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We deal in the present.paper with inequalities T(a)*ZT(¢)=Z where T(-)
is a semi-group of operators in a sense to be precised below and Z is a fixed positive
operatof. We show that to such inequalities there correspond a uniquely determined
positive definite function. Now the dilation theory enters which makes it possible
to give a more or less precise intrinsic characterization of several properties of
involved operators Z and T'(a). The inequalities in question have been studied
by direct methods in [2] and (8] for T ( ) bemg a semi-group of powers of a ﬁxed‘
operator.

In all what follows we consider the complex Hilbert spaces w1th usual notation
for inner products and norms. If S is such a space then L(S) stands for the algebra
of all linear bounded operators in S and /g denotes the identity operator in S. To
begm with we formulate the followmg lemma:

Lemma. Let H be a Hilbert space. Suppose we are given a set A totally ordered
by the relation ”=". Let Z € L(H) be a positive operator. Assume that the function
T(-, «): AXA—~L(H) satisfies the following conditions:

1) T(a,a= I_H for ac A.

(2 T(a,b)T(b, c)=T(a,c) if c=b=a.

() T(a,b) form a commutative family,

Then, if

@) T(a, b)*ZT(a; b)=Z for b=a

then the function . _ 0 @

_[zT@pb) " if b=a, N
T(a’b)_{T(b,a)*Z lf‘ a§b -
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is positive definite, i.e.,

%‘(T(ahak)f;':f;c = 0

Jor every finite choice a, v €A, f, s Ja€EH.

The proof of the lemma may be performed exactly in the same way as.that of
Th. 2 of [5] by using Halperin’s factoring method. It is also possible to apply
directly Th. 2 [5] when using the semi-inner product {f, g)=(Zf, g) (f, g€ H) (see
comments after Theorem 2 below and [4]).

Suppose G is an additive subgroup of reals and let G, = {a€ G|a=0}. The semi-
group T(+) on G, is a function T(+):G, — L(H) such that T(0)=1, and T(a+b) =
=T@T®h) for a,bcG,.. Applying Lemma to the function T(a, b) = T(a—b)
(a=b=0, a, bc G) we infer that if for Z€ L(H), Z=0 ' :

) : T@*ZT(@)=Z for acG,
then the function
_1ZT1(a) if a€eG,,
T@ = {T( a*Z if (—a)€G,
is positive definite on G. By a suitable dilation theorem ([1], [7]) we get therefore a
generahzatlon of the celebrated theorem of Sz. -Nagy on unitary dilations of con-
tractions:

Theorem 1. Suppose the semi-group T(-) satisfies (5). Then there is a Hilbert
space K and a unitary representanon S(+): G~L(K) and an operator R:H—~K
such that

(6) | ZT(@)=R*S(@R for acG,.

The space K, the operator R and the unitary group are determined uniquely 'up to

equivalence by the minimality condmon K=V S(a)RH.
acG )

_ If the minimality condition holds true then S{(-) is called the minimal Z- dllatlon
of T(-) and (6) the canonical representation for 7°(-).
Assume now that (5) holds true and let S(+) be the minimal Z-dilation of T'(-).
We define -
m - M_= \ S(—a@RH, S,(a) =S(—_a)lM_ @cG,).

a€G

If f, g€ H then for a€G+, (—b)eG, we have
(RT(a)f, S(b)Rg) = €T (a—b)f,8) = (S+ (a)*Rf S(b)Rg).

Since the vectors S(b)Rg (( b)€G,, g€ H) span M _, we conclude that the fo]low-
ing theorem holds true: ’
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Theorem 2. Suppose that the semi-group T(-) satisfies (5). Let S(-) be the
minimal Z-dilation of T(-) and let M _ and S .(-) be defined by (7). Then R_: H—~M _
defined by R _ f= Rf for f¢ H satisfies the following conditions:

®) R_T@) = S,(@*R. for acG,.
©) - " Z-—R*R..

The above theorem includes as particular cases the Prop. 5.1 of [8] p. 210 and
Th. 5 of [2]. Notice that we do not require 7(-) to be contractive. :

The study of minimal Z-dilations may be reduced within certain limits to the
study of ordinary dilations i.e. that ones for which Z= Iy;. This is shown by arguments
- developed below, which, when suitably rearranged may stand for a direct proof of
Theorem 1 without any appeal to Lemma. Suppose just that (5) holds true and let
S(+) be the minimal Z-dilation of T°(-).

Define Q=yZ, H,=R(Z)=R(Q). The relation T(a)Qf— OT(a)f (feH) de-
termines a well defined seml group T(+) of contractions in L(H - It follows — see .
[4] — that T(-) has an ordinary minimal unitary dilation U(a). Consequently
(U(@0F, 0g)=(T(@0f, 05)= (2T (@Y. &)= (S@R., Re) for @€ G, f, g€ H; which
implies that U(-) and S(-) are unitarily equivalent.

Suppose now that the operators Z,, ZZEL(H) are positive and

a0 - T(@*Z,T(a = Z for i=1,2, acG,

and the; difference 4Z = Z,—Z, = O also- satisfies the iﬁequality

an | "T(@*AZT(a) = AZ for a€G,.

Let Z,T(a)=R} Si(é)Ri (i=1, 2) be the canonical expression and K, the minimal

dilation space corresponding to Z;. Following the arguments developed in [1],
Lemma 4.1 we conclude first from (11) that

2 n - 2
_121'31 (@R fy|| = H%' Sy(@) R, f;
i1 i
for ‘aiEG, fi€ H. Tt follows that there is uniql_le contraction I K, -~ K, such that
TS,(a@)R, f= S, (@R, f for ac G and f¢ H. Since the things are going about minimatl
dilations, the last equality yields that 7S, (a)= S;(@)T for all a¢G. We have just
proved the following theorem:.

Theorem 3. Suppose that Z, and Z, satisfy (10) and (11) "Then there exists
a umque contraction T:K, ~K, such that TRZ—R1 and TS,(@)=S,(a)T for all
aca.
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Next we describe briefly some pfqperties of polynomially bounded operators.
We say that the operator B¢ L(H) is polynomially bounded if

n n
2 a, B* a,z*
0

ko

= M sup

lzl=1

K|
for every polynomial 3 a,z* and with some finite M. If B is polynomially bounded
: kjo

then there are (so called elementary) measures p(f, g) (f, g€ H) on the unit circle C
such that | p(f, &)I=M| fIllgll and

(12) B fe)= [2dp(f,g) (W=0,1,2..)
: [of

for all f, g€ H. This is an easy consequence of results of [6] that then H = H,+ H_,
B = B,+ B, (both sums direct), B,€ L(H,), B;€ L(H) and B,, B, are polynomially
" bounded and such that

Bif9) = [7dr(fg)  (fgeHs n=0,1,..),
(Bif,8) = [d’(fg)  (fgeH,; n=01,..),

where the elementary measures p® and p* satisfy the conditions:

a3y . ' P(f,g)<m for fgcH,,
(14 - P(figdLm for fgcH,.
sy p(£.8) = p(fa 8 +P(f5,85)s

m stands here for the normalized Lebesgue measure on C and f,, g, and f;, g, stand
for projections of f, g on H, and H; respectively. One can show that B; is similar
to a unitary operator with singular spectrum. If B is a contraction then the above
decompositions are orthogonal and B is unitary and singular. If B=B, (B=B,)
then we say that B is m-continuous (m-singular respectively). The decomposition
B = B,+ B, is called the Lebesgue decomposition of B.

Suppose that Z=0 and T¢€ L(H) satisfy the inequality
(16) . . Tzl =Z 4
Then for H,=R(Z), Q= VZ the formula TOf=QTf (f¢ H) defines a contraction
TeL(H,). Let H, = H'@H, T= T,®&T, be the corresponding Lebesgué de-
composition of T. T. is unitary and singular. We now define Z,, Z,€.L(H) by the
formula )

Z.f=0P.,0f, Zf=0P.Of (fcH),

where P, and P, are projections within H, on H{ and H$ respectively and 0 equals
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" the restriction of Q to' H,. Since P,+P;= Iy then

((Z +Z)f.f) = (QPA+PIQSS) = (Zf,1)

for f€H i.e. 7 Z, +Z On the other hand P,QTf=T,P, Qf for f¢ H and ||Tl|<1
which implies that | P,QTf||>=|P,Qf||*i.e. T*Z,T=Z,. By similar token, sirice T is
" unitary we get that T*ZT=Z,. Let ZI"=R*V"R, Z,T"=R;V{,R,, ZT"=
=R}V, R, (n=0) be the canonical expressions for positive definite functions related
to Z, Z,, Z, according to Theorem 1, ¥, V,, and ¥V, being the corresponding uni-
tary operators. Let F be the semi-spectral measure of Tand F = F°+ F* its Lebesgue
decomposition relative to m. Then for f€ H, n=0,

(Z.T 1, 1)=(QP.OT"f, )=(Tr 0f, 0f)= ["d(F* Qf, 0f)= [2"d(Ey R0 f; R, /)

and

(Z.T"f, )= [2"d(F* Qf, 0f)= ["d(E R, £, R.f)

where E,, and E,, stand for spectral measure of Vi, and ¥V respectively. Since
the disc algebra is a Dirichlet one on C we infer that

(F*Qf, 0f) = (B Rof, Raf) < m,. (F*Qf, 0f) = (EqRof Rof) Lm.

Consequently V(s has a Lebesgue spectrum and ¥V, is singular. On the other hand
V=Vl (Lebesgue decomposition relative to m) and

[ d(E.Rf,Rf)+ [ 2"d(E,Rf, Rf) = (ZT"f,[) = (ZAZIT 1) =
= [7d(Eq Rf-Ruf) + [ 77d(E RS RoS)

where E is the spectral measure of V, and E E, @E its Lebesgue decomposmon
. We conclude that for f; g€EH .

 (E.RGR®) = (EwRuf Ref) (E.RS; RE) = (ERuSR.S)
which implies that for n=0.
RiViyR, = R*V]R = (P*R)*V;(P*R)
R:V{,R, = R*V/R = (P°R)* V”(P’R)
where P°=E,(C), P*=E (C).
Summing up we get the following theorem:

Theorem 4. Suppose T and Z satisfy (16). Then Z has a unique decomposition
£=2Z,+72,2,=0,Z,=0where T*Z,T=Z, T*Z,T=2Z,. The mi:ivzl Z, (resp. Z,)
dilation of T is the m-continuous (resp. m-singular) part of the Z-dilation of T. Con-
sequently, the minimal Z- dtlatzon of Tis an. orthogonal sum of Z, and Z dilations
of T.
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Assume now that T which satisfies (16) is polynomially bounded. Let p(f, g) =
=p*(f, &)+ p°(f, g) be the Lebesgue decomposition (relative to m) of the element-
ary measure p(f, g) of T. Using the previous notation for V, E,, E, we.get for n=0,

figeH :
(ZT"f,g) = j d(E, R Rg)+ [2"d (E,Rf,Rg) =

= [2dpt(f; Zg)+ [ dp* s Zg).

It follows now from the M. and F. Riesz theorem [3], Chapt. 4 that
[7'd(E,Rf, Re) = ["dp*(f, Zg), (E,Rf,Rg)=p*(f,Zg).

We conclude that for polynomially bounded T the following corollaries hold true:

Corollary 1. If T is m-continuous then Z=Z, for every Z satisfying (16), i.e.,
every Z-dilation of T is m-continuous.

Corollary 2. If Z=Z, for T satisfying (16) then the range R (Z) is mclua’ed in
the m-continuous part H, of H of the Lebesgue decomposition related to T.

Cor. 2 generalizes Cor. 5.5 of [2]. Indeed, if T*"ZT" O strongly then V is
‘a bilateral shift with a complete wandering subspace equal to (RT—VR)H. Con-
sequently V= V¥,. Notice that we infer Cor. 2 without using lifting of commutants.
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