On the consequences of permutation identities
By G. POLLAK in Szeged -

To Professor B. Székefalvi-Nagy on his 60th birthday

The aim of this note is to give a description of all permutation identities valid
" in a permutative semigroup [2]. YAMADA [4] was the first to consider permutation
identities in semigroups. The best result in the field was attained by PERKINS [2]
who proved that any commutative semigroup variety is finitely based: In the same
work he gives an example showing that no similar proposition holds for varieties
satisfying xyzt=xzyt. On the other hand, any permutative semigroup variety satisfy-
ing an identity of the form x™*%=x™ is finitely based. We give another class of
(hereditary) finitely based varieties. As a matter of fact, this can be obtained from
a result of PutcHA and YAQUE [3] claiming that'a semigroup in which a permutation
identity of rather general type holds satisfies all permutation identities for products
containing sufficiently ma_hy factors. From our results it would be easy to determine
-exactly the necessary number of factors, and to give a “standard’ form of finite bases
of identities (up to bases of permutation groups). :

1. The consequence group
" Following YAMADA [4], We‘call an identity of the form
(D : ' _'xl...jx,,=x16...x,,,,

‘a permutation identity if o is a permutation of the set {1, ..., n}. The number n will
be called the length of identity (1). :

Let Sbe a semigroup variety. Denote the set of all permutation identities of
length n which hold in G by G, and the set of the corresponding permutations by
I,. Obviously, I', is a subgroup of the symmetric group Z,. The set of permutation
identities of length n+1 which follow from G, will be denoted by 4G,’, and the cor-
responding set of permutations by I',. Again, I'! is a group called the (first) con-
sequence group of T',. The gth consequence group I'® can be defined in a similar way
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4through the permutatlon identities of length n+ q which follow from G,. We remark
though trivial that ['@1+92)= @062, : :

Our main task consists in finding out how I', depends on I',. For this purpose
we shall first look for a comfortable system of generators of I';.

Suppose (1) holds in &. The subsequent n-+2 identities follow immediately:

XpeeXnp) = XygeeeXngXni 1>

(2) ’ ‘ .xl"'xn+l =x1xla+1"'xna+1:
Xy Xppg =ud.. u,‘,":u{?...u,‘,f,’ (i=1,..n)
where- .
' X; if j<i,
ufd = \x;xipy A j=14,
x1+1 if j=i

The correspondmg elements ¢’, ¢” /1,, ..., A, Of the consequeﬁce group are given
by the equations . : :

., _ ) Jjo if,j_én,
30 2 _{n+l. if j=n+l
_ L, i j=1,

(32) e ._{(j—l')a+1 if 2=j=n+1;
jo if j=icl, jo=i

s B k0 if j<io™!, jo>i,

(32) ki = (=1o if j=ioe™', (j=eo<i
(j—I)a+I if j=ic"l, (—-Do=i

for'i=1,...,n. ' '

Lemma 1. The consequence group I', of I', is generated by the elements (31),
(3,), (33) where o ranges over I,,.
It suffices to show that all identities in G, are consequences of the identities (2)

" where ¢ ranges over I',. Now let

(4) T ' -'xl xn+1 = Xiee-Xn+1)e

be an identity in G, i.e. a consequence-of G,. This means that there ex1sts a sequence

of words (x1 ,.+1—)ao, ays ooy G(=Xyq... Xpr1ye) SUch that a,=b,u0...u0c,,

a,,,=b, ula(,) u® ¢, where b,, ¢, are arbitrary and 4$’ nonempty words, ¢ (r) €T,

Denote the length of the word y by I(y). Then I(a,)=I(a, ) for all r<k and thus,
P n

. by induction, I(a,)=n+1. On the other hand /(a)=I(b)+ > l(uS.'))+I(c,), and,

j=1

since 1u$)>0, there are only three possibilities: 1) I(6,)=0, I(c)=1, )=
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«.=I1)=1 and a,=a, , follows from an identity of type (2,); 2) /(b)= l., I{c))=0,.
1WM)=--=1u")=1 and a,=a,,, follows from an identity of type (2,); 3) /(b,)=
=1(c,)=0, I(u")=2 for exactly one i, I(u(’))—l for j#i and a,=a,+, follows from

one of the identities (25), q.e.d.
The permutat1ons (3) are not very easy to hand]e therefore we shall use the:
system o/, 4,474 (1=i=n—1), 4,6'1, 6”AT", equivalent to (3), instead. ‘Introduce

the notation v
L i) if i=j,

| ?O”)”{@i 1..7) if i=j

Thus, y(J, l) y(z ])‘1 It is stralghtforward to check the formulae

Ai=ym+1, 10‘1)0' y(@,n+1) forl=i=n,

KO
" =yn+1L,Doy(Q,n+1). .

Hence _ »
- 6) LAy = 'y(n+1,ia‘l)o'y(i,n+1)y'(n+l,i-l—l)o‘"'l»)i((i+l)a“1,n+1) =
=y(n-l—l,ia"l)a’-(in—l—1)‘-6"15)((i+l)o‘1,n+1)=
= y(n—i—l‘ia"l)-(ia'ln-l-l)oy'((i#--l)a‘l,n—i-l)=
=ym+1lic~ +Dy((+ 1)0‘1,n+1) = y((z+1)<7‘1,.'a‘1 +1).
for 1=i=n—1and
. (6) /l,,'a"«l =_y(nl—1,,na"1)a’y(n,n~}—l)a"1 = y(n+1,na‘1)-(na_‘1n+l)= |
' =y(m+1, na“-}—l)
(6" a”lf =y@m+1, e y(, n+l)y(n+l l)o" 1):(](7‘1,11+1)—y(lo"1 1).
Remark that, by (3,), (3;) and (5),
((l+l)0“1)o"o"’ !=jo=14+1 for 'léién—l,
@) - (n+ l)a’a"‘1 =no"1+1,
' ' aa-qa'” 1o,

and, since the symbols n+1, 1677, (i+ Do~! (1=i=n—1) are exactly the integers
1,...,n+1 in a different order, we have obtained :

Lemma 2. I', is generated by the elements o', y(i, io’6”"~1) (i = l', R 1)

n
where o ranges over I',.

The subgroup of I'] génerated by the cycles j}(i, io" =1 (1=i=n+1) will be
denoted by I';. As a generalization of Lemma 2, we have
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Lemma?2’. If
@) ' 6'e" =y ...y

is the decomposition of ¢’ 6"~ into disjoint cycles for some ¢ €', and i, j occur in the
same v, then y(i, jYEL}. .
A Indeed, for some power of 6’6"~ we have i(¢’6”~')°=j. If c=1 then y(i, j)e I}
by its definition. Now let ¢=>1 and suppose the assertion holds for c¢—1. Put
(6’6" )" =k; then y(, ) ETY, y(k,j)=y(k, ko’c"~)€I* and hence y(i,j)=
y(k, J) - y(i, K)ET]. : '

2. Consequence groups of f-irreducible groups

The following subgroups of the symmetric group X, will take 1mportant roles
in what follows (4, denotes, as usual, the alternating group):

.Z,,’k'_; {alio =iforiz= k}, Z = {o[i‘a =i for i =k}, ‘dik.z 2, x®%, ¢
| 2@ = {olic =i for odd i},  Z{ = {olic =i for even i},
3P =gz ='{a|iaéi(mod 2}, | AP = Z‘P)ﬂA
‘Observe that ¢ ¢ d>k iff the images io of elements i<k precede those of elements 1>k
_(in particular, ko=k). Remark also X, ,,H—Z,, 0=2,.
The role of 4% is clear from '
Lemma 3. IS4, iff [,SAP.

Proof. IfF C AP then ¢, 6” and ¢’¢”~ " are contained in AP forallocr,.
"Thus, i=ic’¢”"" (mod 2) for every i and y(i,ic'6" ") €A, 4. '
Conversely, suppose T', EAP and let € ')\AP. If 64 4, then o "GA.,. If _
¢z suppose i is the least natural number such that :

{9) , | ic™' #i (mod2). -
Then - »
‘(10) y(m‘“l (icYo'o ”‘I)QA,,H.

Indeed for i=1 we have (le™Y)o’¢”~!=1 and (10) follows from (9). If i>1 then
(6o’ 6" 1 =(i— 1o~ '+ 1=i—1+1=i (mod 2) and therefore io™! # (ic™")o’ 6"~
{mod 2) which proves (10). '

The permutation group I', will be called fixelement- /educzble or f-reducible if
I, S &, for some k=n, and fixelement-irreducible (f-irreducible) in the opposite
«case. Now we want to investigate the case where I', is f-irreducible.
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Lemma 4. If I, is f-irreducible then for every k (1=k=n) there exist symbols
i, j such that I<k<j, y(, ])EF* '

Proof. Since I, is f-lrreduCJble there exists aEI" A\ Py If k=1 this means
le#1, so that 167 "1 and, by virtue of (7;) and Lemma 2, we have y(l, la~!)
(=y(le™", )" Y)er}. Now pﬁt k=2. Then there exist elements 7, / with 1=i=k=
=I=n, ic>lo (and therefore i 16~'). It is easy to see that one can even suppose
lo = is—1. Now by (7) ioc’c” ! = (ic—1)o~'+1 = [+1, so that y(i,I+1)€T¥,
and the lemma is proved.

Corollary 2. If I, is f-irreducible then '} is transitive.

Indeed, ky(i,j) = k+1; thus, every symbol (< n+1) can be carried over to
every greater symbol and, taking into account the inverses of the y’s, it can be carried
over to every element.

This corollary is ITla_]O['lZCd by the following lemma. The proof of the lemma,
however, relies upon the corollary itself. .

Lemma 5. If I, is f-irredﬁcible then T :; is doubly transitive.

Proof. Since I'' is already‘known to be transitive, we have to prove only
that for every k (l<k<n+ 1) there exists a permutation ¢, €I'} such that

an ' : ko, =k+1, lo.=1.

Recall that 16~ 51, n+1 for some cel,. If y(1, n+1)€ I} then it has a power '
such that the permutation g; = y(n+1, 1)*-y(1, 167 ")y (1, n+ 1) satisfies (11) (for
this, choose k—167" < r, = min (k—1, n+1~16"")). For the rest of the proof
suppose (1, n+1)4I'7. By Lemma 4, there exist symbols /, m such that I=k<m,
y(l, mye It If 1<I put g,=y(/, m). If. /=1 then, by assumption, m < n+ 1. Thus,
there exist 7, j with i=m<j, y(i,j)eT}. Put t=y(j, )y(1, m)y(i, j) and

(=92, m+1)) if i=1,
C_ IvG) ' if 1<isk,
%=y, met (=kk+ 1) (mm+ ) if i=k+l,
= ly(IL,myt(=3Gi+ 1)y, m+1)([i+1)) else.
This proves our lemma. ‘ ' '
Corollary 3. If I, is f-irreducible then Ty is primitive.
Now we formulate the. basic
Thvcorem 1. If T, is f-irreducible then its consequence group I, is 1) the sub-

group A" of Zg generated by y(1,4) and y(3,6) if n=5, I's=4= {(1) (14) (25)}
2) Ay if T,SAP; 3) X,,, else. .
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Remark. 4" is a group isomorphic to Z,. It can be obtained from the sub-
group Z o of 24 (having 6 for invariant symbo]) by an outer automorphism of the
latter one. i

Proof. The fact that the consequence group of 4 is A’ can be checked by a
straightforward calculation. Remark only that for o=(14)(25) we have 6’0”"'=
=(14)(36) so that I''=4" and o¢"=7(6, 3)y(l, 4)29(3, 6)err.

In virtue of Lemma 3, all we need to prove is that 4 is the only f-irreducible
group the consequence group of which does not contain the alternating group. In
doing this we shall rely upon the following facts (see e.g. [1]): .

1. If a subgroup I1,,_, of Z,, has g invariant symbols and is transitive and primi-
tive on the rest then any primitive subgroup of X, which contains II,,_, is (g+1)-
fold transitive ([1], Theorem 5. 6. 2).

II. For m=>12, t > 3ym—2, the only t-fold transitive subgroups of 2, are 2,
and A4, ([1], p. 68.). .

III. If m = kp+r where p is prime, p>k, r>k, r>2 then the only (r+ 1)-fold
transitive subgroups of X, are X, and 4,, ([1], Theorem 5. 7.2).

Suppose I', is f-irreducible. If I'} contains a transposition we have obviously
I'’=Z,,, (because of double transitivity). If I'* contains an element of the form
‘y(k—2,k) then A,,,ETI*. Indeed, for n=2 thé assertion is obvious. Let n=>2.
It suffices to show that if k < n+1 then y(k—1,k+1)€I'* and if k—2 > 1 then
y(k—3, k— 1) eI since these imply y(¢9—2,g)€I for all 3=¢=n+1 and these
- cycles generate A,,,. Let us prove the first part; the other one can be treated
analogously. By Lemma 4, there exists a cycle y(i,j)€TI'} such that i=k=j. If
i=k—2 then y(j,yyk—2,k)yGj) = yk—1,k+1)ers If i=k—1 or i=k
then y(J, )y(k—2,k)y (@, j) = '(k—; 2.k k+1) or (k—2 k—1 k+1), respectively. How-
ever, since y(k, k—2)-(k—2kk+1)-y(k—2,k) = (k+1k—1k—2), in both cases
we have (k—1kk+1)= (k+1k—-1k—=2)(k—2kk+1)el,.

. Now consider two different cycles y(i;, j,), y(is,/2) €T* (eg (1, la ) for
lo#1 and y(nt~'4+1, n+1) for nt#n). We may suppose i <jy, hi=i<j,. If,
moreover, j,<j, then y(i,— lgjz'" D) =y, )y, 727Uy, i) €1, If j,=), then
y(,+ 1, j,+ D = y(Jj,, iDy(s, 7o)y, /1) €Y. In both cases we have two cycles of
the form y(k,7) and y(k—1,7—1). However then y(l, k)y(—1, k—l)y(k n?=
- = y(k—1,k+1)€I; and hence I'; 24,,,.

n

The case iy=1,, j,<J, is symmetrlcal to the second subcase of the above one.

If ji =i, then ¥ (iz, /) v, j1)= (s, j») and the pair y(iy, ), ¥(i, J) gives the
first case again.

If j, <i, and 7=6 then at least one of both cycles is of length =3 and the former
argument yields ry=24,,, once more. Let n>6 (i.e. n+1 = 8). One of both cycles

is of ]ength —;;— denote this one by y(, j) Ifj< n+1 take y(k, l)EI‘* with .



On the consequences of permutation identities 329

k=j<l(ifj = n+1 then i>1 and we ought to demand / < i—1 = k). The permuta-
tions y(i, j), y({, k)y(,j)y(k, 1) generate a subgroup IT;_;,, of I'; having at least

n—1 invariant symbois and being primitive on the rest. Thus, by I, I'} is n'-;l -

n+1l

fold transitive. If =27 it holds > 3YnFI1—2and '* 2 4,, , follows from IL.

For -7§n§26 IIT allows the following maxir‘nal. multiplicities of trahsitivity:

r=3 for n+1 = 8,9,10, 13, 14, 16, 17 20, 22, 25, 26;
r=4 for n+1 = 11, 15, 18; 19, 21, 23, 27
r=5 for n+1=12,24.
In all cases r < ——;—1
Thus the only remaining possibility is i, <i,<j, <j, for every pair of cycles.
Suppose there are three dxﬁ‘erent cycles Y1), 125 J2)s y(z3,]3)€[’ i <i,<iy<
<]z<J3 Then '

01 =01, 7)Y Uss 1)y (s i) v (i3, J3) = (3 —1i3) (i ji + D) ETT,

[45)

¥z 72) ¥ s 137 (s 1) (B3 ) = (5 — 1i3) (a2 + D €T,
0102 = (juj1 + DU ja + €T,
Y(i1, 70020170 i) erer = y(h— L + DEry.

Thus, we may suppose I'f contains only two cycles: y,=7y(i,,/,) and y,=7y(i,, j,)

I 7—1

However, this implies 6’6" '=(i,j,)(i,j,) or (1) for every o€, (recall
0’6"~ 1€A,.,). Buto’¢”~! determines o uniquely; indeed, ¢’ does and the conditions -
o'~ ty(n+1, )0’ = 6’6" " Ly(n+1,1), (n+1)¢’ = n+1 determine ¢’. Hence I', is
a two-element group and o (£1) is of order 2. As I',, is f-irreducible,. lo 1, no=n
and, consequently, iy=1, j, = n+1, ji=16"'=1l0, i, = no+1 and o'¢""! =
= (1j)...(;,—1 Q2 j+1)...(, n+1) = (1 j,) (i, n+1). Hence one finds by a routine
induction ¢ = (1) j,+1)...(n—j,+1n); iy = n—j,+2. If j,=n then i,=2 and

95 1971 93=(12 3). Now let j, <n, i,>2. Form the following elements:

=977 =iy=1i+ 1. j +1),
B=9y3 yvi=0...iy—10+2...j, +2),
S=0af = (=1 L+ 1), +1 j; +2),

e=08"1y10y1" = (i, —2i) (i —1ir+1),

and, if i,>3, _ '
=yt = (=36, —1) (i, -2 i).
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Then . _
SC = (12—3 12—1 i2+l),

V2V P2y vaelyr s T st = (=2 i~ 1 i) if =i -1,
72¥T 292809729395t = (b —1 4, i, +1)  else. '
On the other hand, if i,=3, j, >4 put = 6~ 19718y, = (24)(35). Then
ne = (135),
Y271 P2y i vavenert tyr vl tyivrt = (23 4).

*. Thus, we have reduced the probleém to the case i,=3, j,=4 corresponding to I',= 4.
The theorem is proved. '

From the proof it turns out that I'' 24, ., if I',=4 and rr=4a" if r,=A.
Combmmg this with Lemma 3 and the plus information on I'} 1ts proof comprlses
we have

Colollary 4. If I, is f-irreducible then

{4 i r,=4,
I-:z An+1 if‘ anzr(lp)’
Zio1 else.

Thus, I*=T or else I',S 2P, ', % A,.

3. The general case

' The case of f-reducible groups can be reduced now to that of f-irreducible onés_.

Let I, = (s] P, (.1 =k,<--<k,=n) and an &, for any other k. Put, furthermore,
ko=0, k:,1= nt1, and denote %, NZ,, by Py, kiyy—k,—1by j, (t=0, ..., 5).
Then I, S ]]P and it is easy to see that the mapping ¢,: . P,~X; defined by»

Jjleop) = (]+k¢)9 k, is an isomorphism. Denote by A, the projection of F in
P,."Then I', is a subdirect product of A, ..., A;. Obviously, A4,¢, is f-irreducible.

Every o€ [] P, has a unique factorization
X © =0
(12) _ A o G = 0g... 0y v(o,EP.);

in particular, o,€4, if o€l,. Analogously, put P, _E,,Hktﬂz,,ﬂ kiis1 S

S Z,,1; then every element of ]]P has a unique factorization
t=

(129 ’ o T="Tg..:Tg (t,€P)).



On the consequences of permutation identities . 33k

Define ¢,:P;~% j,+1 by the same rule as we did ?, (only for i 'é Jj+1 instead of
i=]y). ’

Those subdirect factors A, contained in Z(") but not in A“’) ‘behave in a manner
slightly different from the rest. Introduce therefore the notation

:UWStéMACZ@m1$M%

and the projection pu:T", —~ ]] A, which maps ¢ onto [] o,
teT

The ‘consequence group of an f-reducible group is now fully described by
Theorem 2. Let I', S ﬂ ?, (I=ky<--<k <n) and I, %dikfor any otherk
Then '

(13 - - Ip= X HAI,'
Furthermore, A} = (A;0) @, for 1 =t=s and
(14) ' (F W’ —{H‘E,]‘L‘,EP /\(EO'EF,')V,(T,EA,,_,_l@O',EA )}

Proof. Since io=io, for k,=i=max (k,, , n), it follows ic’ =io}, io”= (iél)a+
+1= (i—1)o,+1 = io] for k,<i=k,.,. As the domains of o], o] and ¢/, ¢, are

-disjoint for ##u, we have ¢’=0y...0;, ¢"=03...07, a'o'”_v—(agag—l) (ole?™ ).

Moreover, io’¢”~'=is/o; ™" implies- y(i, ic’ "~ )=y(i, io;o; ") € A]. If t&T put

G = [] o,; the same argument ylelds a H al, (@, w’a”“)— (i, io]67 )=
teT

=y, 6’6"~ 1)E(F #Y. Thus, I'] is contamed in the rlght side of (13).
Before proceeding to the converse, we turn to the statement A;=(A,0) ¢;”'.
We can see that ¢ is an 1somorphlsm (00) =0 o;, (gq)t) =g ¢, for g€ P, and, if
k <l—k:+1 ’ .
Yl ig'e"~ Nl = y(i=k,,ig’e" " —k) ="y (i—ki, (i—k) (""" M) o)) k) =
=7 (i=ke, (1 —K) (0 (20 Y).
Hence A/¢; = (Atq)t) and Af o = (Ar(Pr)* D
Now A,p, is f-irreducible and therefore (A,p,)* is generated by the cyclet
yUs J¥ A7 (1=/=j+1, 2€A,9,). The same holds for. (4,9,) if 4,0, EZP or
A(p,CA("), i.e. for 14 T. Hence, A; is also generated by the corresponding cycles
Y@, zg’g”‘l) ky<i=k,.,, 0€A,). By definition of A,; there exists o €T, such thas
o, in (12) equals to ¢. However then y(i, i¢’ "~ )=7y(i, ic’a "'I)EF’ Hence A,QT
Now suppose 1€ T. Then 4,0, EZ%P, A,0,E AP which imply (4,0)=Z, _;,
(Ap)*=A4; 4, This last gives A7 =4; ,, and'so A7 = P;N4,. As in the fore-

s
1y Remark that this immediately gives = IT Af.
. : 1=0
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going paragraph f'or-A now one can verify A¥ST,. ThusI',2 J] Af = ]] A
LtET teT

Furthermore, (I', )" is generated by the elements of A¥ (1€ T) and by those of the form
{op) (a€l,). Since A} S 4,,, and (ou),=o, for tcT, these generators and hence

(I, 1), too, are contained in the right side of (14). On the other hand if fort = ][] 7,
€T

1,€ P/ there exists 6€I, such that t,€4,,,©06,€4, then A= (op) '€
€ [IT(PNA,+,) = ]] A* which is obviously contained in the rlght side of (14);

teT
0 is (op)” and hence the same holds for 1= (ou) A
* Finally, we have seen AFST, for all ¢; thus, in order to prove (F,u)’ I, it
suffices to show (o) €I, for o¢I',. But ¢’ = (ay)" ]Z o, and ‘]]T o, €TI'; has been
proved earlier. This completes the proof. ¢ ¢
It follows from this theorem that the consequence group of an arbitrary group
is a direct product of a certain number of permutation groups of type 4° and of
‘one further group which is an extension of a direct product of alternating groups
by an elementary 2-group. The second consequence group is a direct product of
:symmetric groups.
Suppose I=1 is the max1mal number of consecutive integers 1 < k k+1,.

. k+1—1 < n such that I, S ﬂ ¢k+,, r,<eé,_,, r,$&,,,. Then the (I+1)st

consequence group is the- first one being isomorphic to a symmetrlc group and if
neither 1 nor n is invariant under I', then I'¢*V js a symmetric group. This last
holds for either I'] or I'7'if T, is f-irreducible. '

4. A class of finitely based varieties

The results of this part follow already from the theorem of Putcha and Yaqub
«<ited in the introduction. However, in order to simplify the proof, we shall make use
-of a result of Perkins, too. :

First of all remark that every variety defined by a set of permutation zdentztzes is

_finitely based. This follows immediately from the above results. -

Combining this fact with the result of Perkins already mentioned, claiming

that any uniformly penodlc permutatwe variety is finitely based, we obtain

Theorem 3. Let S be a semigroup variety such that in S hold two (not necessarily _
different) permutation equations '

X1 oonXy = X1g e Xpg (6€Z,, lo=#1),
X{ oo Xy = Xqggeer X (teZ2,, mr#m).:

"Then G in finitely based.
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Proof. Put N=max (m, n); then neither 1 nor N are invariant under I’ Ne

" Thus, there exists a number / such that the /-th consequence group of I'y is Zy,,.

Now there are two cases. Either all identities in & are balanced?); then the identities

of length < N+/form a base. Or a non-balanced identity holds in&; however then

holds an identity of the form x**?=x*, too, and € is finitely based in virtue of Per-
‘kins’s result. - '
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) That is, each variable occurs on both sides the same number of times.
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