Operator inequalities and related dilations

By W. MLAK in Krakow (Poland)
Dedicated to Professor Béla Szökefalvi-Nagy on his 60th birthday

We deal in the present paper with inequalities $T(a)^{*} Z T(a) \leqq Z$ where $T(\cdot)$ is a semi-group of operators in a sense to be precised below and Z is a fixed positive operator. We show that to such inequalities there correspond a uniquely determined positive definite function. Now the dilation theory enters which makes it possible to give a more or less precise intrinsic characterization of several properties of involved operators Z and $T(a)$. The inequalities in question have been studied by direct methods in [2] and [8] for $T(\cdot)$ being a semi-group of powers of a fixed operator.

In all what follows we consider the complex Hilbert spaces with usual notation for inner products and norms. If S is such a space then $L(S)$ stands for the algebra of all linear bounded operators in S and I_{S} denotes the identity operator in S. To begin with we formulate the following lemma:

Lemma. Let H be a Hilbert space. Suppose we are given a set A totally ordered by the relation "§". Let $Z \in L(H)$ be a positive operator. Assume that the function $T(\cdot, \cdot): A \times A \rightarrow L(H)$ satisfies the following conditions:
(1) $T(a, a)=I_{H}$ for $a \in A$.
(2) $T(a, b) T(b, c)=T(a, c)$ if $c \leqq b \leqq a$.
(3) $T(a, b)$ form a commutative family.

Then, if
(4) $T(a, b)^{*} Z T(a, b) \leqq Z$ for $b \leqq a$
then the function

$$
T(a, b)=\left\{\begin{array}{lll}
Z T(a, b) & \text { if } & b \leqq a, \\
T(b, a)^{*} Z & \text { if } & a \leqq b
\end{array}\right.
$$

is positive definite, i.e.,

$$
\sum_{i, k}\left(T\left(a_{i}, a_{k}\right) f_{i}, f_{k}\right) \geqq 0
$$

for every finite choice $a, \ldots, a_{n} \in A, f, \ldots, f_{n} \in H$.
The proof of the lemma may be performed exactly in the same way as that of Th. 2 of [5] by using Halperin's factoring method. It is also possible to apply directly Th. 2 [5] when using the semi-inner product $\langle f, g\rangle=(Z f, g)(f, g \in H)$ (see comments after Theorem 2 below and [4]).

Suppose G is an additive subgroup of reals and let $G_{+}=\{a \in G \mid a \geqq 0\}$. The semigroup $T(\cdot)$ on G_{+}is a function $T(\cdot): G_{+} \rightarrow L(H)$ such that $T(0)=I_{H}$ and $T(a+b)=$ $=T(a) T(b)$ for $a, b \in G_{+}$. Applying Lemma to the function $T(a, b)=T(a-b)$ ($a \geqq b \geqq 0, a, b \in G$) we infer that if for $Z \in L(H), Z \geqq O$

$$
\begin{equation*}
T(a)^{*} Z T(a) \leqq Z \quad \text { for } \quad a \in G_{+} \tag{5}
\end{equation*}
$$

then the function

$$
T(a)=\left\{\begin{array}{lll}
Z T(a) & \text { if } & a \in G_{+} \\
T(-a)^{*} Z & \text { if } & (-a) \in G_{+}
\end{array}\right.
$$

is positive definite on G. By a suitable dilation theorem ([1], [7]) we get therefore a generalization of the celebrated theorem of Sz.-Nagy on unitary dilations of contractions:

Theorem 1. Suppose the semi-group $T(\cdot)$ satisfies (5). Then there is a Hilbert space K and a unitary representation $S(\cdot): G \rightarrow L(K)$ and an operator $R: H \rightarrow K$ such that

$$
\begin{equation*}
Z T(a)=R^{*} S(a) R \quad \text { for } \quad a \in G_{+} \tag{6}
\end{equation*}
$$

The space K, the operator R and the unitary group are deternined uniquely up to equivalence by the minimality condition $K=\bigvee_{a \in G} S(a) R H$.

If the minimality condition holds true then $S(\cdot)$ is called the minimal Z-dilation of $T(\cdot)$ and (6) the canonical representation for $T(\cdot)$.

Assume now that (5) holds true and let $S(\cdot)$ be the minimal Z-dilation of $T(\cdot)$. We define

$$
\begin{equation*}
M_{-}=\bigvee_{a \in G_{+}} S(-a) R H, \quad S_{+}(a)=S(-a) \mid M_{-} \quad\left(a \in G_{+}\right) \tag{7}
\end{equation*}
$$

If $f, g \in H$ then for $a \in G_{+},(-b) \in G_{+}$we have

$$
(R T(a) f, S(b) R g)=(\mathbb{Z} T(a-b) f, g)=\left(S_{+}(a)^{*} R f, S(b) R g\right)
$$

Since the vectors $S(b) R g\left((-b) \in G_{+}, g \in H\right)$ span M_{-}, we conclude that the following theorem holds true:

Theorem 2. Suppose that the semi-group $T(\cdot)$ satisfies (5). Let $S(\cdot)$ be the minimal Z-dilation of $T(\cdot)$ and let M_{-}and $S_{+}(\cdot)$ be defined by (7). Then $R_{-}: H \rightarrow M_{-}$ defined by $R_{-} f=R f$ for $f \in H$ satisfies the following conditions:

$$
\begin{gather*}
R_{-} T(a)=S_{+}(a)^{*} R_{-} \quad \text { for } \quad a \in G_{+} \tag{8}\\
Z=R_{-}^{*} R_{-}
\end{gather*}
$$

The above theorem includes as particular cases the Prop. 5. 1 of [8] p. 210 and Th. 5 of [2]. Notice that we do not require $T(\cdot)$ to be contractive.

The study of minimal Z-dilations may be reduced within certain limits to the study of ordinary dilations i.e. that ones for which $Z=I_{H}$. This is shown by arguments developed below, which, when suitably rearranged may stand for a direct proof of Theorem 1 without any appeal to Lemma. Suppose just that (5) holds true and let $S(\cdot)$ be the minimal Z-dilation of $T(\cdot)$.

Define $Q=\sqrt{Z}, H_{1}=\overline{R(Z)}=\overline{R(Q)}$. The relation $\tilde{T}(a) Q f=Q T(a) f(f \in H)$ determines a well defined semi-group $\tilde{T}(\cdot)$ of contractions in $L\left(H_{1}\right)$. It follows - see [4] - that $\tilde{T}(\cdot)$ has an ordinary minimal unitary dilation $U(a)$. Consequently $(U(a) Q f, Q g)=(\widetilde{T}(a) Q f, Q g)=(Z T(a) f, g)=(S(a) R f, R g)$ for $a \in G_{+}, f, g \in H$; which implies that $U(\cdot)$ and $S(\cdot)$ are unitarily equivalent.

Suppose now that the operators $Z_{1}, Z_{2} \in L(H)$ are positive and

$$
\begin{equation*}
T(a)^{*} Z_{i} T(a) \leqq Z_{i} \quad \text { for } \quad i=1,2, \quad a \in G_{+} \tag{10}
\end{equation*}
$$

and the difference $\Delta Z=Z_{2}-Z_{1} \geqq O$ also satisfies the inequality

$$
\begin{equation*}
T(a)^{*} \Delta Z T(a) \leqq \Delta Z \quad \text { for } \quad a \in G_{+} . \tag{11}
\end{equation*}
$$

Let $Z_{i} T(a)=R_{i}^{*} S_{i}(a) R_{i}(i=1,2)$ be the canonical expression and K_{i} the minimal dilation space corresponding to Z_{i}. Following the arguments developed in [1], Lemma 4.1 we conclude first from (11) that

$$
\left\|\sum_{i \mid 1}^{n} S_{1}\left(a_{i}\right) R_{1} f_{i}\right\|^{2} \leqq\left\|\sum_{i \mid 1}^{n} S_{2}\left(a_{i}\right) R_{2} f_{i}\right\|^{2}
$$

for $a_{i} \in G, f_{i} \in H$. It follows that there is unique contraction $T: K_{2} \rightarrow K_{1}$ such that $T S_{2}(a) R_{2} f=S_{1}(a) R_{1} f$ for $a \in G$ and $f \in H$. Since the things are going about minimal dilations, the last equality yields that $T S_{2}(a)=S_{1}(a) T$ for all $a \in G$. We have just proved the following theorem:

Theorem 3. Suppose that Z_{1} and Z_{2} satisfy (10) and (11). Then there exists a unique contraction $T: K_{2} \rightarrow K_{1}$ such that $T R_{2}=R_{1}$ and $T S_{2}(a)=S_{1}(a) T$ for all $a \in G$.

Next we describe briefly some properties of polynomially bounded operators. We say that the operator $B \in L(H)$ is polynomially bounded if

$$
\left\|\sum_{k \mid 0}^{n} a_{k} B^{k}\right\| \leqq M \sup _{|z|=1}\left|\sum_{k \mid 0}^{n} a_{k} z^{k}\right|
$$

for every polynomial $\sum_{k \mid 0}^{n} a_{k} z^{k}$ and with some finite M. If B is polynomially bounded then there are (so called elementary) measures $p(f, g)(f, g \in H)$ on the unit circle C such that $\|p(f, g)\| \leqq M\|f\|\|g\|$ and

$$
\begin{equation*}
\left(B^{n} f, g\right)=\int_{C} z^{n} d p(f, g) \quad(n=0,1,2 \ldots) \tag{12}
\end{equation*}
$$

for all $f, g \in H$. This is an easy consequence of results of [6] that then $H=H_{a}+H_{s}$, $B=B_{a}+B_{s}$ (both sums direct), $B_{a} \in L\left(H_{a}\right), B_{s} \in L\left(H_{s}\right)$ and B_{a}, B_{s} are polynomially bounded and such that

$$
\left.\begin{array}{ll}
\left(B_{a}^{n} f, g\right)=\int z^{n} d p^{a}(f, g) & \left(f, g \in H_{a} ;\right. \\
\left(B_{s}^{n} f, g\right)=\int z^{n} d p^{s}(f, g) & \left(f, g \in H_{s} ;\right.
\end{array} \quad n=0,1, \ldots\right),
$$

where the elementary measures p^{a} and p^{s} satisfy the conditions:

$$
\begin{align*}
& p^{a}(f, g) \ll m \text { for } f, g \in H_{a} \tag{13}\\
& p^{s}(f, g) \perp m \text { for } f, g \in H_{s} \tag{14}\\
& p(f, g)=p\left(f_{a}, g_{a}\right)+p\left(f_{s}, g_{s}\right) \tag{15}
\end{align*}
$$

m stands here for the normalized Lebesgue measure on C and f_{a}, g_{a} and f_{s}, g_{s} stand for projections of f, g on H_{a} and H_{s} respectively: One can show that B_{s} is similar to a unitary operator with singular spectrum. If B is a contraction then the above decompositions are orthogonal and B_{s} is unitary and singular. If $B=B_{a}\left(B=B_{s}\right)$ then we say that B is m-continuous (m-singular respectively). The decomposition $B=B_{a}+B_{s}$ is called the Lebesgue decomposition of B.

Suppose that $Z \geqq O$ and $T \in L(H)$ satisfy the inequality

$$
\begin{equation*}
T^{*} Z T \leqq Z \tag{16}
\end{equation*}
$$

Then for $H_{1}=\overline{R(Z)}, Q=\sqrt{Z}$ the formula $\tilde{T} Q f=Q T f(f \in H)$ defines a contraction $\dot{T} \in L\left(H_{1}\right)$. Let $H_{1}=H_{1}^{a} \oplus H_{1}^{s}, \tilde{T}=\tilde{T}_{a} \oplus \tilde{T}_{s}$ be the corresponding Lebesgue decomposition of $\tilde{T} . \tilde{T}_{s}$ is unitary and singular. We now define $Z_{a}, Z_{s} \in L(H)$ by the formula

$$
Z_{a}^{\prime} f=\hat{Q} P_{a} Q f, \quad Z_{s} f=\hat{Q} P_{s} Q f \quad(f \in H)
$$

where P_{a} and P_{s} are projections within H_{1} on H_{1}^{a} and H_{1}^{s} respectively and \tilde{Q} equals
the restriction of Q to H_{1}. Since $P_{a}+P_{s}=I_{H_{1}}$ then

$$
\left(\left(Z_{a}+Z_{s}\right) f, f\right)=\left(Q\left(P_{a}+P_{s}\right) Q f, f\right)=(Z f, f)
$$

for $f \in H$ i.e. $Z=Z_{a}+Z_{s}$. On the other hand $P_{a} Q T f=\tilde{T}_{a} P_{a} Q f$ for $f \in H$ and $\left\|\tilde{T}_{a}\right\| \leqq 1$ which implies that $\left\|P_{a} Q T f\right\|^{2} \leqq\left\|P_{a} Q f\right\|^{2}$ i.e. $T^{*} Z_{a} T \leqq Z_{a}$. By similar token, since T_{s} is unitary we get that $T^{*} Z_{s} T=Z_{s}$. Let $Z T^{n}=R^{*} V^{n} R, Z_{a} T^{n}=R_{a}^{*} V_{(a)}^{n} R_{a}, Z_{s} T^{n}=$ $=R_{s}^{*} V_{(s)}^{n} R_{s}$ ($n \geqq 0$) be the canonical expressions for positive definite functions related to Z, Z_{a}, Z_{s} according to Theorem $1, V, V_{(a)}$ and $V_{(s)}$ being the corresponding unitary operators. Let F be the semi-spectral measure of \tilde{T} and $F=F^{a}+F^{s}$ its Lebesgue decomposition relative to m. Then for $f \in H, n \geqq 0$,

$$
\left(Z_{a} T^{n}, f, f\right)=\left(Q P_{a} Q T^{n} f, f\right)=\left(\tilde{T}_{a}^{n} Q f, Q f\right)=\int z^{n} d\left(F^{a} Q f, Q f\right)=\int z^{n} d\left(E_{(a)} R_{a} f, R_{a} f\right)
$$

and

$$
\left(Z_{s} T^{n} f, f\right)=\int z^{n} d\left(F^{s} Q f, Q f\right)=\int z^{n} d\left(E_{(s)} R_{s} f, R_{s} f\right)
$$

where $E_{(a)}$ and $E_{(s)}$ stand for spectral measure of $V_{(a)}$ and $V_{(s)}$ respectively. Since the disc algebra is a Dirichlet one on C we infer that

$$
\left(F^{a} Q f, Q f\right)=\left(E_{(a)} R_{a} f, R_{a} f\right) \ll m, \quad\left(F^{s} Q f, Q f\right)=\left(E_{(s)} R_{s} f, R_{s} f\right) \perp m
$$

Consequently $V_{(a)}$ has a Lebesgue spectrum and $V_{(s)}$ is singular. On the other hand $V=V_{a} \oplus V_{s}$ (Lebesgue decomposition relative to m) and

$$
\begin{gathered}
\int z^{n} d\left(E_{a} R f, R f\right)+\int z^{n} d\left(E_{s} R f, R f\right)=\left(Z T^{n} f, f\right)=\left(\left(Z_{a}+Z_{s}\right) T^{n} f, f\right)= \\
=\int z^{n} d\left(E_{(a)} R_{a} f, R_{a} f\right)+\int z^{n} d\left(E_{(s)} R_{s} f, R_{s} f\right)
\end{gathered}
$$

where E is the spectral measure of V, and $E=E_{a} \oplus E_{s}$ its Lebesgue decomposition. We conclude that for $f, g \in H$

$$
\left(E_{a} R f, R g\right)=\left(E_{(a)} R_{a} f, R_{a} f\right), \quad\left(E_{s} R f, R g\right)=\left(E_{(s)} R_{s} f, R_{s} f\right)
$$

which implies that for $n \geqq 0$

$$
\begin{gathered}
R_{a}^{*} V_{(a)}^{n} R_{a}=R^{*} V_{a}^{n} R=\left(P^{a} R\right)^{*} V_{a}^{n}\left(P^{a} R\right) \\
R_{s}^{*} V_{(s)}^{n} R_{s}=R^{*} V_{s}^{n} R=\left(P^{s} R\right)^{*} V_{s}^{n}\left(P^{s} R\right)
\end{gathered}
$$

where $P^{a}=E_{a}(C), P^{s}=E_{s}(C)$.
Summing up we get the following theorem:
Theorem 4. Suppose T and Z satisfy (16). Then Z has a unique decomposition $\ell=Z_{a}+Z_{s}, Z_{a} \geqq 0, Z_{s} \geqq 0$ where $T^{*} Z_{a} T \cong Z_{a} T^{*} Z_{s} T=Z_{s}$. The mi dilation of T is the m-continuous (resp. m-singular) part of the Z-dilation of T. Consequently, the minimal Z-dilation of T is an orthogonal sum of Z_{a} and Z_{s} dilations of T.

Assume now that T which satisfies (16) is polynomially bounded. Let $p(f, g)=$ $=p^{a}(f, g)+p^{s}(f, g)$ be the Lebesgue decomposition (relative to m) of the elementary measure $p(f, g)$ of T. Using the previous notation for V, E_{a}, E_{s} we get for $n \geqq 0$, $f, g \in H$

$$
\begin{aligned}
\left(Z T^{n} f, g\right)=\int z^{n} d\left(E_{a} R f, R g\right)+ & \int z^{n} d\left(E_{s} R f, R g\right)= \\
& =\int z^{n} d p^{a}(f, Z g)+\int z^{n} d p^{s}(f, Z g)
\end{aligned}
$$

It follows now from the M. and F. Riesz theorem [3], Chapt. 4 that

$$
\int z^{n} d\left(E_{a} R f, R g\right)=\int z^{n} d p^{a}(f, Z g), \quad\left(E_{s} R f, R g\right) \equiv p^{s}(f, Z g)
$$

We conclude that for polynomially bounded T the following corollaries hold true:
Corollary 1. If T is m-continuous then $Z=Z_{a}$ for every Z satisfying (16), i.e., every Z-dilation of T is m-continuous.

Corollary 2. If $Z=Z_{a}$ for T satisfying (16) then the range $R(Z)$ is included in the m-continuous part H_{a} of H of the Lebesgue decomposition related to T.

Cor. 2 generalizes Cor. 5.5 of [2]. Indeed, if $T^{* n} Z T^{n} \rightarrow O$ strongly then V is a bilateral shift with a complete wandering subspace equal to $\overline{(R T-V R) H}$. Consequently $V=V_{a}$. Notice that we infer Cor. 2 without using lifting of commutants.

References

[1] W. B. Arveson, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224.
[2] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
[3] K. Hoffman, Banach spaces of analytic functions (Englewood Cliffs, N. Y., 1962).
[4] W. Mlak, Unitary dilations in case of ordered groups, Ann. Pol. Math., 17 (1965), 321-328.
[5] \qquad Positive definite contraction valued functions, Bull. Acad. Polon. Sci. (sér. sci. math., astr. et phys.), 15 (1967), 509-512.
[6] \qquad Decompositions and extensions of operator valued representations of function algebras, Acta Sci. Math., 30 (1969), 181-193.
[7] B. Sz.-Nagy, Extensions of linear transformations in Hilbert spaces which extend beyond this space, Appendix to F. Riesz and B. Sz.-Nagy: Functional analysis (New York. 1960).
[8] B. Sz.-Nagy and C. Foras, Harmonic analysis of operators on Hilbert space (Budapest-Amsterdam-London, 1970).

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
SECTION KRAKÓW
(Received March 10, 1972)

