On the consequences of permutation identities

By G. POLLÁK in Szeged

To Professor \dot{B}. Szōkefalvi-Nag̀y on his 60 th birthday

The aim of this note is to give a description of all permutation identities valid in a permutative semigroup [2]. Yamada [4] was the first to consider permutation identities in semigroups. The best result in the field was attained by Perkins [2] who proved that any commutative semigroup variety is finitely based: In the same work he gives an example showing that no similar proposition holds for varieties satisfying $x y z t=x z y t$. On the other hand, any permutative semigroup variety satisfying an identity of the form $x^{m+d}=x^{m}$ is finitely based. We give another class of (hereditary) finitely based varieties. As a matter of fact, this can be obtained from a result of Purcha and Yaqui [3] claiming that a semigroup in which a permutation identity of rather general type holds satisfies all permutation identities for products containing sufficiently many factors. From our results it would be easy to determine exactly the necessary number of factors, and to give a "standard" form of finite bases of identities (up to bases of permutation groups).

1. The consequence group

Following Yamada [4], we call an identity of the form

$$
\begin{equation*}
x_{1} \ldots x_{n}=x_{1 \sigma} \ldots x_{n \sigma} \tag{1}
\end{equation*}
$$

a permutation identity if σ is a permutation of the set $\{1, \ldots, n\}$. The number n will be called the length of identity (1).

Let \mathcal{S} be a semigroup variety. Denote the set of all permutation identities of length n which hold in \mathfrak{S} by G_{n} and the set of the corresponding permutations by Γ_{n}. Obviously, Γ_{n} is a subgroup of the symmetric group Σ_{n}. The set of permutation identities of length $n+1$ which follow from G_{n} will be denoted by G_{n}^{\prime} and the corresponding set of permutations by Γ_{n}^{\prime}. Again, Γ_{n}^{\prime} is a group called the (first) consequence group of Γ_{n}. The qth consequence group $\Gamma_{n}^{(q)}$ can be defined in a similar way
through the permutation identities of length $n+q$ which follow from G_{n}. We remark though trivial that $\Gamma_{n}^{\left(q_{1}+q_{2}\right)}=\Gamma_{n}^{\left(q_{1}\right)\left(q_{2}\right)}$.

Our main task consists in finding out how Γ_{n}^{\prime} depends on Γ_{n}. For this purpose we shall first look for a comfortable system of generators of Γ_{n}^{\prime}.

Suppose (1) holds in \mathfrak{S}. The subsequent $n+2$ identities follow immediately:

$$
\begin{gather*}
x_{1} \ldots x_{n+1}=x_{1 \sigma} \ldots x_{n \sigma} x_{n+1} \\
x_{1} \ldots x_{n+1}=x_{1} x_{1 \sigma+1} \ldots x_{n \sigma+1} \tag{2}\\
x_{1} \ldots x_{n+1} \doteq u_{1}^{(i)} \ldots u_{n}^{(i)}=u_{1 \sigma}^{(i)} \ldots u_{n \sigma}^{(i)} \quad(i=1, \ldots n)
\end{gather*}
$$

where

$$
u_{j}^{(i)}=\left\{\begin{array}{lll}
x_{j} & \text { if } \quad j<i \\
x_{i} x_{i+1} & \text { if } \quad j=i, \\
x_{j+1} & \text { if } \quad j>i
\end{array}\right.
$$

The corresponding elements $\sigma^{\prime}, \sigma^{\prime \prime}, \lambda_{1}, \ldots, \lambda_{n}$ of the consequence group are given by the equations

$$
j \sigma^{\prime}=\left\{\begin{array}{cl}
j \sigma & \text { if } \tag{1}\\
n+1 . & \text { if } \quad j=n, n+1
\end{array}\right.
$$

$$
\begin{align*}
j \sigma^{\prime \prime} & = \begin{cases}1 & \text { if } j=1, \\
(j-1) \sigma+1 & \text { if } \\
2 \leqq j \leqq n+1 ;\end{cases} \tag{2}\\
j \lambda_{i} & =\left\{\begin{array}{lll}
j \sigma & \text { if } j \leqq i \sigma^{-1}, \quad j \sigma \leqq i, \\
j \sigma+1 & \text { if } j<i \sigma^{-1}, \quad j \sigma>i, \\
(j-1) \sigma & \text { if } j>i \sigma^{-1}, \quad(j-1) \sigma<i, \\
(j-1) \sigma+1 & \text { if } & j>i \sigma^{-1}, \quad(j-1) \sigma \geqq i
\end{array}\right. \tag{3}
\end{align*}
$$

for $i=1, \ldots, n$.
Lemma 1. The consequence group Γ_{n}^{\prime} of Γ_{n} is generated by the elements $\left(3_{1}\right)$, $\left(3_{2}\right),\left(3_{3}\right)$ where σ ranges over Γ_{n}.

It suffices to show that all identities in G_{n}^{\prime} are consequences of the identities (2) where σ ranges over Γ_{n}. Now let

$$
\begin{equation*}
x_{1} \ldots x_{n+1}=x_{1 \tau} \ldots x_{(n+1) \tau} \tag{4}
\end{equation*}
$$

be an identity in G_{n}^{\prime}, i.e. a consequence of G_{n}. This means that there exists a sequence of words $\left(x_{1} \ldots x_{n+1} \equiv\right) a_{0}, a_{1}, \ldots, a_{k}\left(\equiv x_{1 \tau} \ldots x_{(n+1) \tau}\right)$ such that $a_{r} \equiv b_{r} u_{1}^{(r)} \ldots u_{n}^{(r)} c_{r}$, $a_{r+1} \equiv b_{r} u_{1 \sigma(r)}^{(r)} \ldots u_{n \sigma(r)}^{(r)} c_{r}$ where b_{r}, c_{r} are arbitrary and $u_{j}^{(r)}$ nonempty words, $\sigma(r) \in \Gamma_{n}$. Denote the length of the word y by $l(y)$. Then $l\left(a_{r}\right)=l\left(a_{r+1}\right)$ for all $r<k$ and thus, by induction, $l\left(a_{r}\right)=n+1$. On the other hand $l\left(a_{r}\right)=l\left(b_{r}\right)+\sum_{j=1}^{n} l\left(u_{j}^{(r)}\right)+l\left(c_{r}\right)$, and, since $l\left(u_{j}^{(r)}\right)>0$, there are only three possibilities: 1) $l\left(b_{r}\right)=0, l\left(c_{r}\right)=1, l\left(u_{1}^{(r)}\right)=\cdots$
$\cdots=l\left(u_{n}^{(r)}\right)=1$ and $a_{r}=a_{r+1}$ follows from an identity of type $\left.\left(2_{1}\right) ; 2\right) l\left(b_{r}\right)=1, l\left(c_{r}\right)=0$, $l\left(u_{1}^{(r)}\right)=\cdots=l\left(u_{n}^{(r)}\right)=1$ and $a_{r}=a_{r+1}$ follows from an identity of type $\left.\left(2_{2}\right) ; 3\right) l\left(b_{r}\right)=$ $=l\left(c_{r}\right)=0, l\left(u_{i}^{(r)}\right)=2$ for exactly one $i, l\left(u_{j}^{(r)}\right)=1$ for $j \neq i$ and $a_{r}=a_{r+1}$ follows from one of the identities $\left(2_{3}\right)$, q.e.d.

The permutations (3) are not very easy to handle, therefore we shall use the system $\sigma^{\prime}, \lambda_{i} \lambda_{i+1}^{-1}(1 \leqq i \leqq n-1), \lambda_{n} \sigma^{-1}, \sigma^{\prime \prime} \lambda_{1}^{-1}$, equivalent to (3), instead. Introduce the notation

$$
\gamma(i, j)= \begin{cases}(i i+1 \ldots j) & \text { if } \quad i \leqq j \\ (i i-1 \ldots j) & \text { if } \quad i>j\end{cases}
$$

Thus, $\gamma(j, i)=\gamma(i, j)^{-1}$. It is straightforward to check the formulae

$$
\begin{gather*}
\lambda_{i}=\gamma\left(n+1, i \sigma^{-1}\right) \sigma^{\prime} \gamma(i, n+1) \quad \text { for } 1 \leqq i \leqq n \\
\sigma^{\prime \prime}=\gamma(n+1,1) \sigma^{\prime} \gamma(1, n+1) \tag{5}
\end{gather*}
$$

Hence

$$
\begin{align*}
\lambda_{i} \lambda_{i+1}^{-1} & =\gamma\left(n+1, i \sigma^{-1}\right) \sigma^{\prime} \gamma(i, n+1) \gamma(n+1, i+1) \sigma^{\prime-1} \gamma\left((i+1) \sigma^{-1}, n+1\right)= \tag{6}\\
& =\gamma\left(n+1, i \sigma^{-1}\right) \sigma^{\prime} \cdot(i n+1) \cdot \sigma^{-1} \gamma\left((i+1) \sigma^{-1}, n+1\right)= \\
& =\gamma\left(n+1, i \sigma^{-1}\right) \cdot\left(i \sigma^{-1} n+1\right) \cdot \gamma\left((i+1) \sigma^{-1}, n+1\right)= \\
& =\gamma\left(n+1, i \sigma^{-1}+1\right) \gamma\left((i+1) \sigma^{-1}, n+1\right)=\gamma\left((i+1) \sigma^{-1}, i \sigma^{-1}+1\right)
\end{align*}
$$

for $1 \leqq i \leqq n-1$ and

$$
\lambda_{n} \sigma^{\prime-1}=\gamma\left(n+1, n \sigma^{-1}\right) \sigma^{\prime} \gamma(n, n+1) \sigma^{\prime-1}=\gamma\left(n+1, n \sigma^{-1}\right) \cdot\left(n \sigma^{-1} n+1\right)=
$$

$$
=\gamma\left(n+1, n \sigma^{-1}+1\right)
$$

$$
\begin{equation*}
\sigma^{\prime \prime} \lambda_{1}^{-1}=\gamma(n+1,1) \sigma^{\prime} \gamma(1, n+1) \gamma(n+1,1) \sigma^{-1} \gamma\left(1 \sigma^{-1}, n+1\right)=\gamma\left(1 \sigma^{-1}, 1\right) \tag{6"}
\end{equation*}
$$

Remark that, by $\left(3_{1}\right),\left(3_{2}\right)$ and (5),

$$
\begin{gather*}
\left((i+1) \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime-1}=i \sigma^{-1}+1 \text { for } 1 \leqq i \leqq n-1 \\
(n+1) \sigma^{\prime} \sigma^{\prime \prime-1}=n \sigma^{-1}+1 \tag{7}\\
\left(1 \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime-1}=1
\end{gather*}
$$

and, since the symbols $n+1,1 \sigma^{-1},(i+1) \sigma^{-1}(1 \leqq i \leqq n-1)$ are exactly the integers $1, \ldots, n+1$ in a different order, we have obtained

Lemma 2. Γ_{n}^{\prime} is generated by the elements $\sigma^{\prime}, \gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime-1}\right)(i=1, \ldots, n+1)$ where σ ranges over Γ_{n}.

The subgroup of Γ_{n}^{\prime} generated by the cycles $\gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime}-1\right)(1 \leqq i \leqq n+1)$ will be denoted by Γ_{n}^{*}. As a generalization of Lemma 2, we have

Lemma 2'. If

$$
\begin{equation*}
\sigma^{\prime} \sigma^{\prime \prime-1}=v_{1} \ldots v_{s} \tag{8}
\end{equation*}
$$

is the decomposition of $\sigma^{\prime} \sigma^{\prime \prime-1}$ into disjoint cycles for some $\sigma \in \Gamma_{n}$ and i, j occur in the same v_{t} then $\gamma(i, j) \in \Gamma_{n}^{*}$.

Indeed, for some power of $\sigma^{\prime} \sigma^{\prime \prime-1}$ we have $i\left(\sigma^{\prime} \sigma^{\prime \prime 1}\right)^{c}=j$. If $c=1$ then $\gamma(i, j) \in \Gamma_{n}^{*}$ by its definition. Now let $c>1$ and suppose the assertion holds for $c-1$. Put $i\left(\sigma^{\prime} \sigma^{\prime \prime-1}\right)^{c-1}=k$; then $\gamma(i, k) \in \Gamma_{n}^{*}, \gamma(k, j)=\gamma\left(k, k \sigma^{\prime} \sigma^{\prime \prime}\right) \in \Gamma_{n}^{*}$ and hence $\gamma(i, j)=$ $\gamma(k, j) \cdot \gamma(i, k) \in \Gamma_{n}^{*}$.

2. Consequence groups of f-irreducible groups

The following subgroups of the symmetric group Σ_{n} will take important roles in what follows (A_{n} denotes, as usual, the alternating group):

$$
\begin{gathered}
\Sigma_{n, k}=\{\sigma \mid i \sigma=i \text { for } i \geqq k\}, \quad \bar{\Sigma}_{n, k}=\{\sigma \mid i \sigma=i \text { for } i \leqq k\}, \quad \Phi_{k}=\Sigma_{n, k} \otimes \bar{\Sigma}_{n, k}, \\
\Sigma_{n}^{(e)}=\{\sigma \mid i \sigma=i \text { for odd } i\}, \quad \Sigma_{n}^{(o)}=\{\sigma \mid i \sigma=i \text { for even } i\}, \\
\Sigma_{n}^{(p)}=\Sigma_{n}^{(e)} \otimes \Sigma_{n}^{(o)}=\{\sigma \mid i \sigma \equiv i(\bmod 2)\}, \quad A_{n}^{(p)}=\Sigma_{n}^{(p)} \cap A_{n} .
\end{gathered}
$$

Observe that $\sigma \in \Phi_{k}$ iff the images $i \sigma$ of elements $i \leqq k$ precede those of elements $i \geqq k$ (in particular, $k \sigma=k$). Remark also $\Sigma_{n, n+1}=\bar{\Sigma}_{n, 0}=\Sigma_{n}$.

The role of $A_{n}^{(p)}$ is clear from
Lemma 3. $\Gamma_{n}^{\prime} \subseteq A_{n+1}$ iff $\Gamma_{n} \subseteq A_{n}^{(p)}$.
Proof. If $\Gamma_{n} \subseteq A_{n}^{(p)}$ then $\sigma^{\prime}, \sigma^{\prime \prime}$ and $\sigma^{\prime} \sigma^{\prime \prime-1}$ are contained in $A_{n+1}^{(p)}$ for all $\sigma \in \Gamma_{n}$. Thus, $i \equiv i \sigma^{\prime} \sigma^{\prime \prime-1}(\bmod 2)$ for every i and $\gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime-1}\right) \in A_{n+1}$.

Conversely, suppose $\Gamma_{n} \Phi A_{n}^{(p)}$ and let $\sigma \in \Gamma_{n} \backslash A_{n}^{(p)}$. If $\sigma \notin A_{n}$ then $\sigma^{\prime} \ddagger \dot{A}_{n+1}$. If $\sigma \notin \Sigma_{n}^{(p)}$ suppose i is the least natural number such that

$$
\begin{equation*}
i \sigma^{-1} \not \equiv i \quad(\bmod 2) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\gamma\left(i \sigma^{-1},\left(i \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime}-1\right) \notin A_{n+1} \tag{10}
\end{equation*}
$$

Indeed, for $i=1$ we have $\left(1 \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime-1}=1$ and (10) follows from (9). If $i>1$ then $\left(i \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime-1}=(i-1) \sigma^{-1}+1 \equiv i-1+1=i(\bmod 2)$ and therefore $i \sigma^{-1} \neq\left(i \sigma^{-1}\right) \sigma^{\prime} \sigma^{\prime \prime-1}$ $(\bmod 2)$ which proves (10).

The permutation group Γ_{n} will be called fixelement-reducible or f-reducible if. $\Gamma_{n} \subseteq \Phi_{k}$ for some $k \leqq n$, and fixelement-irreducible (f-irreducible) in the opposite case. Now we want to investigate the case where Γ_{n} is f -irreducible.

Lemma 4. If Γ_{n} is f-irreducible then for every $k(1 \leqq k \leqq n)$ there exist symbols i, j such that $i \leqq k<j, \gamma(i, j) \in \Gamma_{n}^{*}$.

Proof. Since Γ_{n} is f-irreducible there exists $\sigma \in \Gamma_{n} \backslash \Phi_{k}$. If $k=1$ this means $1 \sigma \neq 1$, so that $1 \sigma^{-1} \neq 1$ and, by virtue of $\left(7_{3}\right)$ and Lemma 2, we have $\gamma\left(1,1 \sigma^{-1}\right)$ $\left(=\gamma\left(1 \sigma^{-1}, 1\right)^{-1}\right) \in \Gamma_{n}^{*}$. Now put $k \geqq 2$. Then there exist elements i, l with $l \leqq i \leqq k \leqq$. $\leqq l \leqq n, i \sigma>l \sigma$ (and therefore $i \neq 1 \sigma^{-1}$). It is easy to see that one can even suppose $l \sigma=i \sigma-1$. Now by (7) $i \sigma^{\prime} \sigma^{\prime \prime-1}=(i \sigma-1) \sigma^{-1}+1=l+1$, so that $\gamma(i, l+1) \in \Gamma_{n}^{*}$, and the lemma is proved.

Corollary 2. If Γ_{n} is f-irreducible then Γ_{n}^{*} is transitive.
Indeed, $k \gamma(i, j)=k+1$; thus, every symbol ($<n+1$) can be carried over to every greater symbol and, taking into account the inverses of the γ 's, it can be carried over to every element.

This corollary is majorized by the following lemma. The proof of the lemma, however, relies upon the corollary itself.

Lemma 5. If Γ_{n} is firreducible then $\Gamma_{n_{i}}^{*}$ is doubly transitive.
Proof. Since Γ_{n}^{*} is already known to be transitive, we have to prove only that for every $k(1<k<n+1)$ there exists a permutation $\varrho_{k} \in \Gamma_{n}^{*}$ such that

$$
\begin{equation*}
k \varrho_{k}=k+1, \quad 1 \varrho_{k}=1 \tag{11}
\end{equation*}
$$

Recall that $1 \sigma^{-1} \neq 1, n+1$ for some $\sigma \in \Gamma_{n}$. If $\gamma(1, n+1) \in \Gamma_{n}^{*}$ then it has a power such that the permutation $\varrho_{k}=\gamma(n+1,1)^{r_{k}} \cdot \gamma\left(1,1 \sigma^{-1}\right) \gamma(1, n+1)^{r_{k}}$ satisfies (11) (for this, choose $k-1 \sigma^{-1}<r_{k} \leqq \min \left(k-1, n+1-1 \sigma^{-1}\right)$). For the rest of the proof suppose $\gamma(1, n+1) \nsubseteq \Gamma_{n}^{*}$. By Lemma 4, there exist symbols l, m such that $l \leqq k<m$, $\gamma(l, m) \in \Gamma_{n}^{*}$. If $1<l$ put $\varrho_{k}=\gamma(l, m)$. If. $l=1$ then, by assumption, $m<n+1$. Thus, there exist i, j with $i \leqq m<j, \gamma(i, j) \in \Gamma_{n}^{*}$. Put $\tau=\gamma(j, i) \gamma(1, m) \gamma(i, j)$ and

$$
\varrho_{k}= \begin{cases}\tau(=\gamma(2, m+1)) & \text { if } i=1, \\ \gamma(i, j) & \text { if } 1<i \leqq k \\ \gamma(1, m) \tau^{-1}(=(k k+1)(m m+1)) & \text { if } i=k+1, \\ \tau^{-1} \gamma(1, m) \tau(=(i i+1) \gamma(2, m+1)(i i+1)) \text { else. }\end{cases}
$$

This proves our lemma.
Corollary 3. If Γ_{n} is f-irreducible then Γ_{n}^{*} is primitive.
Now we formulate the basic
Theorem 1. If Γ_{n} is f-irreducible then its consequence group Γ_{n}^{\prime} is 1) the subgroup Δ^{\prime} of Σ_{6} generated by $\gamma(1,4)$ and $\gamma(3,6)$ if $n=5, \Gamma_{5}=\Delta=\{(1)$, (14) (25) $\}$; 2) A_{n+1} if $\dot{\Gamma}_{n} \subseteq A_{n}^{(p)}$; 3) Σ_{n+1} else.

Remark. Δ^{\prime} is a group isomorphic to Σ_{5}. It can be obtained from the subgroup $\Sigma_{6,6}$ of Σ_{6} (having 6 for invariant symbol) by an outer automorphism of the latter one.!

Proof. The fact that the consequence group of Δ is Δ^{\prime} can be checked by a straightforward calculation. Remark only that for $\sigma=(14)(25)$ we have $\sigma^{\prime} \sigma^{\prime \prime} \rightarrow 1=$ $=(14)(36)$ so that $\Gamma_{n}^{*}=\Delta^{\prime}$ and $\sigma^{\prime}=\gamma(6,3) \gamma(1,4)^{2} \gamma(3,6) \in \Gamma_{n}^{*}$.

In virtue of Lemma 3, all we need to prove is that Δ is the only f-irreducible group the consequence group of which does not contain the alternating group. In doing this we shall rely upon the following facts (see e.g. [1]):
I. If a subgroup Π_{m-q} of Σ_{m} has q invariant symbols and is transitive and primitive on the rest then any primitive subgroup of Σ_{m} which contains Π_{m-q} is $(q+1)$ fold transitive ([1], Theorem 5.6.2).
II. For $m>12, t>3 \sqrt{m}-2$, the only t-fold transitive subgroups of Σ_{m} are Σ_{m} and A_{m} ([1], p. 68.).
III. If $m=k p+r$ where p is prime, $p>k, r>k, r>2$ then the only $(r+1)$-fold transitive subgroups of Σ_{m} are Σ_{m} and A_{m} ([1], Theorem 5.7.2).

Suppose Γ_{n} is f-irreducible. If Γ_{n}^{*} contains a transposition we have obviously $\Gamma_{n}^{*}=\Sigma_{n+1}$ (because of double transitivity). If Γ_{n}^{*} contains an element of the form $\gamma(k-2, k)$ then $A_{n+1} \subseteq \Gamma_{n}^{*}$. Indeed, for $n=2$ the assertion is obvious. Let $n>2$. It suffices to show that if $k<n+1$ then $\gamma(k-1, k+1) \in \Gamma_{n}^{*}$ and if $k-2>1$ then $\gamma(k-3, k-1) \in \Gamma_{n}^{*}$ since these imply $\gamma(q-2, q) \in \Gamma_{n}^{*}$ for all $3 \leqq q \leqq n+1$ and these cycles generate A_{n+1}. Let us prove the first part; the other one can be treated analogously. By Lemma 4, there exists a cycle $\gamma(i, j) \in \Gamma_{n}^{*}$ such that $i \leqq k \leqq j$. If $i \leqq k-2$ then $\gamma(j, i) \gamma(k-2, k) \gamma(i, j)=\gamma(k-1, k+1) \in \Gamma_{n}^{*}$. If $i=k-1$ or $i=k$ then $\gamma(j, i) \gamma(k-2, k) \gamma(i, j)=(k-2 k k+1)$ or $(k-2 k-1 k+1)$, respectively. However, since $\gamma(k, k-2) \cdot(k-2 k k+1) \cdot \gamma(k-2, k)=(k+1 k-1 k-2)$, in both cases we have $(k-1 k k+1)=(k+1 k-1 k-2)(k-2 k k+1) \in \Gamma_{n}^{*}$.

Now consider two different cycles $\gamma\left(i_{1}, j_{1}\right), \gamma\left(i_{2}, j_{2}\right) \in \Gamma_{n}^{*}\left(\right.$ e.g. $\gamma\left(1,1 \sigma^{-1}\right)$ for $1 \sigma \neq 1$ and $\gamma\left(n \tau^{-1}+1, n+1\right)$ for $\left.n \tau \neq n\right)$. We may suppose $i_{1}<j_{1}, i_{1} \leqq i_{2}<j_{2}$. If, moreover, $j_{2}<j_{1}$ then $\gamma\left(i_{2}-1, j_{2}-1\right)=\gamma\left(i_{1}, j_{1}\right) \gamma\left(i_{2}, j_{2}\right) \gamma\left(j_{1}, i_{1}\right) \in \Gamma_{n}^{*}$. If $j_{2}=j_{1}$ then $\gamma\left(i_{2}+1, j_{2}+1\right)=\gamma\left(j_{1}, i_{1}\right) \gamma\left(i_{2}, j_{2}\right) \gamma\left(i_{1}, j_{1}\right) \in \Gamma_{n}^{*}$. In both cases we have two cycles of the form $\gamma(k, l)$ and $\gamma(k-1, l-1)$. However then $\gamma(l, k) \gamma(l-1, k-1) \gamma(k, l)^{2}=$ $=\gamma(k-1, k+1) \in \Gamma_{n}^{*}$ and hence $\Gamma_{n}^{*} \supseteq A_{n+1}$.

The case $i_{1}=i_{2}, j_{1}<j_{2}$ is symmetrical to the second subcase of the above one.
If $j_{1}=i_{2}$ then $\gamma\left(i_{2}, j_{2}\right) \gamma\left(i_{1}, j_{1}\right)=\gamma\left(i_{1}, j_{2}\right)$ and the pair $\gamma\left(i_{1}, j_{2}\right), \gamma\left(i_{2}, j_{2}\right)$ gives the first case again.

If $j_{1}<i_{2}$ and $n \leqq 6$ then at least one of both cycles is of length $\leqq 3$ and the former argument yields $\Gamma_{n}^{*} \supseteqq A_{n+1}$ once more. Let $n>6$ (i.e. $n+1 \geqq 8$). One of both cycles is of length $\leqq \frac{n+1}{2}$; denote this one by $\gamma(i, j)$. If $j<n+1$ take $\gamma(k, l) \in \Gamma_{n}^{*}$ with
$k \leqq j<l$ (if $j=n+1$ then $i>1$ and we ought to demand $l<i-1 \leqq k$). The permutations $\gamma(i, j), \gamma(l, k) \gamma(i, j) \gamma(k, l)$ generate a subgroup Π_{j-i+2} of Γ_{n}^{*} having at least $\frac{n-1}{2}$ invariant symbols and being primitive on the rest. Thus, by $\mathrm{I}, \Gamma_{n}^{*}$ is $\frac{n+1}{2}$ fold transitive. If $n \geqq 27$ it holds $\frac{n+1}{2}>3 \sqrt{n+1}-2$ and $\Gamma_{n}^{*} \supseteq A_{n+1}$ follows from II.
For $7 \leqq n \leqq 26$ III allows the following maximal multiplicities of transitivity:
$r=3$ for $n+1=8,9,10,13,14,16,17,20,22,25,26$;
$r=4$ for $n+1=11,15,18,19,21,23,27$;
$r=5$ for $n+1=12,24$.
In all cases $r<\frac{n+1}{2}$.
Thus, the only remaining possibility is $i_{1}<i_{2}<j_{1}<j_{2}$ for every pair of cycles. Suppose there are three different cycles $\gamma\left(i_{1}, j_{1}\right), \gamma\left(i_{2}, j_{2}\right), \gamma\left(i_{3}, j_{3}\right) \in \Gamma_{n}^{*}, i_{1}<i_{2}<i_{3}<$ $<i_{1}<j_{2}<j_{3}$. Then

$$
\begin{gathered}
\varrho_{1}=\gamma\left(i_{1}, j_{1}\right) \gamma\left(j_{3}, i_{3}\right) \gamma\left(j_{1}, i_{1}\right) \gamma\left(i_{3}, j_{3}\right)=\left(i_{3}-1 i_{3}\right)\left(j_{1} j_{1}+1\right) \in \Gamma_{n}^{*}, \\
\varrho_{2}=\gamma\left(i_{2}, j_{2}\right) \gamma\left(j_{3}, i_{3}\right) \gamma\left(j_{2}, i_{2}\right) \gamma\left(i_{3}, j_{3}\right)=\left(i_{3}-1 i_{3}\right)\left(j_{2} j_{2}+1\right) \in \Gamma_{n}^{*}, \\
\varrho_{1} \varrho_{2}=\left(j_{1} j_{1}+1\right)\left(j_{2} j_{2}+1\right) \in \Gamma_{n}^{*}, \\
\gamma\left(i_{1}, j_{1}\right) \varrho_{2} \varrho_{1} \gamma\left(j_{1}, i_{1}\right) \varrho_{1} \varrho_{2}=\gamma\left(j_{1}-1, j_{1}+1\right) \in \Gamma_{n}^{*} .
\end{gathered}
$$

Thus, we may suppose Γ_{n}^{*} contains only two cycles: $\gamma_{1}=\gamma\left(i_{1}, j_{1}\right)$ and $\gamma_{2}=\gamma\left(i_{2}, j_{2}\right)$ However, this implies $\sigma^{\prime} \sigma^{\prime \prime-1}=\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right)$ or (1) for every $\sigma \in \Gamma_{n}$ (recall $\sigma^{\prime} \sigma^{\prime \prime-1} \in A_{n+1}$). But $\sigma^{\prime} \sigma^{\prime \prime-1}$ determines σ uniquely; indeed, σ^{\prime} does and the conditions $\sigma^{\prime-1} \gamma(n+1,1) \sigma^{\prime}=\sigma^{\prime} \sigma^{\prime \prime-1} \gamma(n+1,1),(n+1) \sigma^{\prime}=n+1$ determine σ^{\prime}. Hence Γ_{n} is a two-element group and $\sigma(\neq 1)$ is of order 2 . As Γ_{n} is f-irreducible, $1 \sigma \neq 1, n \sigma \neq n$ and, consequently, $i_{1}=1, j_{2}=n+1, j_{1}=1 \sigma^{-1}=1 \sigma, i_{2}=n \sigma+1$ and $\sigma^{\prime} \sigma^{\prime \prime-1}=$ $=\left(1 j_{1}\right) \ldots\left(i_{2}-1 n\right)\left(2 j_{1}+1\right) \ldots\left(i_{2} n+1\right)=\left(1 j_{1}\right)\left(i_{2} n+1\right)$. Hence one finds by a routine induction $\sigma=\left(1 j_{1}\right)\left(2 j_{1}+1\right) \ldots\left(n-j_{1}+1 n\right) ; i_{2}=n-j_{1}+2$. If $j_{1}=n$ then $i_{2}=2$ and $\gamma_{2}^{-1} \gamma_{1}^{-1} \gamma_{2}^{2}=(123)$. Now let $j_{1}<n, i_{2}>2$. Form the following elements:

$$
\begin{aligned}
& \alpha=\gamma_{2}^{-1} \gamma_{1} \gamma_{2}=\left(1 \ldots i_{2}-1 i_{2}+1 \ldots j_{1}+1\right) \\
& \beta=\gamma_{2}^{-1} \gamma_{1} \gamma_{2}^{2}=\left(1 \ldots i_{2}-1 i_{2}+2 \ldots j_{1}+2\right) \\
& \delta=\alpha \beta^{-1}=\left(i_{2}-1 i_{2}+1\right)\left(j_{1}+1 j_{1}+2\right) \\
& \varepsilon=\delta^{-1} \gamma_{1} \delta \gamma_{1}^{-1}=\left(i_{2}-2 i_{2}\right)\left(i_{2}-1 i_{2}+1\right)
\end{aligned}
$$

and, if $i_{2}>3$,

$$
\zeta=\gamma_{1} \varepsilon \gamma_{1}^{-1}=\left(i_{2}-3 i_{2}-1\right)\left(i_{2}-2 i_{2}\right) .
$$

Then

$$
\begin{aligned}
\varepsilon \zeta & =\left(i_{2}-3 i_{2}-1 i_{2}+1\right), \\
\gamma_{2} \gamma_{1} \gamma_{2} \gamma_{1}^{-i} \gamma_{2} \varepsilon \zeta \gamma_{2}^{-1} \gamma_{1}^{2} \gamma_{2}^{-1} \gamma_{1}^{-1} \gamma_{2}^{-1} & =\left(i_{2}-2 i_{2}-1 i_{2}\right) \text { if } i_{2}=j_{1}-1, \\
\gamma_{2} \gamma_{1}^{-2} \gamma_{2} \varepsilon \zeta \gamma_{2}^{-2} \gamma_{1}^{2} \gamma_{2}^{-1} & =\left(i_{2}-1 i_{2} i_{2}+1\right) \text { else. }
\end{aligned}
$$

On the other hand, if $i_{2}=3, j_{1}>4$ put $\eta=\delta^{-1} \gamma_{1}^{-1} \delta \gamma_{1}=(24)(35)$. Then

$$
\begin{gathered}
\eta \varepsilon=\left(\begin{array}{ll}
135
\end{array}\right), \\
\gamma_{2} \gamma_{1}^{-1} \gamma_{2} \gamma_{1}^{-2} \gamma_{2} \gamma_{1} \eta \varepsilon \gamma_{1}^{-1} \gamma_{2}^{-1} \gamma_{1}^{2} \gamma_{2}^{-1} \gamma_{1} \gamma_{2}^{-1}=\left(\begin{array}{ll}
2 & 3
\end{array}\right) .
\end{gathered}
$$

Thus, we have reduced the problem to the case $i_{2}=3, j_{1}=4$ corresponding to $\Gamma_{n}=\Delta$. The theorem is proved.

From the proof it turns out that $\Gamma_{n}^{*} \supseteq A_{n+1}$ if $\Gamma_{n} \neq \Delta$ and $\Gamma_{n}^{*}=\Delta^{\prime}$ if $\Gamma_{n}=\Delta$. Combining this with Lemma 3 and the plus information on Γ_{n}^{*} its proof comprises, we have

Colollary 4. If Γ_{n} is f-irreducible then

$$
\Gamma_{n}^{*}= \begin{cases}\Delta^{\prime} & \text { if } \Gamma_{n}=\Delta \\ A_{n+1} & \text { if } \Gamma_{n} \subseteq \Sigma_{n}^{(p)} \\ \Sigma_{n+1} & \text { else }\end{cases}
$$

Thus, $\Gamma_{n}^{*}=\Gamma_{n}^{\prime}$ or else $\Gamma_{n} \subseteq \Sigma_{n}^{(p)}, \Gamma_{n} \Phi A_{n}$.

3. The general case

The case of f-reducible groups can be reduced now to that of f-irreducible ones. Let $\Gamma_{n}=\bigcap_{t=1}^{s} \Phi_{k_{t}}\left(1 \leqq k_{1}<\cdots<k_{s} \leqq n\right)$ and $\dot{\Gamma}_{n} \Phi \Phi_{k}$ for any other k. Put, furthermore, $k_{0}=0, k_{s+1}=n+1$, and denote $\Sigma_{n, k_{t}} \cap \bar{\Sigma}_{n, k_{t+1}}$ by $P_{t}, k_{t+1}-k_{t}-1$ by $j_{t}(t=0, \ldots, s)$. Then $\Gamma_{n} \subseteq \prod_{t=0}^{s} P_{t}$ and it is easy to see that the mapping $\varphi_{t}: P_{t} \rightarrow \Sigma_{j_{t}}$ defined by $j\left(\varrho \varphi_{t}\right)=\left(j+k_{t}\right) \varrho-k_{t}$ is an isomorphism. Denote by Λ_{t} the projection of Γ_{n} in P_{t}. Then Γ_{n} is a subdirect product of $\Lambda_{0}, \ldots, \Lambda_{s}$. Obviously, $\Lambda_{t} \varphi_{t}$ is f-irreducible. Every $\sigma \in \prod_{t=0}^{s} P_{t}$ has a unique factorization

$$
\begin{equation*}
\sigma=\sigma_{0} \ldots \sigma_{s} \quad\left(\sigma_{t} \in P \cdot\right) \tag{12}
\end{equation*}
$$

in particular, $\sigma_{t} \in \Lambda_{t}$ if $\sigma \in \Gamma_{n}$. Analogously, put $P_{t}^{\prime} \doteq \Sigma_{n+1, k_{t}} \cap \bar{\Sigma}_{n+1, k_{t+1+1}} \subseteq$ $\subseteq \Sigma_{n+1} ;$ then every element of $\prod_{t=0}^{s} P_{t}^{\prime}$ has a unique factorization

$$
\tau=\tau_{0} \ldots \tau_{s} \quad\left(\tau_{t} \in P_{t}^{\prime}\right)
$$

Define $\varphi_{t}^{\prime}: P_{t}^{\prime} \rightarrow \Sigma_{j_{t}+1}$ by the same rule as we did φ_{t} (only for $i \leqq j_{t}+1$ instead of $i \leqq j_{t}$).

Those subdirect factors A_{t} contained in $\Sigma_{n}^{(p)}$ but not in $A_{n}^{(p)}$ behave in a manner slightly different from the rest. Introduce therefore the notation

$$
T=\left\{t \mid 0 \leqq t \leqq s \wedge \Lambda_{t} \subseteq \Sigma_{n}^{(p)} \wedge A_{t} \subseteq A_{n}^{(p)}\right\}
$$

and the projection $\mu: \Gamma_{n} \rightarrow \prod_{t \in T} \Lambda_{t}$ which maps σ onto $\prod_{t \in T} \sigma_{t}$.
The consequence group of an f-reducible group is now fully described by
Theorem.2. Let $\Gamma_{n} \subseteq \bigcap_{t=1}^{s} \Phi_{k_{t}}\left(1 \leqq k_{1}<\cdots<k_{s} \leqq n\right)$ and $\Gamma_{n} \Phi \Phi_{k}$ for any other k. Then

$$
\begin{equation*}
\Gamma_{n}^{\prime}=\left(\Gamma_{n} \mu\right)^{\prime} \times \prod_{t \notin T} \Lambda_{t}^{\prime} \tag{13}
\end{equation*}
$$

Furthermore, $\Lambda_{t}^{\prime}=\left(\Lambda_{t} \varphi_{t}\right)^{\prime} \varphi_{t}^{\prime-1}$ for $1 \leqq t \leqq s$ and

$$
\begin{equation*}
\left(\Gamma_{n} \mu\right)^{\prime}=\left\{\prod_{t \in T} \tau_{t} \mid \tau_{t} \in P_{t}^{\prime} \wedge\left(\exists \sigma \in \Gamma_{n}\right) \forall_{t}\left(\tau_{t} \in A_{n+1} \Leftrightarrow \sigma_{t} \in A_{n}\right)\right\} . \tag{14}
\end{equation*}
$$

Proof. Since $i \sigma=i \sigma_{t}$ for $k_{t} \leqq i \leqq \max \left(\dot{k}_{t+1}, n\right)$, it follows $i \sigma^{\prime}=i \sigma_{t}^{\prime}, i \sigma^{\prime \prime}=(i-1) \sigma+$ $+1=(i-1) \sigma_{t}+1=i \sigma_{t}^{\prime \prime}$ for $k_{t}<i \leqq k_{t+1}$. As the domains of $\sigma_{i}^{\prime}, \sigma_{t}^{\prime \prime}$ and $\sigma_{u}^{\prime}, \sigma_{u}^{\prime \prime}$ are disjoint for $t \neq u$, we have $\sigma^{\prime}=\sigma_{0}^{\prime} \ldots \sigma_{s}^{\prime}, \sigma^{\prime \prime}=\sigma_{0}^{\prime \prime} \ldots \sigma_{s}^{\prime \prime}, \sigma^{\prime} \sigma^{\prime \prime-1}=\left(\sigma_{0}^{\prime} \sigma_{0}^{\prime \prime-1}\right) \ldots\left(\sigma_{s}^{\prime} \sigma_{s}^{\prime \prime-1}\right)$. Moreover, $i \sigma^{\prime} \sigma^{\prime \prime-1}=i \sigma_{t}^{\prime} \sigma_{t}^{\prime \prime-1}$ implies $\gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime-1}\right)=\gamma\left(i, i \sigma_{t}^{\prime} \sigma_{t}^{\prime \prime-1}\right) \in \Lambda_{t}^{\prime}$. If $t \in T$ put $\bar{\sigma}=\prod_{t \in T} \sigma_{t} ;$ the same argument yields $\bar{\sigma}^{\prime}=\prod_{t \in T} \sigma_{t}^{\prime}, \gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime-1}\right)=\gamma\left(i, i \sigma_{t}^{\prime} \sigma_{t}^{\prime \prime-1}\right)=$ $=\gamma\left(i, i \bar{\sigma}^{\prime} \bar{\sigma}^{\prime \prime-1}\right) \in\left(\Gamma_{n} \mu\right)^{\prime}$. Thus, Γ_{n}^{\prime} is contained in the right side of (13).

Before proceeding to the converse, we turn to the statement $\Lambda_{\mathrm{t}}^{\prime}=\left(\Lambda_{t} \varphi_{t}\right)^{\prime} \varphi_{t}^{\prime-1}$. We can see that φ_{t}^{\prime} is an isomorphism, $\left(\varrho \varphi_{t}\right)^{\prime}=\varrho^{\prime} \varphi_{t}^{\prime},\left(\varrho \varphi_{t}\right)^{\prime \prime}=\varrho^{\prime \prime} \varphi_{t}^{\prime}$ for $\varrho \in P_{t}$ and, if $k_{t}<i \leqq k_{t+1}$,

$$
\begin{gathered}
\gamma\left(i . i \varrho^{\prime} \varrho^{\prime \prime-1}\right) \varphi_{t}^{\prime}=\gamma\left(i-k_{t}, i \varrho^{\prime} \varrho^{\prime \prime-1}-k_{t}\right)=\gamma\left(i-k_{t},\left(i-k_{t}\right)\left(\left(\varrho^{\prime} \varrho^{\prime \prime-1}\right) \varphi_{t}^{\prime}\right)-k_{t}\right)= \\
=\gamma\left(i-k_{t},\left(i-k_{t}\right)\left(\varrho \varphi_{t}\right)^{\prime}\left(\varrho \varphi_{t}\right)^{\prime \prime-1}\right) .
\end{gathered}
$$

Hence $\Lambda_{t}^{\prime} \varphi_{t}^{\prime}=\left(\Lambda_{t} \varphi_{t}\right)^{\prime}$ and $\Lambda_{t}^{*} \varphi_{t}^{\prime}=\left(\Lambda_{t} \varphi_{t}\right)^{*} .{ }^{1)}$
Now $\Lambda_{t} \varphi_{t}$ is f-irreducible and therefore $\left(\Lambda_{t} \varphi_{t}\right)^{*}$ is generated by the cyclet $\gamma\left(j, j \lambda^{\prime} \lambda^{\prime \prime-1}\right)\left(1 \leqq j \leqq j_{t}+1, \lambda \in \Lambda_{t} \varphi_{t}\right)$. The same holds for $\left(\Lambda_{t} \varphi_{t}\right)^{\prime}$ if $\Lambda_{t} \varphi_{t} \subseteq \Sigma_{j_{t}}^{(p)}$ or $\Lambda_{t} \varphi_{t} \subseteq A_{j_{t}}^{(p)}$, i.e. for $t \nsubseteq \dot{T}$. Hence, Λ_{t}^{\prime} is also generated by the corresponding cycles $\gamma\left(i, i \varrho^{\prime} \varrho^{\prime \prime-1}\right)\left(k_{t}<i \leqq k_{t+1}, \varrho \in \Lambda_{t}\right)$. By definition of Λ_{t}; there exists $\sigma \in \Gamma_{n}$ such thas σ_{t} in (12) equals to ϱ. However then $\gamma\left(i, i \varrho^{\prime} \varrho^{\prime \prime-1}\right)=\gamma\left(i, i \sigma^{\prime} \sigma^{\prime \prime-1}\right) \in \Gamma_{n}^{\prime}$. Hence $\Lambda_{t} \subseteq \Gamma_{n}^{\prime}$.

Now suppose $t \in T$. Then $\Lambda_{t} \varphi_{t} \subseteq \Sigma_{j_{t}}^{(p)}, \Lambda_{t} \varphi_{t} \varsubsetneqq A_{j_{t}}^{(p)}$ which imply $\left(\Lambda_{t} \varphi_{t}\right)^{\prime}=\Sigma_{j_{t}-1}$, $\left(\Lambda_{t} \varphi_{t}\right)^{*}=A_{j_{t}+1}$. This last gives $\Lambda_{t}^{*} \cong A_{j_{t}+1}$ and so $\Lambda_{t}^{*}=P_{t}^{\prime} \cap A_{n}$. As in the fore-
${ }^{1}$) Remark that this immediately gives $\Gamma_{n}^{*}=\prod_{t=0}^{s} A_{t}^{*}$.
going paragraph for Λ_{t}^{\prime}, now one can verify $\Lambda_{t}^{*} \cong \Gamma_{n}^{\prime}$. Thus $\Gamma_{n}^{\prime} \supseteqq \prod_{t \in T} \Lambda_{t}^{*} \cong \prod_{t \in T} \dot{A_{j_{t}+1}}$. Furthermore, $\left(\Gamma_{n} \mu\right)^{\prime}$ is generated by the elements of $\Lambda_{t}^{*}(t \in T)$ and by those of the form $(\sigma \mu)^{\prime}\left(\sigma \in \Gamma_{n}\right)$. Since $\Lambda_{t}^{*} \subseteq A_{n+1}$ and $(\sigma \mu)_{t}=\sigma_{t}^{\prime}$ for $t \in T$, these generators and hence ($\left.\Gamma_{n} \mu\right)^{\prime}$, too, are contained in the right side of (14). On the other hand if for $\tau=\prod_{t \in T} \tau_{t}$, $\tau_{t} \in P_{t}^{\prime}$ there exists $\sigma \in \Gamma_{n}$ such that $\tau_{t} \in A_{n+1} \Leftrightarrow \sigma_{t} \in A_{n}$ then $\lambda=(\sigma \mu)^{\prime-1} \tau \in$ $\in \prod_{t \in T}\left(P_{t}^{\prime} \cap A_{n+1}\right)=\prod_{t \in T} \Lambda_{t}^{*}$ which is obviously contained in the right side of (14); so is $(\sigma \mu)^{\prime}$ and hence the same holds for $\tau=(\sigma \mu)^{\prime} \lambda$:

Finally, we have seen $\Lambda_{t}^{*} \subseteq \Gamma_{n}^{\prime}$ for all t; thus, in order to prove $\left(\Gamma_{n} \mu\right)^{\prime} \subseteq \Gamma_{n}^{\prime}$ it suffices to show $(\sigma \mu)^{\prime} \in \Gamma_{n}^{\prime}$ for $\sigma \in \Gamma_{n}$. But $\sigma^{\prime}=(\sigma \mu)^{\prime} \prod_{i \in T} \sigma_{t}^{\prime}$ and $\prod_{t \oplus T} \sigma_{t}^{\prime} \in \Gamma_{n}^{\prime}$ has been proved earlier. This completes the proof.

It follows from this theorem that the consequence group of an arbitrary group is a direct product of a certain number of permutation groups of type Δ^{\prime} and of one further group which is an extension of a direct product of alternating groups by an elementary 2 -group. The second consequence group is a direct product of symmetric groups.

Suppose $l \geqq 1$ is the maximal number of consecutive integers $1<k, k+1, \ldots$ $\ldots, k+l-1<n$ such that $\Gamma_{n} \subseteq \bigcap_{t=0}^{l-1} \Phi_{k+t}, \Gamma_{n} \Phi \Phi_{k-1}, \Gamma_{n} \Phi \Phi_{k+l}$. Then the $(l+1)$ st consequence group is the first one being isomorphic to a symmetric group and if neither 1 nor n is invariant under Γ_{n} then $\Gamma_{n}^{(l+1)}$ is a symmetric group. This last holds for either Γ_{n}^{\prime} or $\Gamma_{n}^{\prime \prime}$ if Γ_{n} is f-irreducible.

4. A class of finitely based varieties

The results of this part follow already from the theorem of Putcha and Yaqub cited in the introduction. However, in order to simplify the proof, we shall make use of a result of Perkins, too.

First of all remark that every variety defined by a set of permutation identities is finitely based. This follows immediately from the above results.

Combining this fact with the result of Perkins already mentioned, claiming that any uniformly periodic permutative variety is finitely based, we obtain

Theorem 3. Let $\mathfrak{\Im}$ be a semigroup variety such that in $\mathfrak{\Im}$ hold two (not necessarily different) permutation equations

$$
\begin{array}{lll}
x_{1} \ldots x_{n}=x_{1 \sigma} \ldots x_{n \sigma} & \left(\sigma \in \Sigma_{n},\right. & 1 \sigma \neq 1) \\
x_{1} \ldots x_{m}=x_{1 \tau} \ldots x_{m \tau} & \left(\tau \in \Sigma_{m},\right. & m \tau \neq m)
\end{array}
$$

Then \mathfrak{G} is finitely based.

Proof. Put $N=\max (m, n)$; then neither 1 nor N are invariant under Γ_{N}. Thus, there exists a number l such that the l-th consequence group of Γ_{N} is Σ_{N+l}. Now there are two cases. Either all identities in $\mathfrak{\subseteq}$ are balanced ${ }^{2}$); then the identities of length $<N+l$ form a base. Or a non-balanced identity holds in \mathbb{S}; however then holds an identity of the form $x^{k+d}=x^{k}$, too, and \mathfrak{G} is finitely based in virtue of Perkins's result.

References

[1] M. Hall, The theory of groups (New York, 1959).
[2] P. Perkins, Bases for equational theories of semigroups, J. Algebra, 11 (1968), 298-314.
[3] M. S. Putcha-A. Yaqub, Semigroups satisfying permutation identities, Semigroup ${ }^{\circ}$ Forum, 3 (1971), 68-73.
[4] M. Yamada, The structure of separative bands, Dissertation (Univ. of Utah, 1962).
(Received October 24, 1972)
${ }^{2}$) That is, each variable occurs on both sides the same number of times.

