

Из (1. 6) следует, что $Q(\gamma) = Q'(\gamma) = 0$, и по теореме Гурвица [8] в любой окрестности точки γ многочлен $Q_j(\lambda)$ при достаточно большом j имеет два корня, т. е.

$$\lim_{j \to \infty} [p_k(f_j) - p_{k+1}(f_j)] = 0,$$

а это противоречит условию теоремы.

Так как по допущению $\gamma = \sup \Delta_{k+1} = \inf \Delta_k$, то существуют нормированные последовательности векторов $\{h_j\}_1^\infty$, $\{g_j\}_1^\infty$ и последовательности вещественных чисел $\{\alpha_i\}_1^\infty$, $\{\beta_i\}_1^\infty$ такие, что

$$(L(\alpha_j)h_j,h_j)=(L(\beta_j)g_j,g_j)=0,$$

(1.7)
$$\alpha_j = p_k(h_j), \beta_j = p_{k+1}(g_j) \ (j = 1, 2, ...); \lim \alpha_j = \lim \beta_j = \gamma.$$

Из (1. 7) и доказанного выше утверждения следует, что при $j\!\geq\! j_0$

$$|(L'(\alpha_j)h_j,h_j)| > \delta, \quad |(L'(\beta_j)g_j,g_j)| > \delta.$$

Точнее говоря, так как $\alpha_i = p_k(h_i)$, $\beta_i = p_{k+1}(g_i)$, то в силу (1.3)

$$(1.8) \quad (-1)^{k-1} \left(L'(\alpha_j) h_j, h_j \right) > \delta, (-1)^{k-1} \left(L'(\beta_j) g_j, g_j \right) < -\delta \qquad (j \ge j_0)$$

Из соотношений (1.7) и (1.8) вытекает, что

(1.9)
$$\lim_{j\to\infty} (L(\gamma)h_j, h_j) = 0, \quad (-1)^{k-1} (L'(\gamma)h_j, h_j) > \frac{\delta}{2} \qquad (j \ge j_1),$$

(1.10)
$$\lim_{j \to \infty} (L(\gamma)g_j, g_j) = 0, \quad (-1)^{k-1} (L'(\gamma)g_j, g_j) < -\frac{\delta}{2} \qquad (j \ge j_1).$$

Выделяя из ограниченных последовательностей $(L'(\gamma) h_j, h_j)$ и $(L'(\gamma) g_j, g_j)$ сходящиеся подпоследовательности, получим

$$(1.11) \qquad \qquad (-1)^{k-1} \lim_{m \to \infty} \left(L'(\gamma) h_{j_m}, h_{j_m} \right) = t_1 \left(\ge \frac{\delta}{2} \right),$$

$$(1.12) (-1)^{k-1} \lim_{m \to \infty} \left(L'(\gamma) g_{j_m}, g_{j_m} \right) = t_2 \left(\le -\frac{\delta}{2} \right).$$

Рассмотрим оператор

$$C = (-1)^{k-1} \left(L'(\gamma) + iL(\gamma) \right).$$

Пусть W(C) — замыкание числового образа оператора C. Из соотношений (1. 9) и (1. 11) следует, что $t_1 \in \overline{W(C)}$, а из соотношений (1. 10) и (1. 12) — что $t_2 \in \overline{W(C)}$. Так как $\overline{W(C)}$ — выпуклое множество, то $0 \in \overline{W(C)}$. Это означает, что найдется такая нормированная последовательнисть $\{\psi_j\}_1^\infty$, для которой $(C\psi_j,\psi_j)\to 0$, т. е. $(L(\gamma)\psi_j,\psi_j)\to 0$, $(L'(\gamma)\psi_j,\psi_j)\to 0$. Последние соотношения противоречат утверждению, установленному в начале доказательства теоремы. Теорема доказана.

§ 2. Факторизация гиперболического пучка

1. Ниже нам понадобится следующее предложение, вытекающее из результатов И. Ц. Гохберга и Ю. Лайтерера [9].

Теорема 3. Пусть $A(\zeta)$ — голоморфная на окружности $|\zeta|=1$ операторфункция со значениями в \Re . Если

(2.1)
$$\operatorname{Re} A(\zeta) \gg 0 \qquad (|\zeta| = 1),$$

то А(ζ) допускает каноническую факторизацию

$$A(\zeta) = A_{+}(\zeta)A_{-}(\zeta),$$

где оператор-функция $A_+(\zeta)$ (соответственно $A_-(\zeta)$) голоморфна и обратима при $|\zeta| \leq 1$ (соответственно $|\zeta| \geq 1$), причем $A_-(\infty) = I$.

Следующие два вспомогательных предложения будут применяться для проверки выполнения условия (2. 1) в нашем случае.

Лемма 2. Пусть заданы вещественные числа $\{c_j\}_1^n$, $\{p_j\}_1^n$ и положительное число r, причем

$$c_n \leq p_n \leq \cdots \leq c_{k+1} \leq p_{k+1} < c_k - r < p_k < c_k + r < p_{k-1} \leq c_{k-1} \leq \cdots \leq p_1 \leq c_1.$$

Положим

$$a(\lambda) = \frac{\prod_{j=1}^{n} (\lambda - p_j)}{\prod_{j=1}^{n} (\lambda - c_j)}.$$

Тогда для любого комплексного числа λ , лежащего на окружности $|\lambda-c_k|=r$, выполняется неравенство

Доказательство. Достаточно установить, что *)

$$|\arg a(\lambda)| < \frac{\pi}{2}.$$

Положим

$$\theta_1(\lambda) = \sum_{j=k+1}^n \left[\arg(\lambda - p_j) - \arg(\lambda - c_j) \right], \quad \theta_2(\lambda) = \arg(\lambda - p_k) - \arg(\lambda - c_k),$$

$$\theta_3(\lambda) = \sum_{j=1}^{k-1} \left[\arg\left(\lambda - c_j\right) - \arg\left(\lambda - p_j\right) \right], \quad \theta(\lambda) = \theta_1(\lambda) + \theta_2(\lambda) - \theta_3(\lambda).$$

Очевидно, $\theta(\lambda) \equiv \arg a(\lambda) \pmod{2\pi}$.

Предположим вначале, что Im $\lambda > 0$. Нетрудно заметить, что тогда

$$\arg(\lambda - p_{k+1}) \ge \arg(\lambda - c_{k+1}) \ge \cdots \ge \arg(\lambda - p_n) \ge \arg(\lambda - c_n),$$

 $\arg(\lambda - c_1) \ge \arg(\lambda - p_1) \ge \cdots \ge \arg(\lambda - c_{k-1}) \ge \arg(\lambda - p_{k-1}),$

и поэтому

$$0 \le \theta_1(\lambda) \le \arg(\lambda - p_{k+1}), \quad 0 \le \theta_3(\lambda) \le \arg(\lambda - c_1) - \arg(\lambda - p_{k-1}).$$
 Следовательно,

$$(2.4) 0 \leq \theta_1(\lambda) < \arg(\lambda - c_k + r) < \frac{\pi}{2},$$

(2.5)
$$0 \le \theta_3(\lambda) < \pi - \arg(\lambda - c_k - r) < \frac{\pi}{2}.$$

Рассмотрим случай, когда $p_k \ge c_k$. В этом случае

(2.6)
$$0 \le \theta_2(\lambda) < \arg(\lambda - c_k - r) - \arg(\lambda - c_k).$$

Так как

$$\frac{(\lambda - c_k + r)(\lambda - c_k - r)}{\lambda - c_k} = \lambda - c_k - \frac{r^2}{\lambda - c_k} = \lambda - c_k - \overline{(\lambda - c_k)} = 2i \operatorname{Im} \lambda,$$

TO

$$\arg\frac{(\lambda-c_k+r)(\lambda-c_k-r)}{\lambda-c_k}=\frac{\pi}{2},$$

и, следовательно,

$$\arg(\lambda - c_k + r) + \arg(\lambda - c_k - r) - \arg(\lambda - c_k) \equiv \frac{\pi}{2} \pmod{2\pi}.$$

Учитывая, что

$$0 < \arg(\lambda - c_k + r) < \frac{\pi}{2}, \quad 0 < \arg(\lambda - c_k - r) - \arg(\lambda - c_k) < \arg(\lambda - c_k - r) < \pi,$$

^{*)} Мы выбираем в качестве области значений arg z промежуток ($-\pi$, π].

получаем

(2.7)
$$\arg(\lambda - c_k + r) + \arg(\lambda - c_k - r) - \arg(\lambda - c_k) = \frac{\pi}{2}.$$

Поэтому из (2. 4) и (2. 6) вытекает, что

$$(2.8) 0 \leq \theta_1(\lambda) + \theta_2(\lambda) < \frac{\pi}{2}.$$

Из (2. 5) и (2. 8) непосредственно следует, что $|\theta(\lambda)| < \frac{\pi}{2}$, но тогда arg $a(\lambda)$ = $=\theta(\lambda)$, и мы получаем неравенство (2. 3).

Рассмотрим теперь случай, когда $p_k < c_k$. Тогда

$$(2.9) 0 > \theta_2(\lambda) > \arg(\lambda - c_k + r) - \arg(\lambda - c_k),$$

и из соотношений (2. 5), (2. 7) и (2. 9) вытекает, что

(2.10)

$$0 > \theta_2(\lambda) - \theta_3(\lambda) > \arg(\lambda - c_k + r) + \arg(\lambda - c_k - r) - \arg(\lambda - c_k) - \pi = -\frac{\pi}{2}.$$

Из (2. 4) и (2. 10) следует, что и в этом случае $|\theta(\lambda)| < \frac{\pi}{2}$, откуда снова вытекает (2. 3).

Так как $\arg a(\bar{\lambda}) = \arg \overline{a(\lambda)} = -\arg a(\lambda)$, то неравенство (2.3) справедливо и при Im λ <0. При Im λ =0 неравенство (2.3) очевидно, так как тогда (λ - $-p_j)(\lambda-c_j)^{-1}>0 (j=1,2,...,n).$

Лемма доказана.

Лемма 3. Пусть заданы вещественные числа $\{\alpha_i\}_1^n$, $\{\beta_i\}_1^n$, с и положительное число г, причем

$$\alpha_n \le \beta_n \le \cdots \le \alpha_{k+1} \le \beta_{k+1} < c-r < \alpha_k \le \beta_k < c+r < \alpha_{k-1} \le \beta_{k-1} \le \cdots \le \alpha_1 \le \beta_1$$
. Положим

(2.11)
$$a(\lambda, p) = \frac{(\lambda - p_1)(\lambda - p_2)\cdots(\lambda - p_n)}{(\lambda - \beta_1)\cdots(\lambda - \beta_{k-1})(\lambda - \alpha_{k+1})\cdots(\lambda - \alpha_n)}$$

и через Γ обозначим окружность $|\lambda - c| = r$. Тогда существует такое число $\delta > 0$, что Re $a(\lambda, p) \ge \delta$ для любых $\lambda \in \Gamma$ и $p_k \in [\alpha_k, \beta_k]$ (k = 1, 2, ..., n).

Доказательство. В силу леммы 2 $\operatorname{Re} a(\lambda, p) > 0$, и остается заметить, что функция Re $a(\lambda, p)$ непрерывна на $\Gamma \times [\alpha_1, \beta_1] \times \cdots \times [\alpha_n, \beta_n]$.

2. Будем говорить, что оператор $Z\left(\in\Re
ight)$ симметризуется справа (слева) самосопряженным оператором $S(\in \Re)$, если оператор ZS(SZ) самосопряженный. Если при этом $S\gg 0$, то, очевидно, Z подобен самосопряженному оператору:

$$Z = S^{1/2}(S^{-1/2}ZSS^{-1/2})S^{-1/2}$$
 $(Z = S^{-1/2}(S^{-1/2}SZS^{-1/2})S^{1/2}).$

Основным результатом этой статьи является следующая

Теорема 4. Пусть

$$L(\lambda) = \lambda^n A_n + \lambda^{n-1} A_{n-1} + \dots + \lambda A_1 + A_0$$

—гиперболический пучок*). Если при некотором k ($1 \le k \le n$) спектральная зона Δ_k пучка $L(\lambda)$ отделена от соседних зон, то $L(\lambda)$ допускает следующую факторизацию

(2.12)
$$L(\lambda) = L_{+}(\lambda)(Z - \lambda I),$$

где $L_+(\lambda)=\sum\limits_{j=0}^{n-1}\lambda^j\,B_j$ обратим при всех $\lambda\in \overline{\Delta}_k$, спектр оператора Z содержится в $\overline{\Delta}_k$ и оператор Z подобен самосопряженному.

Доказательство. Пусть $\alpha_j = \inf \Delta_j$, $\beta_j = \sup \Delta_j$ (j=1,2,...,n). Так как по условию $\beta_{k+1} < \alpha_k$ и $\beta_k < \alpha_{k-1}$, то можно выбрать вещественное число c и положительное число r так, чтобы $\beta_{k+1} < c - r < \alpha_k$, $\beta_k < c + r < \alpha_{k-1}$. Положим $\Gamma = \{\lambda: |\lambda - c| = r\}$ и

$$A(\lambda) = \frac{L(\lambda)}{(\lambda - \beta_1) \cdots (\lambda - \beta_{k-1})(\lambda - c)(\lambda - \alpha_{k+1}) \cdots (\lambda - \alpha_n)}.$$

Так как $\left(L(\lambda)f,f\right)=(A_nf,f)\prod_{j=1}^n\left(\lambda-p_j(f)\right)$, то, обозначая $p_j(f)$ через p_j , получим, что

$$(A(\lambda)f,f) = (A_nf,f)a(\lambda,p),$$

где функция $a(\lambda, p)$ определена равенством (2.11). Поэтому из леммы 3 вытекает, что

(2.13)
$$\operatorname{Re} A(\lambda) \ge \delta_1 I \quad (\lambda \in \Gamma),$$

где $\delta_1 = \delta \inf_{\|f\|=1} (A_n f, f).$

Таким образом, для рациональной оператор-функции $A(\lambda)$ выполнены условия теоремы 3 (относительно окружности Γ), и поэтому

(2.14)
$$A(\lambda) = A_{+}(\lambda) A_{-}(\lambda),$$

где множители $A_{\pm}(\lambda)$ обладают свойствами, указанными в теореме 3. Перепишем равенство (2. 14) в виде

(2.15)
$$A_{+}^{-1}(\lambda)A(\lambda) = A_{-}(\lambda) \qquad (\lambda \in \Gamma)$$

^{*)} Используя последние результаты Г. Лангера ([16], теорема 1), нетрудно убедиться, что теорема 4 (без изменений в доказательстве) сохраняет силу если из определения гипер-боличности исключить требование простоты корней $(L(\lambda)f,f)$. Аналогичные замечания имеют место для нижеследующих теорем 5 и 6.

Правая часть этого равенства голоморфна при $|\lambda-c| \ge r$, а левая часть голоморфна при $|\lambda-c| \le r$, за исключением точки c, где она имеет простой полюс. Поэтому обе части равенства (2.15) представляют единую голоморфную оператор-функцию, единственной особенностью которой во всей расширенной плоскости является простой полюс в точке c. Так как $A_-(\infty) = I$, то отсюда следует, что

$$(2.16) A_{-}(\lambda) = I + \frac{X}{\lambda - c} (X \in \Re).$$

Переписывая (2. 14) в виде

$$A(\lambda)A_{-}^{-1}(\lambda)=A_{+}(\lambda).$$

видим, что обе части последнего равенства определяют единую голоморфную оператор-функцию, имеющую в расширенной плоскости особенности лишь в точках $\beta_1, \ldots, \beta_{k-1}, \alpha_{k+1}, \ldots, \alpha_n$, причем все эти точки являются простыми полюсами. Следовательно,

(2.17)
$$A_{+}(\lambda) = \Pi^{-1}(\lambda) \sum_{j=0}^{n-1} \lambda^{j} C_{j},$$

где $\Pi(\lambda) = (\lambda - \beta_1) \cdots (\lambda - \beta_{k-1}) (\lambda - \alpha_{k+1}) \cdots (\lambda - \alpha_n)$ и $C_j \in \Re$. Из (2. 14), (2. 16) и (2. 17) вытекает, что

$$L(\lambda) = \sum_{j=0}^{n-1} \lambda^{j} C_{j}(\lambda I - cI + X),$$

причем первый множитель обратим при $|\lambda-c| \le r$, а второй — при $|\lambda-c| \ge r$. Полагая $B_j = -C_j$ $(j=0,1,\ldots,n-1), \ Z=cI-X$, получим равенство (2. 12)*)

Для окончания доказательства теоремы осталось установить, что оператор Z подобен самосопряженному. Положим

$$M(\lambda) = (\lambda - c) A(\lambda) = \Pi^{-1}(\lambda) L(\lambda)$$

и рассмотрим ограниченные (в силу предложения 1°) операторы

$$G = \frac{1}{2\pi i} \int M^{-1}(\lambda) d\lambda, \quad H = \frac{1}{2\pi i} \int A^{-1}(\lambda) d\lambda.$$

Очевидно,

$$G^* = -\frac{1}{2\pi i} \int_{\Gamma} [M^{-1}(\lambda)]^* d\bar{\lambda} = -\frac{1}{2\pi i} \int_{\Gamma} M^{-1}(\bar{\lambda}) d\bar{\lambda} = \frac{1}{2\pi i} \int_{\Gamma} M^{-1}(\lambda) d\lambda = G.$$

^{*)} Отметим, что факторизация (2.12) единственна. В самом деле, если $L_+(\lambda)(Z-\lambda I)==\tilde{L}_+(\lambda)(\tilde{Z}-\lambda I)$, то из равенства $\tilde{L}_+^{-1}(\lambda)$ $L_+(\lambda)=(\tilde{Z}-\lambda I)(Z-\lambda I)^{-1}$ вытекает, что $(\tilde{Z}-\lambda I)(Z-\lambda I)^{-1}$ — голоморфная во всей расширенной плоскости оператор-функция. Следовательно, $(\tilde{Z}-\lambda I)(Z-\lambda I)^{-1}\equiv I$, т. е. $\tilde{Z}=Z$, а значит и $\tilde{L}_+(\lambda)=L_+(\lambda)$.

Точно так же доказывается, что $H^* = H$.

Покажем, что оператор Z симметризуется справа оператором G. В самом деле,

$$ZG = \frac{1}{2\pi i} \int_{\Gamma} (Z - \lambda I) M^{-1}(\lambda) d\lambda + \frac{1}{2\pi i} \int_{\Gamma} (\lambda - c) M^{-1}(\lambda) d\lambda + cG =$$

$$= H + cG + \frac{1}{2\pi i} \int_{\Gamma} \Pi(\lambda) (Z - \lambda I) L^{-1}(\lambda) d\lambda.$$

В силу равенства (2. 12) подынтегральное выражение в последнем интеграле равно $\Pi(\lambda)L_+^{-1}(\lambda)$, и так как эта оператор-функция голоморфна внутри Γ , то интеграл равен нулю. Таким образом $ZG = H_1$ (где $H_1 = H + cG$), а это и означает, что оператор Z симметризуется справа оператором G. Для завершения доказательства осталось установить, что $G\gg 0$.

Рассмотрим квадратичную форму оператора G:

$$(Gf,f)=\frac{1}{2\pi i}\int_{\Gamma}\left(M^{-1}(\lambda)f,f\right)d\lambda=\frac{1}{2\pi i}\int_{\Gamma}\left(A^{-1}(\lambda)f,f\right)(\lambda-c)^{-1}d\lambda.$$

Производя замену $\lambda = c + re^{i\theta}$ и учитывая, что (Gf, f) = Re (Gf, f), получим

$$(Gf,f) = \frac{1}{2\pi} \int_{0}^{2\pi} \left(A^{-1}(c+re^{i\theta})f, f \right) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}\left(A^{-1}(c+re^{i\theta})f, f \right) d\theta =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}\left(f, A^{-1}(c+re^{i\theta})f \right) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}\left(A(c+re^{i\theta})g(\theta), g(\theta) \right) d\theta,$$

где
$$g(\theta)=A^{-1}(c+re^{i\theta})f$$
. Так как $\|g(\theta)\|\geq \varrho\|f\|$, где
$$\varrho^{-1}=\max_{\lambda\in \Gamma}\|A(\lambda)\|,$$

то в силу неравенства (2. 13) получим

$$(Gf,f) \geq \frac{\delta_1}{2\pi} \int_0^{2\pi} \|g(\theta)\|^2 d\theta \geq \delta_1 \varrho^2 \|f\|^2.$$

Теорема доказана.

Спедствие 1. В условиях теоремы 4 $\sigma(Z) = \sigma(L) \cap \overline{A}_k$, собственные числа $L(\lambda)$ на отрезке \overline{A}_k совпадают с собственными числами оператора Z, и этим числам отвечают одни и те же собственные векторы.

Это утверждение непосредственно следует из равенства (2.12) и обратимости оператора $L_{+}(\lambda)$ ($\lambda \in \overline{A}_{k}$).

Спедствие 2. Если выполнены условия теоремы 4 и при некотором $\gamma \in \overline{A}_k$ оператор $L(\gamma) \in \mathfrak{S}_{\infty}$, то $\sigma(L) \cap \overline{A}_k$ состоит из γ и последовательности собственных чисел конечной кратности, сходящейся к γ . Если, кроме того, $\mathfrak H$ сепарабельно, то последовательность соответствующих собственных векторов пучка $L(\lambda)$ образует безусловный базис пространства $\mathfrak H$.

В самом деле, из равенства (2. 12) и обратимости оператора $L_+(\lambda)$ вытекает, что $Z - \gamma I \in \mathfrak{S}_{\infty}$, и поэтому первое утверждение вытекает из следствия 1. Так как оператор $Z - \gamma I$ подобен самосопряженному, то его собственные векторы образуют безусловный базис в \mathfrak{H} , а в силу следствия 1 эти собственные векторы совпадают с соответствующими собственными векторами пучка $L(\lambda)$.

Замечание 1. Из факторизационного равенства

$$L(\lambda) = \sum_{j=0}^{n-1} \lambda^j B_j(Z - \lambda I)$$

следует, что

$$A_0 = B_0 Z$$
, $A_j = B_j Z - B_{j-1}$ $(j = 1, 2, ..., n-1)$, $A_n = -B_{n-1}$,

и поэтому

$$\sum_{j=0}^{n} A_{j} Z^{j} = B_{0} Z + \sum_{j=1}^{n-1} (B_{j} Z - B_{j-1}) Z^{j} - B_{n-1} Z^{n} = 0.$$

Таким образом, оператор Z является корнем уравнения

$$(2.18) A_n Z^n + A_{n-1} Z^{n-1} + \dots + A_1 Z + A_0 = 0.$$

Заметим, что и обратно, если Z — корень уравнения (2. 18), то

$$L(\lambda) = \sum_{k=0}^{n} A_k(\lambda^k I - Z^k) = L_+(\lambda)(Z - \lambda I),$$

где

$$L_{+}(\lambda) = -\sum_{k=1}^{n} A_{k} \sum_{j=0}^{k-1} \lambda^{j} Z^{k-j-1}.$$

Однако из (2.18) еще не следует обратимость $L_{+}(\lambda)$ при $\lambda \in \sigma(Z)$, и для установления этого требуется провести дополнительное исследование (см., например, [2]).

Замечание 2. Нетрудно убедиться, что если Z является корнем уравнения (2. 18), то он симметризуется слева самосопряженным оператором

(2.19)
$$S = \sum_{k=0}^{n-1} \sum_{j=0}^{k} (Z^*)^j A_{k+1} Z^{k-j}.$$

Поэтому другой путь установления подобия оператора Z самосопряженному в теореме 4 состоит в доказательстве равномерной дефинитности опера-

тора S. Этот метод и использовался вначале авторами, однако его применение натолкнулось на технические трудности, которые удалось преодолеть лишь в предположении, что $L(\gamma) \in \mathfrak{S}_{\infty}$ и $(-1)^{k-1} L'(\gamma) \gg 0$ для некоторого $\alpha \in \overline{A}_k^*$). Приведем схему этого доказательства.

С помощью сдвига $\lambda \to \lambda + \gamma$ доказательство сводится к случаю, когда $A_0 \in \mathfrak{S}_{\infty}$, $(-1)^{k-1} A_1 \gg 0$ и $0 \in \overline{A}_k$. Из неравенства (1.2) выводится без труда, что

$$||L^{-1}(\lambda)|| \leq \frac{C_1}{|\operatorname{Im} \lambda|} \qquad (|\lambda - c| \leq r),$$

и поэтому из (2. 12) вытекает, что

$$\|(Z-\lambda I)^{-1}\| \leq \frac{C_2}{|\operatorname{Im} \lambda|}.$$

Так как оператор $Z\left(=L_+^{-1}(0)A_0\right)$ вполне непрерывен, то отсюда следует, что система собственных векторов каждого из операторов Z и Z^* полна в $\mathfrak H$ (см., например, [10], предложение 4. 5°). Если $Z\phi_j=\lambda_j\phi_j$, то, как нетрудно проверить, $(S\phi_j,\phi_j)=(L'(\lambda_j)\phi_j,\phi_j)$ и $(S\phi_j,\phi_k)=0$ $(\lambda_j\neq\lambda_k)$, и поэтому

$$\left(S\left(\sum_{j=1}^m a_j \varphi_j\right), \sum_{j=1}^m a_j \varphi_j\right) = \sum_{j=1}^m |a_j|^2 \left(L'(\lambda_j) \varphi_j, \varphi_j\right).$$

Так как $\lambda_i = p_k(\varphi_i)$, то согласно (1.3)

$$(2.20) (-1)^{k-1}(S\psi,\psi) > 0$$

для любого ψ (\neq 0), являющегося линейной комбинацией собственных векторов Z. В силу полноты этих векторов $(-1)^{k-1}S \ge 0$.

Из равенства (2.19) следует, что $S=A_1+T$, где $T\in\mathfrak{S}_{\infty}$, и поэтому im S замкнуто и dim ker $S=\dim\mathfrak{H}/\mathrm{im}\ S<\infty$. Следовательно, для доказательства соотношения $(-1)^{k-1}S\gg 0$ достаточно показать, что $\overline{\mathrm{im}\ S}=\mathfrak{H}$, а для этого (в силу полноты собственных векторов оператора Z^*) достаточно установить, что любое собственное подпространство $\mathfrak{L}_{\lambda}(Z^*)$ оператора Z^* входит в im S. Для простоты будем далее предполагать, что $\lambda\neq 0$, т. е. что ker $Z^*=\{0\}$. Общий случай сводится к этому, так как имеет место разложение пространства

$$\mathfrak{H} = \ker Z + \overline{\operatorname{im} Z}$$

(см. [11], стр. 637), а для оператора $\tilde{Z} = Z | \overline{\text{im } Z}$ указанное предположение выполняется.

^{*)} Отметим, что равномерная положительность S в условиях теоремы 4 (и более общих) была установлена В. И. Ломоносовым [15] еще до того, как авторами было получено приведенное выше доказательство равномерной положительности правого симметризатора G.

Так как $SZ=Z^*S$, то $S(\mathfrak{Q}_{\lambda}(Z))\subset \mathfrak{Q}_{\lambda}(Z^*)$. Поскольку $\dim \mathfrak{Q}_{\lambda}(Z)=\dim \mathfrak{Q}_{\lambda}(Z^*)<\infty$ и из равенства $S\phi=0$ ($\phi\in \mathfrak{Q}_{\lambda}(Z)$) следует, что $\phi=0$ (см. (2. 20)), то $S(\mathfrak{Q}_{\lambda}(Z))=\mathfrak{Q}_{\lambda}(Z^*)$, что и завершает доказательство.

3. Здесь мы приведем пример, показывающий что утверждение теоремы 4 перестает быть верным без условия отделенности спектральной зоны Δ_k . Точнее говоря, строится квадратичный гиперболический пучок $L(\lambda)$, для которого не существует факторизации (2. 12) с оператором Z, подобным самосопряженному.

Отметим, что в силу результата Γ . Лангера [3] всякий квадратичный гиперболический пучок $L(\lambda) = \lambda^2 I + \lambda B + C$ допускает факторизацию $L(\lambda) = (Z_2^* - \lambda I)(Z_1 - \lambda I)$, где $\sigma(Z_j) \subset \overline{\Delta}_j$ $(j=1,2)^*$). Естественно предположить, что этот результат допускает обобщение на случай n > 2, т. е. что любой гиперболический пучок $L(\lambda)$ допускает факторизацию (2. 12), где $\sigma(Z) \subset \overline{\Delta}_k$ и $L_+(\lambda)$ обратим для внутренних точек λ зоны Δ_k .

Перейдем к построению указанного выше примера. Пусть \mathfrak{H} — сепарабельное гильбертово пространство. Представим \mathfrak{H} в виде ортогональной суммы двумерных подпространств \mathfrak{H}_j и рассмотрим операторы B_j и C_j , заданные в некотором ортонормированном базисе пространства \mathfrak{H}_j матрицами

$$B_j = \begin{pmatrix} b'_j & b_j \\ b_j & b''_j \end{pmatrix}, \quad C_j = \begin{pmatrix} c'_j & 0 \\ 0 & c''_j \end{pmatrix},$$

где числа b_j', b_j'' вещественны, а b_j, c_j', c_j'' — положительны.

Обозначим через B и C операторы, являющиеся ортогональными суммами операторов B_j и C_j соответственно, и положим $L(\lambda) = \lambda^2 I + \lambda B - C$. При условии

(2.21)
$$\lim b_j = \lim b_j' = \lim b_j'' = \lim c_j'' = \lim c_j'' = 0,$$

В и C являются вполне непрерывными самосопряженными операторами, причем C>0. Из последнего неравенства вытекает, что квадратный трехчлен $(L(\lambda)f,f)$ имеет при любом $f\neq 0$ различные вещественные корни

$$p_{1,2}(f) = \frac{-(Bf,f) \pm \sqrt{(Bf,f)^2 + 4(Cf,f)(f,f)}}{2}.$$

Очевидно, $p_2(f) < 0 < p_1(f)$, а так как $B, C \in \mathfrak{S}_{\infty}$, то

$$\sup p_2(f) = \inf p_1(f) = 0,$$

т. е. 0 является общей точкой $\bar{\varDelta}_1$ и $\bar{\varDelta}_2$.

^{*)} М. Г. Крейн и Г. Лангер [2] получили ранее этот результат при дополнительных условиях C>0 и $C\in\mathfrak{S}_{\infty}$, установив, кроме того, что в этом случае операторы Z_1 и Z_2 подобны самосопряженным. Приводимый пример показывает, что без дополнительных ограничений последнее утверждение не имеет места.

Пучок $L(\lambda)$ распадается в ортогональную сумму двумерных пучков $L_j(\lambda) = \lambda^2 I_j + \lambda B_j - C_j$. Каждый из этих пучков имеет два положительных собственных числа λ_{j1} , λ_{j2} (а также два отрицательных собственных числа). Эти собственные числа являются корнями уравнения

(2.22)
$$(\det L_i(\lambda) =)(\lambda^2 + \lambda b_i' - c_i')(\lambda^2 + \lambda b_i'' - c_i'') - \lambda^2 b_i^2 = 0.$$

Будем предполагать, что

$$(2.23) \lambda_{j1} \neq \lambda_{j2}.$$

Собственные векторы пучка $L_j(\lambda)$, отвечающие собственным числам λ_{j1} и λ_{j2} , обозначим φ_{j1} и φ_{j2} . Очевидно, можно положить

$$\varphi_{j1} = (\lambda_{j1}b_j, c'_j - \lambda_{j1}b'_j - \lambda^2_{j1}), \quad \varphi_{j2} = (\lambda_{j2}b_j, c'_j - \lambda_{j2}b'_j - \lambda^2_{j2}).$$

Если выполнены условия

(2.24)
$$\lim \frac{c'_j - \lambda_{j1} b'_j - \lambda_{j1}^2}{\lambda_{i1} b_i} = \lim \frac{c'_j - \lambda_{j2} b'_j - \lambda_{j2}^2}{\lambda_{i2} b_i} = 0,$$

то, как легко видеть, угол между векторами φ_{j1} и φ_{j2} стремится к нулю. Отсюда вытекает, что последовательность векторов, полученная объединением в каком-либо порядке последовательностей $\{\varphi_{j1}\}_1^\infty$ и $\{\varphi_{j2}\}_1^\infty$, не является базисом \mathfrak{H} . Но тогда для спектральной зоны Δ_1 пучка $L(\lambda)$ не имеет место утверждение теоремы 4, так как в противном случае в силу условия $L(0) = -C \in \mathfrak{S}_{\infty}$ собственные векторы пучка $L(\lambda)$, отвечающие его положительным собственным числам, образовывали бы безусловный базис \mathfrak{H} (см. следствие 2). Таким образом, построение примера свелось к выбору последовательностей вещественных чисел b_j' , b_j'' и положительных чисел b_j , c_j' , c_j'' , λ_{j1} , λ_{j2} так, чтобы выполнялись условия (2. 21), (2. 23), (2. 24) и чтобы числа λ_{j1} , λ_{j2} были корнями уравнения (2. 22).

Потребуем, чтобы выполнялись равенства

(2.25)
$$\lambda_{j1}^2 + \lambda_{j1}b'_j - c'_j - j^{-1}\lambda_{j1}b_j = 0,$$

(2.26)
$$\lambda_{j2}^2 + \lambda_{j2}b'_j - c'_j + j^{-1}\lambda_{j2}b_j = 0,$$

что будет гарантировать справедливость соотношений (2. 24). Если, кроме того, будут выполняться равенства

(2.27)
$$\lambda_{j1}^2 + \lambda_{j1} + b_j'' - c_j'' \lambda_{j1} b_j = 0,$$

(2.28)
$$\lambda_{j2}^2 + \lambda_{j2}b_j'' - c_j'' + j\lambda_{j2}b_j = 0,$$

то из (2. 25) и (2. 27) будет следовать, что λ_{j1} является корнем уравнения (2. 22), а из (2. 26) и (2. 28) — что λ_{j2} является корнем этого уравнения.

Будем считать b_i , b'_i и c'_i заданными и выразим λ_{j1} из (2. 25), а λ_{j2} из (2. 26):

(2.29)
$$\lambda_{j1} = \frac{1}{2} (\sqrt{(b'_j - j^{-1}b_j)^2 + 4c'_j} - b'_j + j^{-1}b_j),$$

(2.30)
$$\lambda_{j2} = \frac{1}{2} \left(\sqrt{(b_j' + j^{-1}b_j)^2 + 4c_j'} - b_j' - j^{-1}b_j \right)$$

(очевидно, $\lambda_{j1} > 0$, $\lambda_{j2} > 0$). Далее, из (2. 27) и (2. 28) находим b_j'' и c_j'' :

(2.31)
$$b_{j}'' = -(\lambda_{j1} + \lambda_{j2}) + \frac{jb_{j}(\lambda_{j1} + \lambda_{j2})}{\lambda_{j1} - \lambda_{j2}},$$

(2.32)
$$c_j'' = \lambda_{j1} \lambda_{j2} \left(\frac{2jb_j}{\lambda_{j1} - \lambda_{j2}} - 1 \right).$$

Положим

(2.33)
$$b_i = j^{-2}, b'_i = j^{-4}, c'_j = j^{-7}.$$

Тогда из (2. 29), (2. 30) и (2. 33) вытекают равенства

(2.34)
$$\lim_{j \to 3} \lambda_{j1} = 1, \quad \lim_{j \to 3} j^4 \lambda_{j2} = 1.$$

Из (2. 31), (2. 33) и (2. 34) следует, что $b_i'' \rightarrow 0$. В силу (2. 33) и (2. 34)

$$\lim \frac{2jb_j}{\lambda_{j1} - \lambda_{j2}} = +\infty.$$

Выберем j_0 настолько большим, чтобы при $j \ge j_0$ выполнялись неравенства (2. 23) и неравен ство $c_j'' > 0$, и будем далее в качестве основного пространства \mathfrak{H} рассматривать ортогональную сумму подпространств \mathfrak{H}_j при $j \ge j_0$.

Так как

$$c_j'' < \lambda_{j1} \lambda_{j2} \frac{2jb_j}{\lambda_{j1} - \lambda_{j2}},$$

то $\lim c_j'' = 0$. Таким образом, все требуемые условия выполнены, что и завершает построение примера.

4. Здесь мы рассмотрим некоторые обобщения полученных выше результатов на случай, когда старший коэффициент пучка не является равномерно положительным.

Всюду в этом пункте предполагается, что рассматриваемый пучок

(2.36)
$$L(\lambda) = \sum_{j=0}^{n} \lambda^{j} A_{j} \qquad (A_{j}^{*} = A_{j} \in \Re, \ j = 0, 1, ..., n; \ A_{n} \neq 0)$$

удовлетворяет следующим условиям: 1) при $(A_nf,f)\neq 0$ многочлен $(L(\lambda)f,f)$ имеет n различных вещественных корней; 2) при $f\neq 0$ и $(A_nf,f)=0$ выполняется неравенство $(A_{n-1}f,f)\neq 0$ и $(L(\lambda)f,f)$ имеет n-1 различных вещественных корней (в этом случае n-ый корень можно считать бесконечным); 3) из соотношений $\lim_{t\to\infty} (A_kf_j,f_j)=0$ $(k=0,1,\ldots,n)$ вытекает, что $\|f_j\|\to 0$.

Нетрудно убедиться, что условие 3) существенно. Если оно не выполнено, то спектр пучка $L(\lambda)$ может заполнить всю плоскость, как показывает следующий пример. Пусть a_0 , a_1 , a_2 — вещественные числа такие, что $a_1^2 > 4a_0a_2$; $T \in \mathfrak{S}_{\infty}$, T > 0 и $L(\lambda) = (a_0 + a_1\lambda + a_2\lambda^2)T$. Легко видеть, что $(L(\lambda)f, f)$ имеет при любом $f \neq 0$ различные вещественные корни (которые не зависят от f), и в то же время спектр $L(\lambda)$ есть вся плоскость.

Обозначим через $\Delta(L)$ множество вещественных чисел, состоящее из всех корней многочленов $(L(\lambda)f,f)$ при любых $f\neq 0$.

 Π емма 4. Если выполнены условия 1)—3), то $\sigma(L) \subset \overline{\Delta(L)}$. Если, кроме того, $\lambda_0 \notin \overline{\Delta(L)}$ и вещественно, то оператор $L(\lambda_0)$ равномерно дефинитный.

Доказательство. Так как $\sigma(A) \subset \overline{W(A)}$ для любого оператора A, то достаточно показать, что из условия $\lambda_0 \notin \overline{\Delta(L)}$ вытекает: $0 \notin \overline{W(L(\lambda_0))}$. Допустим, что это не так. Тогда найдется последовательность векторов $\{f_j\}_1^\infty$ такая, что $\|f_j\|=1$ и $\lim_{k \to \infty} (L(\lambda_0)f_j,f_j)=0$. Последовательность многочленов $(L(\lambda)f_j,f_j)$ содержит подпоследовательность, сходящуюся к некоторому многочлену $P(\lambda)$. Очевидно, $P(\lambda_0)=0$ и $P(\lambda)\not\equiv 0$ (в силу условия 3)). По теореме Гурвица в любой окрестности точки λ_0 должен содержаться хотя бы один корень всякого многочлена с достаточно большим номером из указанной подпоследовательности, что противоречит условию $\lambda_0 \notin \overline{\Delta(L)}$.

Если же $\bar{\lambda}_0 = \lambda_0$, то $[L(\lambda_0)]^* = L(\lambda_0)$, и так как $0 \notin \overline{W(L(\lambda_0))}$, то оператор $L(\lambda_0)$ является равномерно дефинитным. Лемма доказана.

Покажем теперь, как с помощью леммы 4 можно свести пучок (2. 36) к некоторому гиперболическому пучку. При этом мы будем предполагать, что существует хотя бы одно вещественное число $\lambda_0 \notin \overline{A(L)}$. Тогда в силу леммы 4 оператор $L(\lambda_0)$ является равномерно дефинитным. Полагая $\lambda = \lambda_0 + \mu^{-1}$, получим

(2.37)
$$L(\lambda) = \sum_{k=0}^{n} \frac{L^{(k)}(\lambda_0)}{k!} \mu^{-k} = \frac{M(\mu)}{\mu^n},$$
rge

$$M(\mu) = \sum_{k=0}^{n} \frac{1}{k!} L^{(k)}(\lambda_0) \mu^{n-k}.$$

Очевидно, один из пучков $M(\mu)$ и — $M(\mu)$ является гиперболическим.

Если $\Delta_j'(j=1,2,\ldots,n)$ — спектральные зоны пучка $M(\mu)$, то спектральными зонами*) пучка $L(\lambda)$ назовем множества $\Delta_j = f(\Delta_j')$ $(j=1,2,\ldots,n)$, где $f(\mu) = \lambda_0 + \mu^{-1}$. Очевидно, $\bigcup_{j=1}^n \Delta_j = \Delta(L)$.

^{*)} Можно было бы дать непосредственное определение спектральных зон для пучка (2.36), однако мы предпочитаем приведенное формальное определение, использующее редукцию к гиперболическому пучку.

Из приведенного определения следует, что у пучка (2. 36) могут быть одна или две неограниченные спектральные зоны.

Будем говорить, что две спектральные зоны пучка $L(\lambda)$ отделены, если отделены соответствующие спектральные зоны пучка $M(\mu)$.

Теорема 5. Пусть $L(\lambda)$ удовлетворяет условиям 1)—3) и $\Delta(L)$ не совпадает с вещественной осью. Если Δ — ограниченная (соответственно неограниченная) спектральная зона $L(\lambda)$, отделенная от других зон, то $L(\lambda)$ допускает факторизацию $L(\lambda) = L_+(\lambda)(Z-\lambda I)$ (соответственно $L(\lambda) = L_+(\lambda)(I-(\lambda-\lambda_0)Z))$,** где первый множитель обратим при всех $\lambda \in \overline{\Delta}$, а второй — при всех $\lambda \notin \overline{\Delta}$, причем Z подобен самосопряженному оператору.

Эта теорема непосредственно выводится из теоремы 4 с помощью равенства (2. 37).

§ 3. Некоторые частные случаи

1. Здесь мы будем рассматривать гиперболический пучок (1. 1) с неотрицательными коэффициентами. Заметим, что с помощью сдвига $\lambda = \mu + a \ (a>0)$ к такому виду можно свести любой гиперболический пучок. Начнем с алгебраической леммы, в доказательстве которой используются методы статьи [12].

Лемма 5. Пусть многочлен

$$l(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 \qquad (a_n > 0; \ a_j \ge 0, \ j = 0, 1, \dots, n-1; \ n \ge 2)$$

имеет различные вещественные корни $\{p_j\}_1^n(p_1>p_2>\cdots>p_n)$. Если при некотором κ $(1 \le k \le n-1)$

$$(3.1) a_k^2 \ge 4a_{k-1}a_{k+1},$$

mo

$$(3.2) p_k - p_{k+1} \ge \frac{1}{2l'(|p_{k+1}|)} \left[\left(\frac{a_k}{2a_{k+1}} \right)^{k-2} a_{k-2} + \left(\frac{a_k}{2a_{k+1}} \right)^{k+2} a_{k+2} \right]^*.$$

Доказательство. Так как $p_j < p_1 \le 0$ (j > 1), то $a_j > 0$ (j > 0). Из вещественности всех корней $l(\lambda)$ следуют неравенства (см., например, [13], стр. 22)

(3.3)
$$\frac{a_{j-1}}{a_j} \le \frac{j}{j+1} \frac{a_j}{a_{j+1}} \qquad (j=1,2,...,n-1).$$

^{*)} Здесь λ_0 — какое-нибудь вещественное число, не принадлежащее $\overline{\Delta(L)}$. **) Мы считаем $a_j = 0$ при j < 0 и j > n.

Положим $z_k = -a_k/2a_{k+1}$ и

$$l_1(\lambda) = \sum_{j=2}^k a_{k-j} \lambda^{k-j}, \quad l_2(\lambda) = a_{k-1} \lambda^{k-1} + a_k \lambda^k + a_{k+1} \lambda^{k+1}, \quad l_3(\lambda) = \sum_{j=2}^{n-k} a_{k+j} \lambda^{k+j}.$$

В силу неравенства (3. 1)

$$(3.4) (-1)^k I_2(z_k) = (-1)^{2k-1} \left(\frac{a_k}{2a_{k+1}} \right)^{k-1} \frac{4a_{k-1}a_{k+1} - a_k^2}{4a_{k+1}} \ge 0.$$

Из неравенств (3. 1) и (3. 3) следует, что при $1 \le j \le k-2$

$$\frac{a_{j-1}|z_k|^{j-1}}{a_j|z_k|^j} = \frac{a_{j-1}}{a_j} \frac{2a_{k+1}}{a_k} \le \frac{1}{2} \frac{a_{j-1}a_k}{a_j a_{k-1}} < \frac{1}{2},$$

и поэтому $(-1)^k l_1(z_k)$ представляет собой сумму убывающих по абсолютной величине и знакочередующихся слагаемых. Следовательно,

$$(3.5) (-1)^k l_1(z_k) \ge \frac{1}{2} (-1)^k a_{k-2} z_k^{k-2} = \frac{1}{2} \left(\frac{a_k}{2a_{k+1}} \right)^{k-2} a_{k-2}.$$

Из неравенств (3. 3) вытекает, что при $k+2 \le j < n$

$$\frac{a_{j+1}|z_k|^{j+1}}{a_i|z_k|^j} = \frac{a_{j+1}}{a_i} \frac{a_k}{2a_{k+1}} < \frac{1}{2},$$

и поэтому

$$(3.6) (-1)^k I_3(z_k) \ge \frac{1}{2} (-1)^k a_{k+2} z_k^{k+2} = \frac{1}{2} \left(\frac{a_k}{2a_{k+1}} \right)^{k+2} a_{k+2}.$$

Из неравенств (3. 4)—(3. 6) получаем

$$(3.7) (-1)^k l(z_k) \ge \frac{1}{2} \left[\left(\frac{a_k}{2a_{k+1}} \right)^{k-2} a_{k-2} + \left(\frac{a_k}{2a_{k+1}} \right)^{k+2} a_{k+2} \right].$$

Если мы установим, что $p_{k+1} < z_k \le p_k$, то тогда $p_k - p_{k+1} \ge z_k - p_{k+1}$. По теореме Лагранжа

$$z_k - p_{k+1} = \frac{l(z_k) - l(p_{k+1})}{l'(\xi)} = \frac{l(z_k)}{l'(\xi)} \qquad (p_{k+1} < \xi < z_k),$$

и поэтому

$$(3.8) p_k - p_{k+1} \ge \left| \frac{l(z_k)}{l'(\xi)} \right| \ge \frac{|l(z_k)|}{l'(|p_{k+1}|)}.$$

Неравенство (3. 2) вытекает тогда из (3. 7) и (3. 8). Таким образом, для доказательства леммы осталось установить, что всякий многочлен $l(\lambda)$, удовлетворяющий условиям леммы, имеет на отрезке $[z_k, 0]$ ровно k корней.

Докажем это утверждение индукцией по k. Пусть вначале k=1. Так как $l(0) \ge 0$ и $l(z_1) \le 0$ (см. (3. 7)), то на отрезке $[z_1, 0]$ есть хоть один корень $l(\lambda)$.

С другой стороны, $l'(\lambda) \ge 3a_3\lambda^2 + \dots + na_n\lambda^{n-1}$ при $z_1 \le \lambda \le 0$, и так как в силу (3. 3)

$$\frac{(j+1)a_{j+1}|\lambda|^j}{ja_i|\lambda|^{j-1}} \leq \frac{(j+1)a_{j+1}}{ja_i} \frac{a_1}{2a_2} \leq \frac{a_ja_1}{2a_{j-1}a_2} < \frac{1}{2} \qquad (|\lambda| \leq |z_1|, \quad 3 \leq j < n),$$

то $l'(\lambda) \ge \frac{3}{2} a_3 \lambda^2 \ge 0$ ($z_1 \le \lambda \le 0$). Поэтому $l(\lambda)$ имеет на отрезке [z_1 , 0] ровно один корень.

Предположим теперь, что утверждение верно для k-1 (и для многочленов любой степени $\ge k$) и установим его справедливость для индекса k (≥ 2).

Рассмотрим $l'(\lambda) = a_1 + 2a_2\lambda + \dots + na_n\lambda^{n-1}$. Из (3. 1) вытекает, что

$$(ka_k)^2 > 4(k-1)a_{k-1}(k+1)a_{k+1}$$

и в силу индуктивного предположения многочлен $l'(\lambda)$ имеет на отрезке $[z'_{k-1}, 0]$ (где $z'_{k-1} = -ka_k[2(k+1)a_{k+1}]^{-1}$) ровно k-1 корней. Очевидно, $z_k < z'_{k-1}$. Покажем, что $l'(\lambda) \neq 0$ на интервале (z_k, z'_{k-1}) . Для этого представим $l'(\lambda)$ в виде $l'(\lambda) = l'_1(\lambda) + l'_2(\lambda) + l'_3(\lambda)$ и оценим каждое слагаемое.

Положим

$$r(\lambda) = (k-1) a_{k-1} + k a_k \lambda + (k+1) a_{k+1} \lambda^2.$$

Так как $r(z'_{k-1})<0$ и $r(z_k)\leq 0$, то $r(\lambda)<0$ на интервале (z_k,z'_{k-1}) и, следовательно,

$$(3.9) (-1)^{k-1}l_2'(\lambda) > 0 (z_k < \lambda < z_{k-1}').$$

В силу (3. 1) и (3. 3) при $|\lambda| \ge |z_{k-1}'|$ и $1 \le j \le k-3$ выполняются неравенства

$$\frac{ja_{j}|\lambda|^{j-1}}{(j+1)a_{j+1}|\lambda|^{j}} \leq \frac{ja_{j}}{(j+1)a_{j+1}} \frac{2(k+1)a_{k+1}}{ka_{k}} < \frac{a_{j}a_{k}}{2a_{j+1}a_{k-1}} < \frac{1}{2},$$

и поэтому

$$(3.10) (-1)^{k-1} l_1'(\lambda) \ge \frac{1}{2} (k-2) a_{k-2} |\lambda|^{k-3} (\lambda \le z_{k-1}')$$

Наконец, из (3. 3) вытекает, что при $|\lambda| \le |z_k|$ и $k+2 \le j < n$

$$\frac{(j+1)a_{j+1}|\lambda|^j}{ja_i|\lambda|^{j-1}} \leq \frac{(j+1)a_{j+1}}{ja_i} \frac{a_k}{2a_{k+1}} \leq \frac{a_ja_k}{2a_{j-1}a_{k+1}} < \frac{1}{2}.$$

Следовательно.

$$(3.11) (-1)^{k-1} l_3'(\lambda) \ge \frac{1}{2} (k+2) a_{k+2} |\lambda|^{k+1} (0 \ge \lambda \ge z_k).$$

Из (3. 9)—(3. 11) получаем, что $(-1)^{k-1}l'(\lambda) > 0$ ($z_k < \lambda < z'_{k-1}$). Таким образом, $l'(\lambda)$ имеет ровно k-1 корней в полуинтервале (z_k , 0]. Так как корни $l(\lambda)$ и $l'(\lambda)$ перемежаются, то $l(\lambda)$ имеет на отрезке [z_k , 0] не более k и не менее k-2 корней. Однако, учитывая, что $l(0) \ge 0$, l'(0) > 0 и $(-1)^k l(z_k) \ge 0$, заключаем, что $l(\lambda)$ имеет на отрезке, [z_k , 0] ровно k корней.

Лемма доказана.

Нам понадобится следующая лемма, являющаяся следствием общего предложения Ю. Л. Шмульяна ([14], лемма 1.1), которое относится к операторам в банаховом пространстве.

Лемма 6. Пусть A, B, C — ограниченные неотрицательные операторы, $B\gg 0$ и $C\neq 0$. Если $(Af,f)^2 \geq (Bf,f)(Cf,f)$ для любого $f\in \mathfrak{H}$, то $A\gg 0$.

Отметим, что при условии C>0 приведенный результат был установлен ранее М. Г. Крейном и Г. Лангером [2].

Теорема 6. Пусть $L(\lambda)=\sum\limits_{j=0}^{n}\lambda^{j}A_{j}\ (n>3)$ — гиперболический пучок, $A_{j}\!\geq\!0$ $(j\!=\!0,1,...,n\!-\!1)$ и $A_{0}\!\neq\!0$. Если при некотором $k\ (1\!\leq\!k\!\leq\!n)$ и при любом $f\!\in\!\mathfrak{H}$

(3.12)
$$(A_k f, f)^2 \ge 4(A_{k-1} f, f)(A_{k+1} f, f), \quad (A_{k-1} f, f)^2 \ge 4(A_k f, f)(A_{k-2} f, f), *)$$
 то спектральная зона Δ_k отделена от соседних зон.

Доказательство. Так как $L(\lambda)$ — гиперболический пучок, то имеют место неравенства (3. 3), т. е.

$$(3.13) (A_j f, f)^2 \ge \frac{j+1}{j} (A_{j-1} f, f) (A_{j+1} f, f) \qquad (j = 1, 2, ..., n-1; f \in \mathfrak{H}).$$

Отметим также, что $(A_jf,f)>0$ $(j>0,f\neq0)$, ибо $p_j(f)<0$ при j>1. Поэтому применяя последовательно (начиная с j=n-1) лемму 6, получаем из (3.13), что $A_i\gg0$ (j>0).

Из леммы 5 вытекает, что

$$p_{k}(f) - p_{k+1}(f) \ge \frac{1}{2 \sum_{j=1}^{n} j \|A_{j}\| |a_{k+1}^{j-1}|} \left[\left(\frac{m_{k}}{2 \|A_{k+1}\|} \right)^{k-2} m_{k-2} + \left(\frac{m_{k}}{2 \|A_{k+1}\|} \right)^{k+2} m_{k+2} \right],$$

где $\alpha_{k+1}=\inf\Delta_{k+1}$, $m_j=\inf_{\|f\|=1}(A_jf,f)$. В силу сказанного выше $m_k>0$, и так как n>3, то положительно также хоть одно из чисел m_{k-2} , m_{k+2} . Поэтому существует число $\delta_1>0$ такое, что при любом $f\neq 0$

$$p_k(f) - p_{k+1}(f) > \delta_1.$$

Аналогично устанавливается, что при некотором $\delta_2 > 0$ и любом $f \neq 0$

$$p_{k-1}(f)-p_k(f)>\delta_2.$$

^{*)} Мы полагаем $A_{-1} = A_{n+1} = 0$, так что при k = 1 или k = n остается одно из этих неравенств.

Теперь для окончания доказательства теоремы достаточно сослаться на теорему 2.

Замечание 3. Здесь мы обсудим случаи n=2, 3, которые не охватываются приведенной формулировкой теоремы 6. Отметим прежде всего, что в случае n=3 и k=1 теорема 6 сохраняет силу (без всяких изменений в доказательстве). Из доказательства теоремы 6 видно также, что она остается справедливой в случае n=3 и k=2 при дополнительном ограничении $A_0 \gg 0$. С другой стороны, просматривая доказательство леммы 5, нетрудно убедиться, что для справедливости утверждения теоремы 6 в случае n=3 и k=2 достаточно потребовать, чтобы при любом $f \in \mathfrak{H}$

$$(A_1f,f)^2 \ge 4(A_0f,f)(A_2f,f), \quad (A_2f,f) \ge (4+\varepsilon)(A_1f,f)(A_3f,f),$$

где ε — некоторое положительное число*).

Если же n=2, то зоны Δ_1 и Δ_2 отделены тогда и только тогда, когда существует число $\varepsilon > 0$ такое, что

$$(A_1f,f)^2 \ge (4+\varepsilon)(A_0f,f)(A_2f,f) \qquad (f \in \mathfrak{H}).$$

Это утверждение непосредственно вытекает из равенства

$$p_1(f) - p_2(f) = \frac{\sqrt{(A_1 f, f)^2 - 4(A_0 f, f)(A_2 f, f)}}{(A_2 f, f)},$$

теоремы 2 и равномерной положительности A_1 .

Замечание 4. Если $A_n \gg 0$, $A_j \ge 0$ (j=0,1,...,n-1) и $A_0 \ne 0$, то при n>3 из неравенств

$$(A_k f, f)^2 \ge 4(A_{k-1} f, f)(A_{k+1} f, f)$$
 $(k = 1, 2, ..., n-1; f \in \mathfrak{H})$

вытекает, что $L(\lambda) = \sum_{j=0}^n \lambda^j A_j$ — гиперболический пучок и что все его спектральные зоны отделены друг от друга.

Первое утверждение этого замечания выводится без труда из леммы 6 и теоремы А. Ю. Левина [12], а тогда второе утверждение непосредственно следует из теоремы 6.

2. Рассмотрим квадратичный пучок вида

$$L(\lambda) = A - \lambda I + \lambda^2 B,$$

^{*)} Приведем пример, показывающий, что в указанном случае утверждение теоремы 6 без дополнительных ограничений уже не верно. Пусть $L(\lambda) = 8\lambda^3 I + 16\lambda^2 I + 8\lambda I + A_0$, где- $A_0 > 0$, $A_0 \in \mathfrak{S}_{\infty}$ и $\|A_0\| \le 1$. При k = 2 условия (3.12), очевидно, выполнены, однако, если $\|f_j\| = 1$ и $(A_0 f_j, f_j) \to 0$, то $p_2(f_j) - p_3(f_j) \to 0$, и, следовательно, $\overline{A}_2 \cap \overline{A}_3$ непусто.

тде A и B — ограниченные самосопряженные операторы. Если выполнено условие

(3.14)
$$(Af,f)(Bf,f) < \frac{1}{4}(f,f)^2 \qquad (f \neq 0),$$

то при $(Bf, f) \neq 0$ трехчлен $(L(\lambda)f, f)$ имеет два различных вещественных корня

(3.15)
$$p_{1,2}(f) = \frac{(f,f) \pm \sqrt{(f,f)^2 - 4(Af,f)(Bf,f)}}{2(Bf,f)}.$$

и, как легко видеть, пучок $L(\lambda)$ удовлетворяет условиям 1)—3) п. 4 § 2.

Обозначим через Δ_1 (соответственно Δ_2) множество всех корней $p_1(f)$ (соответственно $p_2(f)$). Для применения теоремы 5 надо показать, что $\overline{\Delta(L)}$ не совпадает с вещественной осью. Покажем, что $\overline{\Delta}_1 \cap \overline{\Delta}_2 = \emptyset$. При этом потребуем, чтобы выполнялся следующий усиленный вариант неравенства (3. 14):

$$(3.16) (Af,f)(Bf,f) \le (\frac{1}{4} - \delta)(f,f)^2 (f \in \mathfrak{H})$$

при некотором $\delta > 0$.

Так как в силу (3. 15)

(3.17)
$$|p_1(f) - p_2(f)| = \frac{\sqrt{(f, f)^2 - 4(Af, f)(Bf, f)}}{|(Bf, f)|},$$

то из (3. 16) вытекает, что

$$|p_1(f)-p_2(f)| \geq \frac{2\sqrt{\delta}}{\|B\|}.$$

Если теперь допустить, что существует вещественное число $\gamma \in \overline{\Delta}_1 \cap \overline{\Delta}_2$, то, повторяя рассуждения из доказательства теоремы 2, придем к противоречию. При этом соотношение $Q(\lambda) \not\equiv 0$ гарантируется тем, что коэффициент при λ в пучке $L(\lambda)$ равен -I. Кроме того, надо воспользоваться следующими соотношениями, вытекающими из (3. 15):

$$(L'(p_1(f))f, f) > 0 \quad ((Bf, f) \neq 0), \ (L'(p_2(f))f, f) < 0 \quad (f \neq 0).$$

Таким образом, при условии (3. 16) $\bar{A}_1 \cap \bar{A}_2 = \emptyset$. Теперь нетрудно убедиться, что Δ_1 и Δ_2 — спектральные зоны пучка $L(\lambda)$ в смысле определения п. 4 § 2. Легко видеть, что зона Δ_2 ограничена, а Δ_1 ограничена тогда и только тогда, когда оператор B равномерно дефинитен. Так как соотношение $\bar{\Delta}_1 \cap \bar{\Delta}_2 = \emptyset$ означает, что зоны Δ_1 и Δ_2 отделены, то, в силу теоремы 5, из приведенных рассуждений вытекает следующая

Теорема 7. Если при некотором $\delta > 0$ выполнено неравенство (3.16), то имеет место равенство

$$A - \lambda I + \lambda^2 B = (I - BZ - \lambda B)(Z - \lambda I),$$

где линейный пучок $I-BZ-\lambda B$ обратим при всех $\lambda\in\overline{\Delta}_2$, спектр оператора Z содержится в $\overline{\Delta}_2$ и Z подобен самосопряженному оператору.

Мы не приводим здесь формулировку теоремы о факторизации относительно зоны Δ_1 , которая также вытекает из теоремы 5.

Замечание 5. Очевидно условие (3.16) будет выполнено, если $A \ge 0$ и $B \le 0$ (или $A \le 0$ и $B \ge 0$). Оно также выполнено, если $||A|| ||B|| < \frac{1}{4}$.

Замечание 6. Если оба оператора A и B вполне непрерывны, то теорема 7 сохраняет силу при замене условия (3. 16) условием (3. 14).

Действительно, достаточно показать, что

$$\inf_{\|f\|=1}|p_1(f)-p_2(f)|>0,$$

а для этого, в силу равенства (3. 17), достаточно установить, что $\inf_{\|f\|=1} F(f) > 0$, где

$$F(f) = 1 - 4(Af, f)(Bf, f).$$

Допустим, что это не так. Тогда существует такая нормированная последовательность $\{f_n\}_1^{\infty}$, что $F(f_n) \rightarrow 0$. Без ограничения общности можно считать, что последовательность $\{f_n\}_1^{\infty}$ слабо сходится к некоторому вектору g, и, следовательно.

$$\lim (Af_n, f_n) = (Ag, g), \quad \lim (Bf_n, f_n) = (Bg, g).$$

Так как $F(f_n) \to 0$, то 4(Ag, g)(Bg, g) = 1, и из условия (3. 14) вытекает, что ||g|| > 1. Последнее неравенство невозможно, так как g является слабым пределом нормированной последовательности $\{f_n\}_0^\infty$.

3. В этом пункте приводятся две теоремы, показывающие, что методы настоящей статьи допускают применение к некоторым классам пучков, квадратичные формы которых могут иметь и невещественные корни.

Теорема 8. Пусть

$$L(\lambda) = \sum_{j=0}^{n} \lambda^{j} A_{j},$$

где A_j (j=0,1,...,n) — ограниченные самосопряженные операторы. Если существуют вещественное число c и положительное число r такие, что для всех точек окружности $\Gamma=\{\lambda\colon |\lambda-c|=r\}$ выполняется условие

(3.18)
$$\operatorname{Re} \frac{L(\lambda)}{\lambda - c} \gg 0,$$

то $L(\lambda)$ допускает факторизацию

(3.19)
$$L(\lambda) = L_{+}(\lambda)(Z - \lambda I),$$

где $L_+(\lambda) = \sum_{j=0}^{n-1} \lambda^j B_j$ обратим при $|\lambda - c| \le r$, спектр Z лежит в круге $|\lambda - c| < r$ и Z подобен самосопряженному оператору.

Доказательство. Из условия (3. 18), в силу теоремы 3, следует что имеет место каноническая факторизация

$$\frac{L(\lambda)}{\lambda - c} = A_{+}(\lambda) A_{-}(\lambda).$$

Как и в доказательстве теоремы 4, убеждаемся, что

$$A_{+}(\lambda) = \sum_{j=0}^{n-1} \lambda^{j} C_{j}, \quad A_{-}(\lambda) = I + \frac{X}{\lambda - c} \qquad (C_{j}, X \in \Re).$$

Полагая $B_j = -C_j$ (j = 0, 1, ..., n-1), Z = cI - X, получим равенство (3. 19). Для окончания доказательства осталось установить подобие оператора Z самосопряженному оператору. Это осуществляется так же, как и в доказательстве теоремы 4, с тем лишь отличием, что оператор G, симметризующий Z, следует определить равенством

$$G=\frac{1}{2\pi i}\int L^{-1}(\lambda)\,d\lambda$$

Теорема 9. Пусть A — ограниченный самосопряженный оператор u > ||A||. Тогда для любого операторного многочлена $B(\lambda)$ с ограниченными самосопряженными коэффициентами, удовлетворяющего условию

(3.20)
$$||B(\lambda)|| < r - ||A||$$
 $(|\lambda| = r),$

пучок $L(\lambda) = A - \lambda I + B(\lambda)$ допускает факторизацию

$$L(\lambda) = L_{+}(\lambda)(Z - \lambda I),$$

где $L_+(\lambda)$ — операторный многочлен, обратимый в круге $|\lambda| \le r$, $\sigma(Z) \subset (-r,r)$ и Z подобен самосопряженному оператору.

В самом деле,

$$\operatorname{Re}\frac{\left(L(\lambda)f,f\right)}{\lambda} \leq -1 + r^{-1}\left(\|A\| + \max_{|\lambda|=r}\|B(\lambda)\|\right) \qquad (\|f\|=1).$$

Следовательно, при условии (3. 20) Re $[L(\lambda)/\lambda] \ll 0$, и утверждение теоремы вытекает из теоремы 8.

Отметим в заключение, что для теорем 5 и 7—9 имеют место естественные аналоги следствий 1 и 2.

Цитированная литература

- [1] М. В. Келдыш, О собственных значениях и собственных функциях некоторых классов несамосопряженных уравнений, *ДАН СССР*, 77 (1951), 11—14.
- [2] М. Г. Крейн и Г. К. Лангер, О некоторых математических принципах линейной теории демпфированных колебаний континуумов, Труды международного симпозиума по применению теории функций комплексного переменного в механике сплошной среды, т. 2 (Москва, 1965), 283—322.
- [3] Г. К. Лангер, Об инвариантных подпространствах линейных операторов, действующих в пространстве с индефинитной метрикой, *ДАН СССР*, **169** (1966), 12—15.
- [4] H. LANGER, Über stark gedämpfte Scharen im Hilbertraum, J. Math. and Mech., 17 (1968), 685—706.
- [5] H. LANGER, Über eine Klasse nichtlinearer Eigenwertprobleme, Acta Sci. Math. (в печати).
- [6] R. J. Duffin, A minimax theory for overdamped networks, J. Rat. Mech. and Anal., 4 (1955), 221—233.
- [7] R. KÜHNE, Minimaxprinzipe für stark gedämpfte Scharen, Acta Sci. Math., 29 (1968), 39—68.
- [8] А. И. Маркушевич, Теория аналитических функций. 1 (Москва, 1967).
- [9] И. Ц. Гохберг и Ю. Лайтерер, О канонической факторизации непрерывных операторфункций относительно окружности, Функц. анализ и его приложения, 6:1 (1972), 73— 74.
- [10] А. С. Маркус, Некоторые признаки полноты системы корневых векторов линейного оператора в банаховом пространстве, *Матем. сб.*, 70 (112) (1966), 526—561.
- [11] Н. Данфорди и Дж. Т. Шварц, Линейные операторы. Общая теория (Москва, 1962).
- [12] А. Ю. Левин, Элементарный признак вещественности корней целой функции с положительными коэффициентами, Проблемы матем. анализа сложных систем, вып. 2 (Воронеж, 1968), 72—77.
- [13] Э. Беккенбах и Р. Беллман, Неравенства (Москва, 1965).
- [14] Ю. Л. Шмульян, Дробно-линейные преобразования верхней операторной полуплоскости, Известия ВУЗов, Математика, № 1 (80) (1969), 97—105.
- [15] В. И. Ломоносов, О равномерной поломжительности симметризатора, *Матем. исслед. Кишинев* (в печати).
- [16] H. LANGER, Über eine Klasse polynomiaber Scharen selbstadjungierter Operatoren im Hilbertraum, J. Funct. Anal., 12:1 (1973), 13—29.

(Поступило 3/VII/1972)