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1. Let X be a measurable space with a positive measure ¡i and let F= (y¿(x )} 
(k=0, 1, ...) be a sequence of L^-integrable functions on the set E(czX) of positive 
measure. We shall consider the series 

(1) Z c J ^ x ) 
* = 0 

with real coefficients satisfying 

(2) 2 ' 4 < -
«c=0 

Let T= (a„k) (n,k=0, 1, ...) be a doubly infinite matrix of real numbers determin-
ing a general summation process with the aid of the linear means 

' » W = 2 «nkCkfkix). 
k = 0 

We say that the series (1) is T-summable at the point x(£X) if the series defining 
t„ (x) converges in the ordinary sense for all n (except perhaps finitely many of them) 
and the limit lim tn(x) exists at the point x in question. 

tl-+ oo 
Form the Lebesgue functions belonging to the sequence F of functions and to 

the summation process IT as follows: 

Ln (T, F;x) = f |K„ (T, F;x,t)\dn (t), 
£ • 

where 

K„(T,F;x,t)= 2 * n k f k ( x ) f k ( t ) . 
k = 0 

*) This paper was written while the authoi stayed at the Steklov Mathematical Institute in 
Moscow. 
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To avoid the unnecessary complications concerning the existence (in a certain 
sense) of t„(x) and L„(T, F; x), we shall consider the following two particular cases 
of summation processes T: 

(i) If the functions fk(x) are assumed to be only -integrable on E, we shall 
confine ourselves to matrices T that have only finitely many nonzero elements in 
each row, i.e., which are such that ocnk=0 for k>kn (w=0, 1, ...). 

(ii) If F is an orthonormal system defined on a set E of finite measure, then we 
shall only consider matrices T satisfying the condition 

(« = 0 , 1 , . . . ) . 
ft = o 

In this case, f rom (2) and this condition it immediately follows that Z ank c l ^ °°> 
k = o 

and so we have by the Riesz—Fischer theorem that t„(x) is L2 -integrable on E for 
every n. Furthermore, by virtue of 

2 «„\ / A2 (x) dp(x) = Z < - (« = 0 , 1 , . . . . ) , . 
k = o ¿ 1 = 0 

and by B. Levi's theorem we can conclude, that Z f ° r almost every x 
k= 0 

in E, and consequently Kn(T, F; x, t) is L2 -integrable on E as a function of t fo r 
almost every x in E and for every n. This implies, in particular, the existence of 
Ln(T, F; A") for almost every x in E and for every n. 

2. The order of magnitude of the Lebesgue functions may, in many cases, be a 
decisive factor in convergence problems. 

In particular, taking 

k 
a"* = 1 _ / T + 7 (k = 0 , \ , •••,»), ank = 0 

(k = n + l,n + 2,...) (n = 0,1, ...), 

we obtain the classical (C, l)-summation process. Now we have 

¿„((C, l), F\ x) = /1 J o ( i - ¿ x ) a w a ( o dfi(t). 

In this case.-G. ALEXITS and A. SHARMA [1] have proved the following theorems: 
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A. Let F be a sequence of L^-integrable functions on a measurable set E of finite 
measure and let {¡j.„} be a non-decreasing sequence of positive numbers. If 2ck^°° 
and the condition Ln ((C. 1), F; x) = 0 (pn) is uniformly satisfied on E, then the sums 

".W = 2 1 -7ZT °kfk(x) *=o n + l j 

have the order of magnitude Ox(^]Tn) on E almost everywhere. 
B. Let F be a sequence of L^-integrable functions on a measurable set E of finite 

measure satisfying the condition 

f 2 ckdkfk(x) dli(x)=-0( 1) (« = 0,1, . . .) 

whenever 2c\dk<°°, and let {/;„} be a non-decreasing sequence of positive numbers 
lhat is concave from below. Suppose that L„((C, 1), F; x)= O (/.(„) for every x~E and 

(3) 
k — 0 

Then the series (1) is (C, 1 )-summable on E almost everywhere. 

They also remark that these results remain valid for any (C, oc)-summation (« > 0) 
if we replace £„((C, 1), F; x) by the corresponding Lebesgue functions Ln((C, a), F; x). 

We note that the above theorem for orthonormal systems is a well-known 
t h e o r e m o f S. KACZMARZ [2]. G . SUNOUCHI [3] a n d L . LEINDLER [4] h a v e e x t e n d e d 

Kaczmarz's theorem to the Riesz summation of orthogonal series. In this case 

<*nk = 1-
n + 1 

(*: = 0,1, . . . ,«), 

and 
cc„fc = 0 (k = n+l,n + 2, ...) (« = 0 ,1 , . . . ) , 

Ln(R, F; x) = J 2 [ l ~ ~ ^ f k ( x ) f k ( 0 

where {/.„} is a strictly increasing sequence of numbers with / . o = 0 and — °° as 

To our knowledge, no analogous theorem for other summation processes has 
yet been proved. The following problem can be quite naturally raised: If for a sum-
mation process T and for an orthonormal system F defined on E the condition 

L 9 ( T , F - , X ) = 0 ( p n ) 

is. uniformly satisfied on E, is then the series (1), under condition (3), summable 
with respect to the concerning process almost everywhere in El 
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A . V . EFIMOV [5] i n t h e c a s e o f [i„ — ° ° (n — =»), a n d K . TANDORI a n d t h e p r e s e n t 

author in a joint paper [6] in general, have essentially showed that the answer to this 
question is in the negative. 

The aim of the present paper is to give a positive answer to the above question 
for a relatively large class of summation processes. 

3. In the sequel we shall consider summation processes T with the following 
property: the estimate 

(4) 2 <xnk<*mkfk(x)fk(y) k= 0 

min (m, n) 
2 Pi\KiiT, F;x,y)\ 

¡=0 

holds for every m and n, where the positive numbers fi^T, F; min (m, n)) satisfy 
the inequalities 

min (m, n) 
2 Pi =0(1) (m,n = 0,l,...). 

/=0 

We note that if F is an orthonormal system defined on E, then the estimate (4) 
can be written in a more natural form as follows: 

f Kn(T, F,x, t)Km(T, F;y,t)dn(t) 2<*nk*mkfk{x)fk{y) 
k=0 

min (m, n) 

1 = 0 

where the j9,'s have the properties mentioned above. • 
We show that if T is the Riesz summation process defined by the sequence 

{X„}, then condition (4) is satisfied. (See also [4]). Supposing n<m, we obtain with 
the aid of the Abel transform that 

1 " 
2 ( ^ l - y P - t r ^ / t W / t W = ^n+l^m+l k= 0 

: V ' / " " + 1 2 h)fk (x)fk ( y ) + — 1 ( 1 , + 1 - h)2fk 0 0 A 0 ' ) An+lÁm+l k=0 An + 1 Am + 1 k = 0 

Kn(R,F;x,y) + 1 + 1 

•̂m+1 

+-3—V 2 1 - - V ! -Xk) 2 fiCx)fi(y)• 
^n+l^m+l * =0 1=0 

Substituting here Xk+íKk(R, F; x,y)— XkKk. 1(R, F; x, j ) for (Xk+l-Xk) £ fi(x)fi(y) 
1 = 0 



Magnitude of the Lebesgue functions 293 

(&=0, 1, . . . , « ) , a repeated Abel transform gives that the right-hand side can be 
written as 

k n F ; x,y) + —i "z (4+2 - V x K k ( R , F ; x,y) + 

m+ 1 '-m + 1 

. 1 »-1 
+ 7 j 2 ' (^t + 2 - h ^ K k { R , F - x,y). An+íÁm+l k =0 

Therefore, the estimate (4) holds for every n and m with = (Xk+2 — Ak)/?.n+i =2 
= ( k = 0, 1, . . . , « - 1 ) and fin = 1 5 (/m+!-;.„+!)/;.,„ + !, 
for which we have 

. Z pk = l n \ l ~ X ° + 1 2 (n = 0. 1, ...)• 
k = 0 n+1 

4. After these preliminaries our first result can be formulated as follows: 

T h e o r e m \ Let F= { / t (x )} be a sequence of L^-integrable functions on a 
measurable set E of finite measure, lét ck be a sequence of coefficients satisfying (2), 
and assume that the summation process T satisfies condition (4). If {/./„} is a non-decreas-
ing sequence of positive numbers for which the relation 

(5) Ln(T,F;x)=0(p„) 

uniformly holds on E, then the estimate 

tn{x) = Ox{ipn) 
holds almost everywhere in E. 

The proof is a modification of the well-known proof of A. KOLMOGOROFF—G. 
SELIVERSTOFF [7] a n d A . PLESSNER [8] f o r t h e t r i g o n o m e t r i c s y s t e m , a n d o f S. KACZMARZ 

[2] for arbitrary orthonormal systems. 
We shall use an idea of C. J. PRESTON [9] which consists in a special representa-

tion of tn(x). Introduce an arbitrary orthonormal system defined on a meas-
ure space Y with positive measure v; then 

Ux) = Z ckgk(t)- Z ct„kfk(x)gk(t)dv(t). 
J k= 0 k = 0 
Y ' . 

Let n(x) be the smallest index s i« such that 
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holds. By Schwarz's inequality we have 

2 

dv(t)X H/i l !M s { /LtH £ Y 

X J ^ J j = = = » / * ( * ) W ) } ^ 

Y E k 

E E Y 

1 
• X - = r ^ a l l W i l t / t ( > ' ) g l k ( i ) < / / i ( * ) < / A i ( y ) < / v ( 0 [ = ' 

V/*n(j>)*=0 J 

= 0 ( 1 ) f [ , 1 <xnw,k<xn(y),kfk(x)fk(y)\dn(x)dnXy)\ • 
[J J V Pn(x)HnW k= 0 f J EE 

Using estimate (4) and the monotoni ty of {/«„} we have 

f r r 1 min («(*),bO)) . l i 
/„ = 0 ( 1 ) / / - 2 " *>J')! Mx)dn(y)\ = 

[J J VHnwUnM it0 J 
£ £ 

= 0(l)\[[-^ZPi\Ki(T,F;x,y)\dp(x)d^y) + 
I J J Hn(x) 1 = 0 
£ £ 

f i - ~ - Z Pi\Ki (T, F; x, y)I dn(x)dp(y)}. 
J J A'nty) 1 = 0 . J 

. + 

EE 

The validity of relation (5) on E implies the estimate 

f r i » w r i »( f ) 

/ , = 0 ( 1 ) / — - 2 P,L,{T,F;x)dn(x)+ 7 Z ¿ ¿ . ( ^ F ^ O O = 
I J P .W 1 = 0 J Hn(y) i = 0 J 

£ • £ 

f /• "(*) /• «00 
= 0 ( 1 ) / / 2 ' = 

E £ ' 

Since the sequence { t „ M ( x ) / y n n ( x ) } is increasing, it follows by B. Levi's theorem that 

f&tx) 
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almost everywhere in E. The same is true for the sequence {— tn(x)(x)/^iin(x)}; 
.hence 

'nw(x) 
= Ox( 1) 

V Unix) 

almost everywhere, which implies our statement. 

5. We need the following auxiliary result: 

L e m m a . Let {ju„} be a non-decreasing sequence of positive numbers. Let F be a 
sequence of L^ -integrable functions on the set E and let {nk} be an increasing sequence 
•of indices such that 
(6) J \sn(x)\dfi(x) = 0 (1 ) 

£ 
•and 

<7) **(*) = 0 , 0 ® 

holds almost everywhere in E for every sequence of coefficients satisfying (2), where 
s„(x) is the nth partial sum of the series (1). Then condition (3) implies the convergence 
of the partial sums (x) almost everywhere in E as k 

This lemma is contained in the cited paper of G: A L E X I I S and A . SHARMA [1]. 
(See there Theorem 3.) We remark that (6) is trivially satisfied for orthoñormal 
systems defined on a set E of finite measure. 

In the sequel we suppose that the sequence F and the summation process T 
are such that there exists an increasing sequence nk of indices for which the con-
ditions 

0) s„k{x)-tnk{x) = 0^(1) and (ii) max |?„(x) - i„ t (x) | = o x ( l ) 

hold almost everywhere in E as £ — °o for every sequence of coefficients satisfy-
ing (2). 

In particular, if F is an orthonormal system defined on a set E of finite measure 
and T is the Riesz summation process defined by {A„}, then the conditions (i) and 
(ii) are fulfilled by every sequence {nk} of indices for which 

L ' - ^ S - Y ^ S R - C C O (k = 1 , 2 , . . . ) . ( S e e A . Z Y G M U N D [ 1 0 ] . ) 
"K 

6. Now we are in a position to formulate our second result: 

T h e o r e m 2. Suppose the sequence F of L—integrable functions and the 
summation process T are such that there exists an increasing sequence {nk} of indices 
satisfying (i) and (ii) and such that condition (6) is also satisfied. If the inequality 

tn{x)=Ox{fiñ 
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holds almost everywhere in E for every sequence of coefficients satisfying (2), where {;/„} 
is a non-decreasing sequence of positive numbers, then condition (3) implies the T-sum-
mability of the series (1) almost everywhere in E. 

In fact, by (i) we have that the inequality (7) holds almost everywhere in E 
for every sequence of coefficients satisfying (2). Applying our Lemma we get that 
condition (3) implies the convergence of the partial sums { ^ ( х ) } almost everywhere 
in E. Using (i) and (ii) we obtain that, under (3), {/„(*)} converges almost every-
where in E, which entails our assertion. 

7. R e m a r k s , (i) It is clear that our Theorem 1 contains Theorem A as a 
special case. In particular, Theorem A remains valid for any Riesz summation 
process if we replace £„((С, 1), F; x) with the corresponding Lebesgue functions 
L„(R,F;x). 

A s f o r t h e o r t h o n o r m a l s y s t e m s F, t h e r e s u l t s o f G . SUNOUCHI [3] a n d L . LEIND-

LER [4] on the Riesz-summability of orthogonal series are also special cases of our 
Theorems 1 and 2. 

(ii) We mention without proofs that Theorems 1 and 2 can be extended for 
other particular summation processes T such as, e.g., the de la Vallée Poussin sum-
mation, the Euler summation, etc. 
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