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Introduction 

The sequence (p^, <p2, ... of random variables on ( X , 3F, P) is called a multi-
plicative system (MS) if 

where r ; ( / = 1 , 2 , . . . , k ) can be equal to 1 or 2. 
Several theorems state that , the properties of a MS resp. ESMS are very similar 

to those of independent systems. 
The best known laws of the iterated logarithm for a MS are the following: 

T h e o r e m A. (S. TAKAHASHI1) [1].) Let tp,, <p2, ... be a uniformly bounded MS 
for which 

j<Pi1<Pi2-(Pik = 0 ( ¡ i < Í 2 ^ - < 4 ; ¿ = 1 , 2 , . . . ) , 

it is called an equinormed strongly multiplicative system (ESMS) if 

fq>t = 0, f<p}=l- ( / = 1 , 2 , . . . ) , 

/vllv'il-v't = f <Pri\f <P?2 ...¡(Pit (i'i < / 2 < 4 ; k= 1 ,2, . . . ) , 

(1) ( / = 1 , 2 , . . . ; j = 1,2, ..., 
Then 

yin log log n 
i g l a.e. 

(2) 

In fact Takahashi assumed (instead of (1)) that 

for any 0 > 1 . (Clearly (1) implies (2).) 

a.e. 

') See also [2]. 
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T h e o r e m B. (GAPOSHKIN [3].) Let <pi, (p2, ... be a uniformly bounded ESMS 
and let a,, a2, ... be a sequence of real numbers for which 

and o° 
/ l og log« 

n 
where A2 = 2 al• Then 

k= L 
n 

ZakVk 
k= 1 

}/2Al\og\ogA„ 

T h e o r e m C. (RÉVÉSZ [4].) Let q>i} <p2, ...'be a uniformly bounded MS for 
which 

f <pl <Ph ••• (pl = 1 O'l < h < ••• < 4 ; k= I,2, ...). 

hm , k~l = ^ 1 a.e. W-*oo 

Then 

V2nlogIogn 

In this paper we intend to find a common generalization of Theorems A and B. 
Our theorem can be formulated as follows: 

Th e o r e m 1. Let (pi, <p2, ... be a uniformly bounded MS and let alt a2, ... be 
a sequence of real numbers for which 

(3) an = o[-7===! •and 
( J / log lognJ 

n 
where A2(n) = A2 = 2 a2. Further, let Mk — Mk(d), defined by 

k=i 

(4) A 2
M k _ ^ e k s A 2

M k 

and suppose 
(5) Hm ^ > 0 a.e. 

Anfk 

for any 0> 1, where T2(n)=Tf= 2 al <Pk- Then 
k= 1 

Hm = - 1 a.e., 

tl 
where S(n) = Sn = 2 ak(pk. 

k= 1 

R e m a r k . This theorem is clearly a generalization of Theorem A. The fact 
that it is also a generalization of Theorem B is shown in the consequence of Lemma 4. 

The proof of this Theorem is essentially based on that of TAKAHASHI [ 1 ] . . 

§ 1 contains some inequalities. The proof of Theorem 1 is prepared in § 2. 
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§ 1. Inequalities 

T h e o r e m D . ( A Z U M A [ 5 ] . ) Let <pl, cp2, ..., cp„ be a uniformly bounded M S 

(\<pl\^K1, / = 1 , 2 , . . . , n) and let o , , a2, ..., an be a sequence of real numbers, further 
let Abe a positive number. Then 

r x s [A2A2K2
x\ J eXb exp - 1, 

where S = 2 ak(pk and A2 = 2 ak. 
k=1 k=1 

We reproduce the proof here because the original one contains a minor miss-
print. 

P r o o f . Since ex is a convex function, for | x | s l and a ^ O we have 

I„I M +ax ,.\a\—ax . .. ax . ., .. 
e ~ £ 2M~ + e' 2\aT = ch(W) + ^Tsh(l«D-

Hence 

{e^ = J n ^ [ a k A K l ^ 

A " 
= 1 n ch ( ^ A K j + - g j - g - sh ( k | A/^) 

- A cmki«,) - A z s " * k=l k = 1 m = 0 (¿m)l k = 1 m = 0 ml 

» ( A2K.2a21 {A2K2A2 

i.e., Theorem D is proved. 

T h e o r e m 2. Let (pl, cp2, ..., (pn ( |<p ; |SK t ; / = 1 , 2 , . . . , « ) be a sequence of 
uniformly bounded random variables and let alt a2, ..., an be a sequence of real num-
bers. Then 

( A2 T2 ) " 
exp 1 5 — (1 + 2AK t max \ak\) s JJ (1 4- Aak(Pk) 

I. ^ lSJl==ii ) k= 1 
where 

s = 2 ak<pk, T2 = 2 al<Pk, A2 = 2 al.i 
k= 1 k= 1 fc— 1 

and A is a positive number for which 

AKX max |afc| s } . 
l s k s , 

23* 
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P r o o f . Since 

we have 
if ex S (1 + * ) exp |JC3| I if |*| s i 

exp(AS) ^ (t + M % ) e x p i ^ ^ + A3 \ak<pk\* \ s 

(32 y 2 ) n 

— — (1+2A/ST, max |ak|) 77 ( 1 + M ^ lSkSn ^4=1 
<Pk) 

which implies our Theorem. . 

T h e o r e m 3. Let (px, (p2, ..., q>„ be a uniformly bounded MS (\<pi\sKl; 
/ = 1, 2, . . . , n) and let ax,a2, ..., a „ be a sequence of real numbers, further let y be 

— • 2 " 
a positive number. Then P{|S|S_yA", A^2}s2e~y , where S = 2 ak<Pk <*nd A2 = 

k— 1 

• = 2 
k=l 

P r o o f . Set A=(/2j)/(A:1 A). Then by Theorem D we have 

X 2 A 2 K 2 
JeA|s| ^ Jexs + Je-).s ^ 2 exp 2 

and the Markov inequality gives 

P( |S | ^ ykiA / 2 ) = P(e A | s | ë exp (ÀyKi A f ï ) ) S 

2 exp 
'A2A2 K\ 

— XyK^A f 2 \ = 2 exp (y2 — 2y2) = 2e~*\ 

which proves our Theorem 3. 

C o n s e q u e n c e of T h e o r e m 3. Let <p{, q>2, ... (Iç^l^ÀT, ; i= 1, 2, ...) be a se-
quence of uniformly bounded random variables for which 

J(pfl(pfI...(pfk = 1 (/*! < i2 < ••• < / k ; k = 1 , 2 , . . . ) 

and let ai,a2, ... be a sequence of real numbers satisfying condition (3). Then 

a e f s 2exp , ilajyf + ••• +aj<pf, t 

II a2 + :-+a2
n 

2 / k 

2(Kf +1)2 

S 2 exp | — log log 

for any £>0 if n is large enough. 

¿ A ) 

z«t 
k= 1 
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P r o o f . Clearly {<p£ — 1} is a MS. Hence by Theorem 3, 

a\q>\+ ••• +alq>l - 1 S e} = P { k2 al (<pl - 1) s £ 1 a* j = 

= P 
I _ 

il(Kl + \)V % at 
(Kf + \)V 2 at 

^ 2exp 
2(K2 +1)2 

Since (3) implies 

we have 

2al 
*=i 

max \ak\ = o 
isksn ^j/loglog,4„ 

2 4 k= 1 

A2
 = 2 4 

4=1 

4(K 2 +1)2 

2 ^ 2 ( m a x K | ) 2 

t=l \k= 1 ^ ISfcSn 

log log M/ 2 4 
k = 1 

f n is large enough, and this proves the consequence. 

T h e o r e m 4. Let <plt (p2, ••., <pn be a uniformly bounded MS 
/=1,2, ...,«) and let ax,a2, ...,a„ be a sequence of real numbers. Then 

(6) P { max |S(w)| g K^A^iogXogA) ^ ^ 3 e x p ( - 2 1 o g l o g ^ ) 
1 SmSn 

where 
m n 

S(m) = 2 "k<Pk, A2 = 2 4-
k—i k=l 

K2 and K3 are suitable positive constants. 

Before the proof of this theorem we introduce some notations: Let aita2, ... 
be a sequence of real numbers and let 

/ = {m, m + 1 ,...,«} = [m, ri\ (m^ri) 

be the interval of the integers between m and n. Let VI be a partition of /. In its 
definition we distinguish two cases: 

n 
Case 1. There exists Q such that m^gSn and al s i 2 a?• 

Case 2. Such an integer does not exist. 
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In Case 1, 

v / = {{m,m + 1, . . . , e - i } , { e } , { e + i , c + 2 , . . . , » } } . 

(Of course it can happen that one of these intervals is empty.) 
In Case 2, 

{ V / = {m,m + 2, . . . , t} , {T+1,T + 2, •...,»}}, 

where T is defined by 
t 

2 a}- 2 
i=m (=T+1 

= min. 

Now let P be a sequence of intervals: 

P = {[mi, «J, [m2, n2], = {IUI2, ...,/J 

(wx s < m2 S n2 < ••• < ms s ns). 

Then we define C//* as the subsequence of P containing those elements (of P) 
which have more than 1 element (integer). 

Finally let 
V P = { V / „ V / 2 , . . . ,V/S}. 

Now construct the sequence P0, P,, ... as follows: 

P0 = {[!,«]} and Pl+1=VUPt (t = 0 , 1 , 2 , . . . ) . 

We mention the following two simple properties of the sequence P0,P{, ... . 

Property 1. If p, is the number of the elements of P, then //, ^ 3 . 2 ' - 1 

0 = 1 , 2 , . . . ) . 

Property 2. If I,j <E P, then 

A2(t,j) s (|)'-M2(/) \A2(t,j) = 2 ah A2(I) = 2 
v kerCJ k=i 

Now we can turn to the 

P r o o f of T h e o r e m 4. Clearly we have CO 
max |5(w)| ^ 2 2 max |S( i , / ) | 

1 SmSn ( = 0 imjsitc 
where 

S(t,j) = 2 ak(pk; {In,I,2, -Jtn,} = Pf 

Set 

y, = V21og logA + 2t, A2= 2 al, 
k= 1 

F, = U (ISC/,./)! ^ y^y,K{ A (/,./)}, E=\J Ft. 
j= i 
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Then by Theorem 3 we have 

hence 

and 

p—2 log log A 
v{\S{t,j)\ S ily.K.AitJ)} s 2e~yt = 2 ^ 

lit p-2Ioglog/í -I 
P(F,) ^ Z 2 — S ^ e - 2 ' ^ 1 0 ^ 

;=i e z 

(7) 2 P M ^ 
( = 0 

Clearly if F, then 

max 15(7,./)| S / 2 ^ /21og.log ^ + max A(t,j) ^ 

/ 2 }/2i max ^ (/,7) + / 2 7 ^ j/2 log logX max /1(7,./) s 

I S J S / I , L S J S I ! 

S / 2 / 2 7 ( / | ) ' - 1 , 4 + i2Kx \jl log l o g l ( / ! ) ' " 1 /1 

and if x ^ i s then 
^ ^ uu ^ ^ 

(8) max |S(/w)| ^ 
1 SmSn 

4K, Z Í t { Í i ) ' +Kli\og\ogA 2 ( / l ) ' 
! = 0 (=0 

s ü : 2 ^ 2 i o g log/4. 
(7) and (8) imply (6). 

§ 2. The proof of Theorem 1 

First we prove several lemmas. 

L e m m a 1. Under the conditions and notations of Theorem 1 we have 

A ^(M,) _ T2(Mk) _ . „ , ^ , . c 
\ \jlA2 (A/t) log log A (Mk) 2CA2 (Mk) isjsm, 

o ( 1 

( 1 + 2 ^ max | Ö J | ) + ( l + £ ) — 
1 

for any C>- 0 where 

7 - ur\ 1^2 log log A (Mfc) 

P r o o f . Set 
^ = ( 1 + e ) C , / ^ 2 ( A f J f c ) l o g l o g ^ ( A f f c ) 
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Since condition (3) implies 

max \aj\ = o [— . , 
isycjv |^Vloglog/4N J 

we have 

^ max N ^ l / y p p ^ ) ^ m a x lsj~=Mk 1 C A (Mk) 1 sjsMk 

(if k is large enough). Furthermore, Theorem 2 implies 

„ f S(Mk) T2(Mk) / f . „ ' , C 1 
P j , y „ (1 + 21K. max « / ) + ( - + 1 = 

j /2 /1 2 (M*) log log A (Mk) 2A2(Mk)C'^ 1
 1SJSMJ jU K J 2 J 

= max + J = 
I Z ISjSMfc J 

= p j e x p | a S ( M , ) - ^ - T 2 ( M , ) ( 1 + 2 ^ ^ max S e ^ j S 

o-iy-0\ 1 

, A:1" 
i.e., Lemma 1 is proved. 

L e m m a 2. Under the conditions of Theorem 1 for any one can find a set 
F( 6 SP), a positive number and an integer n0 such that 

P ( F ) S Q 

and (Tf/A2)* £ Jf hold on F if «S«0. 

P r o o f . This lemma is a trivial consequence of (5). 

L e m m a 3. Define the event 91 by 

9tk = ( — = = £ ^ = = ^ 1 + 4 ( ¿ > 0 ) . 
i y 2 r 2 (Mk) log log A (Mk) J 

Then (under the conditions of Theorem 1) only finitely many can occur with 
probability 1. 

P r o o f . By Lemma 1 among the events 

S{Mk) 
®*(C) 

^2T2 (Mk)log log A (Mk) 

) A2(Mk) 
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only finitely many will occur. Let now be a sequence of random variables taking 
the values C , , C 2 , . . . , CR (k= 1, 2, . . . ; C , > 0 ; /= 1, 2, . . . , R). Then among the events 
®k(yk) o n ' y finitely many will occur (with probability 1) too. 

Define a uniform partition of the interval (Jf, A',) (where J f is defined in 
Lemma 2): 

C j — J f " H — ^ — , C2 — JiT + 2 — ^ — , ..., CR — 

and let 

Ik = 
R K ' R • ~ \ A2(Mk) ~ R 

o if \ f z m * x . 
A2(Mk) 

Then 

W H F C L S { M k ) max |«y|). 
X^IT2 (Mk) log log A (Mk) 2yky A2(Mk)\ 

+ (1 + e) 7,1 

9 1/ 

" A2(Mk) 

T2(Mk) 1 
A 2 (Mk) R 

2}lT2(Mk) 
" 7 aHM,) 

- 1 ( 1 + e ( 1 ) ) + fi+I>(l+_y,1 + 4} 

if k is large enough and E and R are chosen in a suitable way. This proves our: 
Lemma 3. 

L e m m a 4. Set 

Fk = { max | S ( A 0 - S ( M t ) | £ zK2U2(Mk)\og \ogA{Mk)) 
MkSiV<Mk+1 

for any e > 0. Then (under the conditions of Theorem 1) among the events Fk only 
finitely many occur with probability 1. 

P r o o f . Since 

i[A2(Mk+i-\)-A2(Mk)]\og\^U2(Mk^-\)-A2(m 
yA2(Mk) log log A (Mk) 
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(if k is large enough and 0 is chosen near to 1), by Theorem 4 we have 

max \S(N)-S(Mk)\ ^ 
Mk*N-=Mk+l 

— K2 /И2(М,+ , - \)-A2(Mk)]\og\ogU4Mk+x-\)-A2(Mk)} s 

•s K3 exp(—21oglog Í A2(Mk+x — \) — A2(M^)) = О 

i.e., Lemma 4 is proved. 
This lemma, the Consequence of Theorem 3 and the simple relation 

immediately imply 

C o n s e q u e n c e of L e m m a 4 . Let <Pi,q>2, ••• be a sequence of uniformly bound-
ed random variables for which 

and let at,a2, ... be a sequence of real numbers satisfying condition (3). Then 
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