The order of magnitude of the Lebesgue functions and summability of function series

By FERENC MÓRICZ in Szeged.*)
Dedicated to Professor Béla Sz.-Nagy on his 60th birthday

1. Let X be a measurable space with a positive measure μ and let $F=\left\{f_{k}(x)\right\}$ ($k=0,1, \ldots$) be a sequence of L_{μ}-integrable functions on the set $E(\subset X)$ of positive measure. We shall consider the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} f_{k}(x) \tag{1}
\end{equation*}
$$

with real coefficients satisfying

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k}^{2}<\infty \tag{2}
\end{equation*}
$$

Let $T=\left(\alpha_{n k}\right)(n, k=0,1, \ldots)$ be a doubly infinite matrix of real numbers determining a general summation process with the aid of the linear means

$$
t_{n}(x)=\sum_{k=0}^{\infty} \alpha_{n k} c_{k} f_{k}(x)
$$

We say that the series (1) is T-summable at the point $x(\in X)$ if the series defining $t_{n}(x)$ converges in the ordinary sense for all n (except perhaps finitely many of them) and the limit $\lim t_{n}(x)$ exists at the point x in question.

$n \rightarrow \infty$

Form the Lebesgue functions belonging to the sequence F of functions and to the summation process T as follows:

$$
L_{n}(T, F ; x)=\int_{E}\left|K_{n}(T, F ; x, t)\right| d \mu(t)
$$

where

$$
K_{n}(T, F ; x, t)=\sum_{k=0}^{\infty} \alpha_{n k} f_{k}(x) f_{k}(t)
$$

[^0]To avoid the unnecessary complications concerning the existence (in a certain sense) of $t_{n}(x)$ and $L_{n}(T, F ; x)$, we shall consider the following two particular cases of summation processes T :
(i) If the functions $f_{k}(x)$ are assumed to be only L_{μ}-integrable on E, we shall confine ourselves to matrices T that have only finitely many nonzero elements in each row, i.e., which are such that $\alpha_{n k}=0$ for $k>k_{n}(n=0,1, \ldots)$.
(ii) If F is an orthonormal system defined on a set E of finite measure, then we shall only consider matrices T satisfying the condition

$$
\sum_{k=0}^{\infty} \alpha_{n k}^{2}<\infty \quad(n=0,1, \ldots)
$$

In this case, from (2) and this condition it immediately follows that $\sum_{k=0}^{\infty} \alpha_{n k}^{2} c_{k}^{2}<\infty$, and so we have by the Riesz-Fischer theorem that $t_{n}(x)$ is L_{μ}^{2}-integrable on E for every n. Furthermore, by virtue of

$$
\sum_{k=0}^{\infty} \alpha_{n k}^{2} \int_{E} f_{k}^{2}(x) d \mu(x)=\sum_{k=0}^{\infty} \alpha_{n k}^{2}<\infty \quad(n=0,1, \ldots)
$$

and by B. Levi's theorem we can conclude, that $\sum_{k=0}^{\infty} \alpha_{n k}^{2} f_{k}^{2}(x)<\infty$ for almost every x in E, and consequently $K_{n}(T, F ; x, t)$ is L_{μ}^{2}-integrable on E as a function of t for almost every x in E and for every n. This implies, in particular, the existence of $L_{n}(T, F ; x)$ for almost every x in E and for every n.
2. The order of magnitude of the Lebesgue functions may, in many cases, be a decisive factor in convergence problems.

In particular, taking

$$
\begin{gathered}
\alpha_{n k}=1-\frac{k}{n+1} . \quad(k=0,1, \ldots, n), \quad \alpha_{n k}=0 \\
(k=n+1, n+2, \ldots) \quad(n=0,1, \ldots)
\end{gathered}
$$

we obtain the classical $(C, 1)$-summation process. Now we have

$$
L_{n}((C, 1), F ; x)=\int_{E}\left|\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) f_{k}(x) f_{k}(t)\right| d \mu(t)
$$

In this case. G. Alexits and A. Sharma [1] have proved the following theorems:
A. Let F be a sequence of \dot{L}_{μ}-integrable functions on a measurable set E of finite measure and let $\left\{\mu_{n}\right\}$ be a non-decreasing sequence of positive numbers. If $\sum c_{k}^{2}<\infty$ and the condition $L_{n}((C, 1), F ; x)=O\left(\mu_{n}\right)$ is uniformly satisfied on E, then the sums

$$
\sigma_{n}(x)=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) c_{k} f_{k}(x)
$$

have the order of magnitude $O_{x}\left(\sqrt{\mu_{n}}\right)$ on E almost everywhere.
B. Let F be a sequence of L_{μ}-integrable functions on a measurable set E of finite measure satisfying the condition

$$
\int_{E}\left|\sum_{k=0}^{n} c_{k} d_{k} f_{k}(x)\right| d \mu(x)=O(1) \quad(n \doteq 0,1, \ldots)
$$

whenever $\sum c_{k}^{2} d_{k}^{2}<\infty$, and let $\left\{\mu_{n}\right\}$ be a non-decreasing sequence of positive numbers that is concave from below. Suppose that $L_{n}((C, 1), F ; x)=O\left(\mu_{n}\right)$ for every $x \in E$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k}^{2} \mu_{k}<\infty \tag{3}
\end{equation*}
$$

Then the series (1) is ($C, 1)$-summable on E almost everywhere.
They also remark that these results remain valid for any (C, α)-summation $(\alpha>0)$ if we replace $L_{n}((C, 1), F ; x)$ by the corresponding Lebesgue functions $L_{n}((C, \alpha), F ; x)$.

We note that the above theorem for orthonormal systems is a well-known theorem of S. Kaczmarz [2]. G. Sunouchi [3] and L. Leindler [4] have extended Kaczmarz's theorem to the Riesz summation of orthogonal series. In this case

$$
\begin{gathered}
\alpha_{n k}=1-\frac{\lambda_{k}}{\lambda_{n+1}} \quad(k=0,1, \ldots, n), \\
\alpha_{n k}=0 \quad(k=n+1, n+2, \ldots) \quad(n=0,1, \ldots),
\end{gathered}
$$

and

$$
L_{n}(R, F ; x)=\int_{E}\left|\sum_{k=0}^{n}\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right) f_{k}(x) f_{k}(t)\right| d \mu(t)
$$

where $\left\{\lambda_{n}\right\}$ is a strictly increasing sequence of numbers with $\lambda_{0}=0$ and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

To our knowledge, no analogous theorem for other summation processes has yet been proved. The following problem can be quite naturally raised: If for a summation process T and for an orthonormal system F defined on E the condition

$$
L_{n}(T, F ; x)=O\left(\mu_{n}\right)
$$

is uniformly satisfied on E, is then the series (1), under condition (3), summable with respect to the concerning process almost everywhere in E ?
A. V. Efimov [5] in the case of $\mu_{n} \rightarrow \infty(n \rightarrow \infty)$, and K. Tandori and the present author in a joint paper [6] in general, have essentially showed that the answer to this question is in the negative.

The aim of the present paper is to give a positive answer to the above question for a relatively large class of summation processes.
3. In the sequel we shall consider summation processes T with the following property: the estimate

$$
\begin{equation*}
\left|\sum_{k=0}^{\infty} \alpha_{n k} \alpha_{m k} f_{k}(x) f_{k}(y)\right| \leqq \sum_{i=0}^{\min (m, n)} \beta_{i}\left|K_{i}(T, F ; x, y)\right| \tag{4}
\end{equation*}
$$

holds for every m and n, where the positive numbers $\beta_{i}=\beta_{i}(T, F$; $\min (m, n))$ satisfy the inequalities

$$
\sum_{i=0}^{\min (m, n)} \beta_{i}=O(1) \quad(m, n=0,1, \ldots) .
$$

We note that if F is an orthonormal system defined on E, then the estimate (4) can be written in a more natural form as follows:

$$
\begin{gathered}
\left|\int_{E} K_{n}(T, F ; x, t) K_{m}(T, F ; y, t) d \mu(t)\right|=\left|\sum_{k=0}^{\infty} \alpha_{n k} \alpha_{m k} f_{k}(x) f_{k}(y)\right| \leqq \\
\leqq \sum_{i=0}^{m i n}(m, n) \\
\beta_{i}\left|K_{i}(T, F ; x, y)\right|
\end{gathered}
$$

where the β_{i} 's have the properties mentioned above. .
We show that if T is the Riesz summation process defined by the sequence $\left\{\lambda_{n}\right\}$, then condition (4) is satisfied. (See also [4]). Supposing $n<m$, we obtain with the aid of the Abel transform that

$$
\begin{gathered}
\frac{1}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n}\left(\lambda_{n+1}-\lambda_{k}\right)\left(\lambda_{m+1}-\lambda_{k}\right) f_{k}(x) f_{k}(y)= \\
=\frac{\lambda_{m+1}-\lambda_{n+1}}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n}\left(\lambda_{n+1}-\lambda_{k}\right) f_{k}(x) f_{k}(y)+\frac{1}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n}\left(\lambda_{n+1}-\lambda_{k}\right)^{2} f_{k}(x) f_{k}(y)= \\
=\frac{\lambda_{m+1}-\lambda_{n+1}}{\lambda_{m+1}} K_{n}(R, F ; x, y)+ \\
+\frac{1}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n}\left(2 \lambda_{n+1}-\lambda_{k}-\lambda_{k+1}\right)\left(\lambda_{k+1}-\lambda_{k}\right) \sum_{l=0}^{k} f_{l}(x) f_{l}(y)
\end{gathered}
$$

Substituting here $\lambda_{k+1} K_{k}(R, F ; x, y)-\lambda_{k} K_{k-1}(R, F ; x, y)$ for $\left(\lambda_{k+1}-\lambda_{k}\right) \sum_{l=0}^{k} f_{l}(x) f_{l}(y)$.
($k=0,1, \ldots, n$), a repeated Abel transform gives that the right-hand side can be written as

$$
\begin{gathered}
\frac{\lambda_{m+1}-\lambda_{n+1}}{\lambda_{m+1}} K_{n}(R, F ; x, y)+\frac{1}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n-1}\left(\lambda_{k+2}-\lambda_{k}\right) \lambda_{k+1} K_{k}(R, F ; x, y)+ \\
+\frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{m+1}} K_{n}(R, F ; x, y)=\frac{\lambda_{m+1}-\lambda_{n}}{\lambda_{m+1}} K_{n}(R, F ; x, y)+ \\
\quad+\frac{1}{\lambda_{n+1} \lambda_{m+1}} \sum_{k=0}^{n-1}\left(\lambda_{k+2}-\lambda_{k}\right) \lambda_{k+1} K_{k}(R, F ; x, y)
\end{gathered}
$$

Therefore, the estimate (4) holds for every n and m with $\beta_{k}=\left(\lambda_{k+2}-\lambda_{k}\right) / \lambda_{n+1} \geqq$ $\geqq\left(\lambda_{k+2}-\lambda_{k}\right) \lambda_{k+1} / \lambda_{n+1} \lambda_{m+1}(k=0,1, \ldots, n-1)$ and $\beta_{n}=1 \geqq\left(\lambda_{m+1}-\lambda_{n+1}\right) / \lambda_{m+1}$, for which we have

$$
\sum_{k=0}^{n} \beta_{k}=\frac{\lambda_{n+1}-\lambda_{0}}{\lambda_{n+1}}+1 \leqq 2 \quad(n=0,1, \ldots)
$$

4. After these preliminaries our first result can be formulated as follows:

Theorem 1. Let $F=\left\{f_{k}(x)\right\}$ be a sequence of L_{μ}-integrable functions on a measurable set E of finite measure, let c_{k} be a sequence of coefficients satisfying (2), and assume that the summation process T satisfies condition (4). If $\left\{\mu_{n}\right\}$ is a non-decreasing sequence of positive numbers for which the relation

$$
\begin{equation*}
L_{n}(T, F ; x)=O\left(\mu_{n}\right) \tag{5}
\end{equation*}
$$

uniformily holds on E, then the estimate

$$
t_{n}(x)=O_{x}\left(\sqrt{\mu_{n}}\right)
$$

holds almost everywhere in E.
The proof is a modification of the well-known proof of A. Kolmogoroff-G. Seliverstoff [7] and A. Plessner [8] for the trigonometric system, and of S. Kaczmarz [2] for arbitrary orthonormal systems.

We shall use an idea of C. J. Preston [9] which consists in a special representation of $t_{n}(x)$. Introduce an arbitrary orthonormal system $\left\{g_{k}(y)\right\}$ defined on a measure space Y with positive measure v; then

$$
t_{n}(x)=\int_{Y} \sum_{k=0}^{\infty} c_{k} g_{k}(t) \cdot \sum_{k=0}^{\infty} \alpha_{n k} f_{k}(x) g_{k}(t) d v(t)
$$

Let $n(x)$ be the smallest index $\cong n$ such that

$$
\frac{t_{n(x)}(x)}{\sqrt{\mu_{n(x)}}}=\max _{0 \leq k \leq n} \frac{t_{k}(x)}{\sqrt{\mu_{k}}}
$$

holds. By Schwarz's inequality we have

$$
\begin{aligned}
I_{n}= & \left|\int_{E} \frac{t_{n(x)}(x)}{\sqrt{\mu_{n(x)}}} d \mu(x)\right| \leqq\left\{\int_{Y}\left[\sum_{k=0}^{\infty} c_{k} g_{k}(t)\right]^{2} d v(t) \times\right. \\
& \left.\times \int_{Y}\left[\int_{E} \frac{1}{\sqrt{\mu_{n(x)}}} \sum_{k=0}^{\infty} \alpha_{n(x), k} f_{k}(x) g_{k}(t) d \mu(x)\right]^{2} d v(t)\right\}^{\frac{1}{2}} \leqq \\
& \leqq\left\{\sum_{k=0}^{\infty} c_{k}^{2}\right\}^{\frac{1}{2}}\left\{\iiint_{E} \frac{1}{\sqrt{\mu_{n(x)}}} \sum_{k=0}^{\infty} \alpha_{n(x), k} f_{k}(x) g_{k}(t) \times\right. \\
& \left.\times \frac{1}{\sqrt{\mu_{n(y)}}} \sum_{k=0}^{\infty} \alpha_{n(y), k} f_{k}(y) g_{k}(t) d \mu(x) d \mu(y) d v(t)\right\}^{\frac{1}{2}}= \\
= & O(1)\left\{\iint_{E} \frac{1}{\sqrt{\mu_{n(x)} \mu_{n(y)}}}\left|\sum_{k=0}^{\infty} \alpha_{n(x), k} \alpha_{n(y), k} f_{k}(x) f_{k}(y)\right|^{d \mu(x) d \mu(y)\}^{\frac{1}{2}}} .\right.
\end{aligned}
$$

Using estimate (4) and the monotonity of $\left\{\mu_{n}\right\}$ we have

$$
\begin{array}{r}
I_{n}=O(1)\left\{\iint_{E} \frac{1}{\sqrt{\mu_{n(x)} \mu_{n(y)}}} \sum_{i=0}^{\min (n(x), n(y))} \beta_{i}\left|K_{i}(T, F ; x, y)\right| d \mu(x) d \mu(y)\right\}^{\frac{1}{2}}= \\
=O(1)\left\{\iint_{E} \frac{1}{\mu_{n(x)}} \sum_{i=0}^{n(x)} \beta_{i}\left|K_{i}(T, F ; x, y)\right| d \mu(x) d \mu(y)+\right. \\
\\
\left.\quad+\iiint_{E} \frac{1}{\mu_{n(y)}} \sum_{i=0}^{n(y)} \beta_{i}\left|K_{i}(T, F ; x, y)\right| d \mu(x) d \mu(y)\right\}
\end{array}
$$

The validity of relation (5) on E implies the estimate

$$
\begin{gathered}
I_{n}=O(1)\left\{\int_{E} \frac{1}{\mu_{n}(x)} \sum_{i=0}^{n(x)} \beta_{i} L_{i}(T, F ; x) d \mu(x)+\int_{E} \frac{1}{\mu_{n}(y)} \sum_{i=0}^{n(y)} \beta_{i} L_{i}(T, F ; y) d \mu(y)\right\}^{\frac{1}{2}}= \\
=O(1)\left\{\int_{E} \sum_{i=0}^{n(x)} \beta_{i} d \mu(x)+\int_{E} \sum_{i=0}^{n(y)} \beta_{i} d \mu(y)\right\}^{\frac{1}{2}}=O(1) .
\end{gathered}
$$

Since the sequence $\left\{t_{n(x)}(x) / \sqrt{\mu_{n(x)}}\right\}$ is increasing, it follows by B. Levi's theorem that

$$
\frac{t_{n(x)}(x)}{\sqrt{\mu_{n(x)}}}<\infty
$$

almost everywhere in E. The same is true for the sequence $\left\{-t_{n(x)}(x) / \sqrt{\mu_{n(x)}}\right\}$; hence

$$
\frac{t_{n(x)}(x)}{\sqrt{\mu_{n(x)}}}=O_{x}(1)
$$

almost everywhere, which implies our statement.
5. We need the following auxiliary result:

Lemma. Let $\left\{\mu_{n}\right\}$ be a non-decreasing sequence of positive numbers. Let F be a sequence of L_{μ}-integrable functions on the set E and let $\left\{n_{k}\right\}$ be an increasing sequence of indices such that

$$
\begin{equation*}
\int_{E}\left|s_{n}(x)\right| d \mu(x)=O(1) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{n_{\dot{k}}}(x)=O_{x}\left(\sqrt{\mu_{n_{k}}}\right) \tag{7}
\end{equation*}
$$

holds almost everywhere in E for every sequence of coefficients satisfying (2), where $s_{n}(x)$ is the nth partial sum of the series (1). Then condition (3) implies the convergence of the partial sums $s_{n_{k}}(x)$ almost everywhere in E as $k \rightarrow \infty$.

This lemma is contained in the cited paper of G: Alexits and A. Sharma [1]. (See there Theorem 3.) We remark that (6) is trivially satisfied for orthonormal systems defined on a set E of finite measure.

In the sequel we suppose that the sequence F and the summation process T are such that there exists an increasing sequence n_{k} of indices for which the conditions

$$
\text { (i) } s_{n_{k}}(x)-t_{n_{k}}(x)=o_{x}(1) \text { and (ii) } \max _{n_{k}<n \leqq n_{k+1}}\left|t_{n}(x)-t_{n_{k}}(x)\right|=o_{x}(1)
$$

hold almost everywhere in E as $k \rightarrow \infty$ for every sequence of coefficients satisfying (2).

In particular, if F is an orthonormal system defined on a set E of finite measure and T is the Riesz summation process defined by. $\left\{\lambda_{n}\right\}$, then the conditions (i) and (ii) are fulfilled by every sequence $\left\{n_{k}\right\}$ of indices for which

$$
1<q \leqq \frac{\lambda_{n_{k+1}}}{\lambda_{n_{k}}} \leqq r<\infty \quad(k=1,2, \ldots) . \quad(\text { See A. ZyGmund [i0]. })
$$

6. Now we are in a position to formulate our second result:

Theorem 2. Suppose the sequence F of $L_{\dot{\mu}}$-integrable functions and the summation process T are such that there exists an increasing sequence $\left\{n_{k}\right\}$ of indices satisfying (i) and (ii) and such that condition (6) is also satisfied. If the inequality

$$
t_{n}(x)=O_{x}\left(\sqrt{\mu_{n}}\right)
$$

holds almost everywhere in Efor every sequence of coefficients satisfying (2), where $\left\{\mu_{n}\right\}$ is a non-decreasing sequence of positive numbers, then condition (3) implies the T-summability of the series (1) almost everywhere in E.

In fact, by (i) we have that the inequality (7) holds almost everywhere in E for every sequence of coefficients satisfying (2). Applying our Lemma we get that condition (3) implies the convergence of the partial sums $\left\{s_{n_{k}}(x)\right\}$ almost everywhere in E. Using (i) and (ii) we obtain that, under (3), $\left\{t_{n}(x)\right\}$ converges almost everywhere in E, which entails our assertion.
7. Remarks. (i) It is clear that our Theorem 1 contains Theorem A as a special case. In particular, Theorem A remains valid for any Riesz summation process if we replace $L_{n}((C, 1), F ; x)$ with the corresponding Lebesgue functions $L_{n}(R, F ; x)$.

As for the orthonormal systems F, the results of G. Sunouchi [3] and L. LeindLER [4] on the Riesz-summability of orthogonal series are also special cases of our Theorems 1 and 2.
(ii) We mention without proofs that Theorems 1 and 2 can be extended for other particular summation processes T such as, e.g., the de la Vallée Poussin summation, the Euler summation; etc.

References

[1] G. Alexits and A. Sharma, The influence of Lebesgue functions on the convergence and summability of function series, Acta Sci. Math., 33 (1972), 1-10.
[2] S. Kaczmarz, Sur la convergence et la sommabilité des développements orthogonaux, Studia Math., 1 (1929), 87-121.
[3] G. Sunouchi, On the Riesz summability of Fourier series, Tôhoku Math. J., second series, 11 (1959), 319-326.
[4] L. Leindler, Über die sehr starke Riesz-Summierbarkeit der Orthogonalreihen und Konvergenz lückenhafter Orthogonalreihen, Acta Math. Acad. Sci. Hung., 13 (1962), 401-414.
[5] А. В. Ефимов, О несуммируемых линейными методами ортогональных рядах, ДАН CCCP, 152 (1963), 31-34.
[6] F. Móricz and K. Tandori, On a problem of summability of orthogonal series, Acta Sci. Math., 29 (1968), 331-350.
[7] A. Kolmogoroff-G. Seliverstoff, Sur la convergence des séries de Fourier, Rendiconti Acad. Lincei, 3 (1926), 307-310.
[8] A. Plessner, Über Konvergenz von trigonometrischen Reihen, J. reine angew. Math., 155 (1926), 15-25.
[9] C. J. Preston, On the convergence of multiplicatively orthogonal series, Proc. Amer. Math. Soc., 28 (1971), 453-455.
[10] A. Zygmund, Sur la sommation des séries de fonctions orthogonales, Bulletin Intern. Acad. Polonaise Sci. Lettres Cracovie, série A; 1927, 293-308.

[^0]: *) This paper was written while the author stayed at the Steklov Mathematical Institute in Moscow.

