A new law of the iterated logarithm for multiplicative systems

By P. REVESZ in Budapest

To Professor B. Sz.-Nagy on his 60th birthday

Introduction

The sequence $\varphi_{1}, \varphi_{2}, \ldots$ of random variables on $(X, \mathscr{F}, \mathbf{P})$ is called a multiplicative system (MS) if

$$
\int \varphi_{i_{1}} \varphi_{i_{2}} \ldots \varphi_{i_{k}}=0 \quad\left(i_{1}<i_{2}<\cdots<i_{k} ; k=1,2, \ldots\right)
$$

it is called an equinormed strongly multiplicative system (ESMS) if

$$
\begin{gathered}
\int \varphi_{i}=0, \int \varphi_{i}^{2}=1 \quad(i=1,2, \ldots) \\
\int \varphi_{i_{1}}^{r_{1}} \varphi_{i_{2}}^{r_{2}} \ldots \varphi_{i_{k}}^{r_{k}}=\int \varphi_{i_{1}}^{r_{1}} \int \varphi_{i_{2}}^{r_{2}} \ldots \int \varphi_{i_{k}}^{r_{k}} \quad\left(i_{1}<i_{2}<\cdots<i_{k} ; k=1,2, \ldots\right)
\end{gathered}
$$

where $r_{i}(i=1,2, \ldots, k)$ can be equal to 1 or 2 .
Several theorems state that the properties of a MS resp. ESMS are very similar to those of independent systems.

The best known laws of the iterated logarithm for a MS are the following:
Theorem A. (S. Takahashi ${ }^{1}$) [1].) Let $\varphi_{1}, \varphi_{2}, \ldots$ be a uniformly bounded MS for which

$$
\begin{equation*}
\int \varphi_{i}^{2}=\int \varphi_{i}^{2} \varphi_{j}^{2}=1 \quad(i=1,2, \ldots ; j=1,2, \ldots, i \neq j) \tag{1}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\varphi_{1}+\varphi_{2}+\cdots+\varphi_{n}}{\sqrt{2 n \log \log n}} \leqq 1 \quad \text { a.e. }
$$

In fact Takahashi assumed (instead of (1)) that

$$
\begin{equation*}
\frac{\varphi_{1}^{2}+\varphi_{2}^{2}+\ldots+\varphi_{\left[\theta^{n}\right]}^{2}}{\left[\theta^{n}\right]} \rightarrow 1 \quad \text { a.e. } \tag{2}
\end{equation*}
$$

for any $\theta>1$. (Clearly (1) implies (2).)
$\left.{ }^{1}\right)$ See also [2].

Theorem B. (Gaposhinin [3].) Let $\varphi_{1}, \varphi_{2}, \ldots$ be a uniformly bounded ESMS and let a_{1}, a_{2}, \ldots be a sequence of real numbers for which

$$
a_{n}=o\left(\frac{A_{n}}{\sqrt{\log \log n}}\right) \text { and } A_{n} \rightarrow \infty
$$

where $A_{n}^{2}=\sum_{k=1}^{n} a_{k}^{2}$. Then

$$
\varlimsup_{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k} \varphi_{k}}{\sqrt{2 A_{n}^{2} \log \log A_{n}}} \leqq 1 \quad \text { a.e. }
$$

Theorem C. (Révész [4].) Let $\varphi_{1}, \varphi_{2}, \ldots$ be a uniformly bounded MS for which

$$
\int \varphi_{i_{1}}^{2} \varphi_{i_{2}}^{2} \ldots \varphi_{i_{k}}^{2}=1 \quad\left(i_{1}<i_{2}<\cdots<i_{k} ; k=1,2, \ldots\right) .
$$

Then

$$
\varlimsup_{n \rightarrow \infty} \frac{\varphi_{1}+\varphi_{2}+\cdots+\varphi_{n}}{\sqrt{2 n \log \log n}} \geqq 1 \quad \text { a.e. }
$$

In this paper we intend to find a common generalization of Theorems A and B. Our theorem can be formulated as follows:

Theorem 1. Let $\varphi_{1}, \varphi_{2}, \ldots$ be a uniformly bounded MS and let a_{1}, a_{2}, \ldots be a sequence of real numbers for which

$$
\begin{equation*}
a_{n}=o\left(\frac{A_{n}}{\sqrt{\log \log n}}\right) \text { and } A_{n} \rightarrow \infty \tag{3}
\end{equation*}
$$

where $A^{2}(n)=A_{n}^{2}=\sum_{k=1}^{n} a_{k}^{2}$. Further, let $M_{k}=M_{k}(\theta)$, defined $\cdot b y$

$$
\begin{equation*}
A_{M_{k}-1}^{2}<\theta^{k} \leqq A_{M_{k}}^{2} \tag{4}
\end{equation*}
$$

and suppose

$$
\begin{equation*}
\varliminf_{k \rightarrow \infty} \frac{T_{M_{k}}^{2}}{A_{M_{k}}^{2}}>0 \quad \text { a.e. } \tag{5}
\end{equation*}
$$

for any $0>1$, where $T^{2}(n)=T_{n}^{2}=\sum_{k=1}^{n} a_{k}^{2} \varphi_{k}^{2}$. Then

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2} T_{n}^{2} \log \log A_{n}} \leqq 1 \quad \text { a.e., }
$$

where $\dot{S}(n)=S_{n}=\sum_{k=1}^{n} a_{k} \varphi_{k}$.
Remark: This theorem is clearly a generalization of Theorem A. The fact that it is also a generalization of Theorem B is shown in the consequence of Lemma 4.

The proof of this Theorem is essentially based on that of Takahashi [1].
§ 1 contains some inequalities. The proof of Theorem 1 is prepared in $\S 2$.

§ 1. Inequalities

Theorem D. (Azuma [5].) Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ be a uniformly bounded MS $\left(\left|\varphi_{i}\right| \leqq K_{1}, i=1,2, \ldots, n\right)$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers, further let λ be a positive number. Then

$$
\int e^{\lambda S} \leqq \exp \left(\frac{\lambda^{2} A^{2} K_{1}^{2}}{2}\right)
$$

where $S=\sum_{k=1}^{n} a_{k} \varphi_{k}$ and $A^{2}=\sum_{k=1}^{n} a_{k}^{2}$.
We reproduce the proof here because the original one contains a minor missprint.

Proof. Since e^{x} is a convex function, for $|x| \leqq 1$ and $a \neq 0$ we have

$$
e^{a x} \leqq e^{|a|} \frac{|a|+a x}{2|a|}+e^{-|a|} \frac{|a|-a x}{2|a|}=\operatorname{ch}(|a|)+\frac{a x}{|a|} \operatorname{sh}(|a|) .
$$

Hence

$$
\begin{gathered}
\int e^{\lambda S}=\int \prod_{k=1}^{n} \exp \left(a_{k} \lambda K_{1} \frac{\varphi_{k}}{K_{1}}\right) \leqq \\
\leqq \int \prod_{k=1}^{n}\left[\operatorname{ch}\left(\left|a_{k}\right| \lambda K_{1}\right)+\frac{a_{k}}{\left|a_{k}\right|} \frac{\varphi_{k}}{K_{1}} \operatorname{sh}\left(\left|a_{k}\right| \lambda K_{1}\right)\right]= \\
=\prod_{k=1}^{n} \operatorname{ch}\left(\left|a_{k}\right| \lambda K_{1}\right)=\prod_{k=1}^{n} \sum_{m=0}^{\infty} \frac{\left(\lambda K_{1}\left|a_{k}\right|\right)^{2 m}}{(2 m)!} \leqq \prod_{k=1}^{n} \sum_{m=0}^{\infty} \frac{\left(\lambda K_{1}\left|a_{k}\right|\right)^{2 m}}{2^{m} m!}= \\
=\prod_{k=1}^{n} \exp \left(\frac{\lambda^{2} K_{1}^{2} a_{k}^{2}}{2}\right)=\exp \left(\frac{\lambda^{2} K_{1}^{2} A^{2}}{2}\right),
\end{gathered}
$$

i.e., Theorem D is proved.

Theorem 2. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\left(\left|\varphi_{i}\right| \leqq K_{1} ; i=1,2, \ldots, n\right)$ be a sequence of uniformly bounded random variables and let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers. Then

$$
\exp \left(\lambda S-\frac{\lambda^{2} T^{2}}{2}\left(1+2 \lambda K_{1} \max _{1 \leqq k \leqq n}\left|a_{k}\right|\right)\right) \leqq \prod_{k=1}^{n}\left(1+\lambda a_{k} \varphi_{k}\right)
$$

where

$$
S=\sum_{k=1}^{n} a_{k} \dot{\varphi}_{k}, \quad T^{2}=\sum_{k=1}^{n} a_{k}^{2} \varphi_{k}^{2}, \quad A^{2}=\sum_{k=1}^{n} a_{k}^{2}
$$

and λ is a positive number for which

$$
\lambda K_{1} \max _{1 \leqq k \leqq n}\left|a_{k}\right| \leqq \frac{1}{2}
$$

Proof. Since

$$
e^{x} \leqq(1+x) \exp \left(\frac{x^{2}}{2}+\left|x^{3}\right|\right) \quad \text { if } \quad|x| \leqq \frac{1}{2}
$$

we have

$$
\begin{aligned}
\exp (\lambda S) \leqq \prod_{k=1}^{n}\left(1+\lambda a_{k} \varphi_{k}\right) \exp \left(\frac{\lambda^{2} a_{k}^{2} \varphi_{k}^{2}}{2}+\lambda^{3}\left|a_{k} \varphi_{k}\right|^{3}\right) & \leqq \\
& \leqq \exp \left(\frac{\lambda^{2} T^{2}}{2}\left(1+2 \lambda K_{1} \max _{1 \leqq k \leqq n}\left|a_{k}\right|\right)\right) \prod_{k=1}^{n}\left(1+\lambda a_{k} \varphi_{k}\right)
\end{aligned}
$$

which implies our Theorem.
Theorem 3. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ be a uniformly bounded MS ($\left|\varphi_{i}\right| \leqq K_{1}$; $i=1,2, \ldots, n)$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers, further let y be a positive number. Then $\mathbf{P}\left\{|S| \geqq y K_{1} A \sqrt{2}\right\} \leqq 2 e^{-y^{2}}$, where $S=\sum_{k=1}^{n} a_{k} \varphi_{k}$ and $A^{2}=$ $=\sum_{k=1}^{n} a_{k}^{2}$.

Proof. Set $\lambda=(\sqrt{2} y) /\left(K_{1} A\right)$. Then by Theorem D we have

$$
\int e^{\lambda|S|} \leqq \int e^{\lambda S}+\int e^{-\lambda S} \leqq 2 \exp \left(\frac{\lambda^{2} A^{2} K_{1}^{2}}{2}\right)
$$

and the Markov inequality gives

$$
\begin{gathered}
\mathbf{P}\left(|S| \geqq y \dot{K}_{1} A \sqrt{2}\right)=\mathbf{P}\left(e^{\lambda|S|} \geqq \exp \left(\lambda y K_{1} A \sqrt{2}\right)\right) \leqq \\
\leqq 2 \exp \left(\frac{\lambda^{2} A^{2} K_{1}^{2}}{2}-\lambda y K_{1} A \sqrt{2}\right)=2 \exp \left(y^{2}-2 y^{2}\right)=2 e^{-y^{2}},
\end{gathered}
$$

which proves our Theorem 3.
Consequence of Theorem 3. Let $\varphi_{1}, \varphi_{2}, \ldots\left(\left|\varphi_{i}\right| \leqq K_{1} ; i=1,2, \ldots\right)$ be a sequence of uniformly bounded random variables for which

$$
\int \varphi_{i_{1}}^{2} \varphi_{i_{2}}^{2} \ldots \varphi_{i_{k}}^{2}=1 \quad\left(i_{1}<i_{2}<\cdots<i_{k} ; k=1,2, \ldots\right)
$$

and let a_{1}, a_{2}, \ldots be a sequence of real numbers satisfying condition (3). Then

$$
\begin{gathered}
\mathbf{P}\left\{\left|\frac{a_{1}^{2} \varphi_{1}^{2}+\cdots+a_{n}^{2} \varphi_{n}^{2}}{a_{1}^{2}+\cdots+a_{n}^{2}}-1\right| \geqq \varepsilon\right\} \leqq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(K_{1}^{2}+1\right)^{2}} \frac{\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}}{\sum_{k=1}^{n} a_{k}^{4}}\right) \leqq \\
\leqq 2 \exp \left(-\log \log \left(\sqrt{\sum_{k=1}^{n} a_{k}^{2}}\right)\right)
\end{gathered}
$$

for any $\varepsilon>0$ if n is large enough.

Proof. Clearly $\left\{\varphi_{k}^{2}-1\right\}$ is a MS. Hence by Theorem 3,

$$
\begin{gathered}
\mathbf{P}\left\{\left|\frac{a_{1}^{2} \varphi_{1}^{2}+\cdots+a_{n}^{2} \varphi_{n}^{2}}{a_{1}^{2}+\cdots+a_{n}^{2}}-1\right| \geqq \varepsilon\right\}=\mathbf{P}\left\{\left|\sum_{k=1}^{n} a_{k}^{2}\left(\varphi_{k}^{2}-1\right)\right| \geqq \varepsilon \sum_{k=1}^{n} a_{k}^{2}\right\}= \\
=\mathbf{P}\left\{\left|\sum_{k=1}^{n} a_{k}^{2}\left(\varphi_{k}^{2}-1\right)\right| \geqq \sqrt{2} \frac{\varepsilon \sum_{k=1}^{n} a_{k}^{2}}{\sqrt{2}\left(K_{1}^{2}+1\right) \sqrt{\sum_{k=1}^{n} a_{k}^{4}}}\left(K_{1}^{2}+1\right) \sqrt{\sum_{k=1}^{n} a_{k}^{4}}\right\} \leqq \\
\leqq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(K_{1}^{2}+1\right)^{2}} \frac{\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}}{\sum_{k=1}^{n} a_{k}^{4}}\right)
\end{gathered}
$$

Since (3) implies

$$
\max _{1 \leqq k \leqq n}\left|a_{k}\right|=o\left(\frac{A_{n}}{\sqrt{\log \log A_{n}}}\right) \quad\left(A_{n}^{2}=\sum_{k=1}^{n} a_{k}^{2}\right),
$$

we have

$$
\frac{\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}}{\sum_{k=1}^{n} a_{k}^{4}} \geqq \frac{\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}}{\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\max _{1 \leqq k \leqq n}\left|a_{k}\right|\right)^{2}} \geqq \frac{4\left(K_{1}^{2}+1\right)^{2}}{\varepsilon^{2}} \log \log \left(\sqrt{\sum_{k=1}^{n} a_{k}^{2}}\right)
$$

$\mathrm{f} n$ is large enough, and this proves the consequence.
Theorem 4. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ be a uniformly bounded MS ($\left|\varphi_{i}\right| \leqq K_{1}$; $i=1,2, \ldots, n)$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers. Then

$$
\begin{equation*}
\mathbf{P}\left\{\max _{1 \leqq m \leqq n}|S(m)| \geqq K_{2} \sqrt{A^{2} \log \log A}\right\} \leqq K_{3} \exp (-2 \log \log A) \tag{6}
\end{equation*}
$$

where

$$
S(m)=\sum_{k=1}^{m} a_{k} \varphi_{k}, \quad A^{2}=\sum_{k=1}^{n} a_{k}^{2} .
$$

K_{2} and K_{3} are suitable positive constants.
Before the proof of this theorem we introduce some notations: Let a_{1}, a_{2}, \ldots be a sequence of real numbers and let

$$
I=\{m, m+1, \ldots, n\}=[m, n] \quad(m \leqq n)
$$

be the interval of the integers between m and n. Let VI be a partition of I. In its definition we distinguish two cases:

Case 1. There exists ϱ such that $m \leqq \varrho \leqq n$ and $a_{e}^{2} \geqq \frac{1}{2} \sum_{i=m}^{n} a_{i}^{2}$.
Case 2. Such an integer does not exist.

In Case 1,

$$
\mathrm{V} I=\{\{m, m+1, \ldots, \varrho-1\},\{\varrho\},\{\varrho+1, \varrho+2, \ldots, n\}\} .
$$

(Of course it can happen that one of these intervals is empty.)
In Case 2,

$$
\{\mathrm{V} I=\{m, m+2, \ldots, \tau\},\{\tau+1, \tau+2, \ldots, n\}\}
$$

where τ is defined by

$$
\left|\sum_{i=m}^{\tau} a_{i}^{2}-\sum_{i=\tau+1}^{n} a_{i}^{2}\right|=\min
$$

Now let P be a sequence of intervals:

$$
\begin{gathered}
P=\left\{\left[m_{1}, n_{1}\right],\left[m_{2}, n_{2}\right], \ldots,\left[m_{s}, n_{s}\right]\right\}=\left\{I_{1}, I_{2}, \ldots, I_{s}\right\} \\
\left(m_{1} \leqq n_{1}<m_{2} \leqq n_{2}<\cdots<m_{s} \leqq n_{s}\right) .
\end{gathered}
$$

Then we define $U P$ as the subsequence of P containing those elements (of P) which have more than 1 element (integer).

Finally let

$$
\mathrm{V} P=\left\{\mathrm{V} I_{1}, \mathrm{~V} I_{2}, \ldots, \mathrm{~V} I_{s}\right\}
$$

Now construct the sequence P_{0}, P_{1}, \ldots as follows:

$$
P_{0}=\{[1, n]\} \quad \text { and } \quad P_{t+1}=\mathrm{V} U P_{t} \quad(t=0,1,2, \ldots)
$$

We mention the following two simple properties of the sequence P_{0}, P_{1}, \ldots.
Property 1. If μ_{t} is the number of the elements of P_{t} then $\mu_{t} \leqq 3.2^{t^{-1}}$ $(t=1,2, \ldots)$.

Property 2. If $I_{t j} \in P_{t}$ then

$$
A^{2}(t, j) \leqq\left(\frac{3}{4}\right)^{t-1} A^{2}(I) \quad\left(A^{2}(t, j)=\sum_{k \in I_{t_{j}}} a_{k}^{2} ; A^{2}(I)=\sum_{k=1}^{n} a_{k}^{2}\right)
$$

Now we can turn to the
Proof of Theorem 4. Clearly we have
where

$$
\max _{1 \leqq m \leqq n}|S(m)| \leqq 2 \sum_{t=0}^{\infty} \max _{1 \leqq j \leqq \mu_{t}}|S(t, j)|
$$

Set

$$
S(t, j)=\sum_{k \in I_{t, j}} a_{k} \varphi_{k} ; \quad\left\{I_{t 1}, I_{t 2}, \ldots, I_{t \mu_{t}}\right\}=P_{t}
$$

$$
\begin{gathered}
y_{t}=\sqrt{2 \log \log A+2 t}, \quad A^{2}=\sum_{k=1}^{n} a_{k}^{2}, \\
F_{t}=\bigcup_{j=1}^{\mu_{t}}\left\{|S(t, j)| \geqq \sqrt{2} y_{t} K_{1} A(t, j)\right\}, \quad E=\bigcup_{t=0}^{\infty} F_{t} .
\end{gathered}
$$

Then by Theorem 3 we have

$$
\mathbf{P}\left\{|S(t, j)| \geqq \sqrt{2} y_{\mathrm{t}} K_{1} A(t, j)\right\} \leqq 2 e^{-y_{t}^{2}}=2 \frac{e^{-2 \log \log A}}{e^{2 t}}
$$

hence

$$
\mathbf{P}\left(F_{t}\right) \leqq \sum_{j=1}^{\mu_{t}} 2 \frac{e^{-2 \log \log A}}{e^{2 t}} \leqq \frac{3}{2^{t}} e^{-2 \log \log A}
$$

and

$$
\begin{equation*}
\mathbf{P}(E) \leqq \sum_{t=0}^{\infty} \mathbf{P}\left(F_{t}\right) \leqq 6 e^{-2 \log \log A} \tag{7}
\end{equation*}
$$

Clearly if $x \notin F_{t}$ then

$$
\begin{aligned}
\max _{1 \leqq j \leqq \mu_{t}}|S(t, j)| & \leqq \sqrt{2} K_{1} \sqrt{2 \log \cdot \log A+2 t} \max _{1 \leqq j \leqq \mu_{t}} A(t, j) \leqq \\
& \leqq \sqrt{2} K_{1} \sqrt{2 t} \max _{1 \leqq j \leqq \mu_{t}} A(t, j)+\sqrt{2} K_{1} \sqrt{2 \log \log A} \max _{1 \leqq j \leqq \mu_{t}} A(t, j) \leqq \\
& \leqq \sqrt{2} K_{1} \sqrt{2 t}\left(\sqrt{\frac{3}{4}}\right)^{t-1} A+\sqrt{2} K_{1} \sqrt{2 \log \log A}\left(\sqrt{\frac{3}{4}}\right)^{t-1} A
\end{aligned}
$$

and if $x \notin E$ then
(8)

$$
\begin{gathered}
\max _{1 \leqq m \leqq n}|S(m)| \leqq\left[4 K_{1} \sum_{t=0}^{\infty} \sqrt{t}\left(\sqrt{\frac{3}{4}}\right)^{t-1}+K_{1} \sqrt{\log \log A} \sum_{t=0}^{\infty}\left(\sqrt{\frac{3}{4}}\right)^{t-1}\right] A \leqq \\
\leqq K_{2} \sqrt{A^{2} \log \log A}
\end{gathered}
$$

(7) and (8) imply (6).

§ 2. The proof of Theorem 1

First we prove several lemmas.
Lemma 1. Under the conditions and notations of Theorem 1 we have

$$
\begin{gathered}
\mathbf{P}\left\{\frac{S\left(M_{k}\right)}{\sqrt{2 A^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}} \geqq \frac{T^{2}\left(M_{k}\right)}{2 C A^{2}\left(M_{k}\right)}\left(1+2 \lambda K_{1} \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right|\right)+(1+\varepsilon) \frac{C}{2}\right\}= \\
=O\left(\frac{1}{k^{1+\varepsilon}}\right)
\end{gathered}
$$

for any $C>0$ where

$$
\lambda=\lambda(C)=\sqrt{\frac{2 \log \log A\left(M_{k}\right)}{C^{2} A^{2}\left(M_{k}\right)}}
$$

Proof. Set

$$
y=(1+\varepsilon) C \sqrt{\frac{A^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}{2}}
$$

Since condition (3) implies

$$
\max _{1 \leqq j<N}\left|a_{j}\right|=o\left(\frac{A_{N}}{\sqrt{\log \log A_{N}}}\right),
$$

we have

$$
\lambda K_{1} \max _{1 \leqq j<M_{k}}\left|a_{j}\right|=\sqrt{\frac{2 \log \log A\left(M_{k}\right)}{C^{2} A^{2}\left(M_{k}\right)}} K_{1} \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right| \leqq \frac{1}{2}
$$

(if k is large enough). Furthermore, Theorem 2 implies

$$
\begin{gathered}
\mathbf{P}\left\{\frac{S\left(M_{k}\right)}{\sqrt{2 A^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}} \geqq \frac{T^{2}\left(M_{k}\right)}{2 A^{2}\left(M_{k}\right) C}\left(1+2 \lambda K_{1} \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right|\right)+(1+\varepsilon) \frac{C}{2}\right\}= \\
=\mathbf{P}\left\{S\left(M_{k}\right) \geqq \frac{\lambda}{2} T^{2}\left(M_{k}\right)\left(1+2 \lambda K_{1} \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right|\right)+y\right\}= \\
=\mathbf{P}\left\{\exp \left(\lambda S\left(M_{k}\right)-\frac{\lambda^{2}}{2} T^{2}\left(M_{k}\right)\left(1+2 \lambda K_{1} \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right|\right)\right\} \geqq e^{\lambda y}\right\} \leqq \\
\leqq e^{-\lambda y}=O\left(\frac{1}{k^{1+\varepsilon}}\right),
\end{gathered}
$$

i.e., Lemma 1 is proved.

Lemma 2. Under the conditions of Theorem 1 for any $\varrho>0$ one can find a set $F(\in \mathscr{F})$, a positive number \mathscr{K} and an integer n_{0} such that

$$
\mathbf{P}(F) \leqq \varrho
$$

and $\left(T_{n}^{2} / A_{n}^{2}\right)^{\frac{1}{2}} \geqq \mathscr{K}$ hold on \bar{F} if $n \geqq n_{0}$.
Proof. This lemma is a trivial consequence of (5).
Lemma 3. Define the event $\mathfrak{Q t}_{k}$ by

$$
\mathfrak{N}_{k}=\left\{\frac{S\left(M_{k}\right)}{\sqrt{2 T^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}} \geqq 1+\delta\right\} \quad(\delta>0)
$$

Then (under the conditions of Theorem 1) only finitely many $\mathfrak{V r}_{k}$ can occur with probability 1.

Proof. By Lemma 1 among the events

$$
\begin{gathered}
\mathfrak{B}_{k}(C)=\left\{\frac{S\left(M_{k}\right)}{\sqrt{2 T^{2}\left(M_{k}\right) \cdot \log \log A\left(M_{k}\right)}} \geqq\right. \\
\left.\geqq \frac{1}{2 C} \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}\left(1+2 \lambda(C) K_{1} \max \left|a_{j}\right|\right)+(1+\varepsilon) \frac{C}{2 \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}}\right\}
\end{gathered}
$$

only finitely many will occur. Let now $\left\{\gamma_{k}\right\}$ be a sequence of random variables taking. the values $C_{1}, C_{2}, \ldots, C_{R}\left(k=1,2, \ldots ; C_{i}>0 ; i=1,2, \ldots, R\right)$. Then among the events. $\mathfrak{B}_{k}\left(\gamma_{k}\right)$ only finitely many will occur (with probability 1) too.

Define a uniform partition of the interval $\left(\mathscr{K}, K_{1}\right)$ (where \mathscr{K} is defined in Lemma 2):

$$
C_{1}=\mathscr{K}+\frac{K_{1}-\mathscr{K}}{R}, \quad C_{2}=\mathscr{K}+2 \frac{K_{1}-\mathscr{K}}{R}, \ldots, C_{R}=K_{1}
$$

and let

$$
\gamma_{k}=\left\{\begin{array}{cc}
\mathscr{K}+i \frac{K_{1}-\mathscr{K}}{R} & \text { if } \mathscr{K}+(i-1) \frac{K_{1}-\mathscr{K}}{R} \leqq \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}} \leqq \mathscr{K}+i \frac{K_{1}-\mathscr{K}}{R} \\
0 & \text { if } \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}} \leqq \mathscr{K}
\end{array}\right.
$$

Then

$$
\begin{gathered}
\overline{\mathfrak{B}_{k}\left(\gamma_{k}\right)} \cap \bar{F} \subset\left\{\frac{S\left(M_{k}\right)}{\sqrt{2 T^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}} \leqq \frac{1}{2 \gamma_{k}} \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}\left(1+2 \lambda\left(C_{k}\right) \max _{1 \leqq j \leqq M_{k}}\left|a_{j}\right|\right)+\right. \\
+(1+\varepsilon) \frac{\gamma_{k}}{2 \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}} \leqq \\
\quad \leqq \frac{1}{2}\left(1+2 \sqrt{\frac{2 \log \log A\left(M_{k}\right)}{\mathscr{K}^{2} A^{2}\left(M_{k}\right)}} K_{1} \max \left|a_{j}\right|\right)+(1+\varepsilon) \frac{\sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}+\frac{1}{2}}{2 \sqrt{\frac{T^{2}\left(M_{k}\right)}{A^{2}\left(M_{k}\right)}}} \leqq \\
\left.\leqq \frac{1}{2}(1+o(1))+\frac{(1+\varepsilon)}{2}\left(1+\frac{1}{R \mathscr{K}}\right) \leqq 1+\delta\right\}
\end{gathered}
$$

if k is large enough and ε and R are chosen in a suitable way. This proves our Lemma 3.

Lemma 4. Set

$$
F_{k}=\left\{\max _{M_{k} \leqq N<M_{k+1}}\left|S(N)-S\left(M_{k}\right)\right| \geqq \varepsilon K_{2} \sqrt{A^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}\right\}
$$

for any $\varepsilon>0$. Then (under the conditions of Theorem 1) among the events F_{k} only finitely many occur with probability 1.

Proof. Since

$$
\frac{\sqrt{\left[A^{2}\left(M_{k+1}-1\right)-A^{2}\left(M_{k}\right)\right] \log \log \sqrt{A^{2}\left(M_{k+1}-1\right)-A^{2}\left(M_{k}\right)}}}{\sqrt{A^{2}\left(M_{k}\right) \log \log A\left(M_{k}\right)}} \leqq \varepsilon
$$

(if k is large enough and θ is chosen near to 1), by Theorem 4 we have

$$
\begin{gathered}
\mathbf{P}\left(F_{k}\right) \leqq \mathbf{P}\left\{\max _{M_{k} \leqq N<M_{k+1}}\left|S(N)-S\left(M_{k}\right)\right| \geqq\right. \\
\left.\geqq K_{2} \sqrt{\left[A^{2}\left(M_{k+1}-1\right)-A^{2}\left(M_{k}\right)\right] \log \log \sqrt{A^{2}\left(M_{k+1}-1\right)-A^{2}\left(M_{k}\right)}}\right\} \leqq \\
\leqq K_{3} \exp \left(-2 \log \log \sqrt{A^{2}\left(M_{k+1}-1\right)-A^{2}\left(M_{k}\right)}\right)=O\left(\frac{1}{k^{2}}\right)
\end{gathered}
$$

i.e., Lemma 4 is proved.

This lemma, the Consequence of Theorem 3 and the simple relation

$$
\sqrt{\sum_{j=1}^{M_{k}} a_{j}^{4} \log \log \sqrt{\sum_{l=1}^{M_{k}} a_{l}^{4}}}=o\left(\sum_{j=1}^{M_{k}} a_{j}^{2}\right)
$$

immediately imply
Consequence of Lemma 4. $\operatorname{Let} \varphi_{1}, \varphi_{2}, \ldots$ be a sequence of uniformly bounded random variables for which

$$
\int \varphi_{i_{1}}^{2} \varphi_{i_{2}}^{2} \ldots \varphi_{i_{k}}^{2}=1 \quad\left(i_{1}<i_{2}<\cdots<i_{k} ; k=1,2, \ldots\right)
$$

and let a_{1}, a_{2}, \ldots be a sequence of real numbers satisfying condition (3). Then

$$
\mathbf{P}\left(\frac{T_{n}^{2}}{A_{n}^{2}} \rightarrow 1\right)=1
$$

Finally, Theorem 1 is a trivial consequence of Lemmas 3 and 4.

References

[1] S. Takahashi, Notes on the law of the iterated logarithm (in print).
[2] P. Révész, A note to a paper of S. Takahashi (in print).
[3] В. Ф. Гапошкин, К закону повторного логарифма для сильно мултипликативных систем, Теория вероятностей, 14 (1969), 511-516.
[4] P. Révész, The law of the iterated logarithm for multiplicative systems, Indiana Univ. Math. J., 21 (1972), 557-564.
[5] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J., 19 (1967), 357-367.

