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1. Introduction. The Sz.-Nagy—C. Foias functional calculus with bounded
:analytic functions leads to several results in the study of contractions by means of
classical theorems from the analytic function theory.

In this paper, we are going to show how a generalization to functlonal calculi
.of two contractions (Theorem 1) of the Harnack inequalities for positive harmonic
- functions allows us to establish some analytic relations between their Sz.-Nagy—
Foias functional models (Theorems 2, 3). ,

We shall use the terminology and notations of [7]. The unitary dilation of the
contraction T on the Hilbert space $ will be denoted by a triplet [], V, U] where &
is a Hilbert space, ¥ is the isometric embedding of § into & and U a unitary ope-
rator on K such that :

K=V UVS

and - . ‘
T =V*U"v n=0,1,2,..)

All notations used in [7] for the geometric structure of the unitary dilation will
be rewritten here according to this convention. For example

=V Ur$
n=0

e=U-VIVHVS, & =U-VTVIVS, 2, =U-UVTVIHVS.

D will stand for the unit disc {|z]<1} of the complex plane and X for the unit
circle {|z|=1}. C(X) will denote the C*-algebra of all continuous complex valued
functions on X and A the subalgebra of C(X) containing all functions in C(X)
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which have analytic extension in D For f€ C(X) we shall write

f(@) = VO

Then f—f(T) (f€C(X)) is a linear positive map of C(X) into B(9) the restriction of
Wthh to A is an algebra homomorphism of 4 into B($) such that, for any polynomial
p in A4, p(T) has its usual meaning.

. 2. Harnack part. Recall that for an integer j the symbol T@ stands for T/ if
j=0and for T*~7 if j<0. The main result of this section is: ‘ '

Theorem 1. ([6)) Let T,, T, be two contractions on a Hilbert space $. Let
[KY, V,, U1, [K?, V,, U,] be their unitary dilations and a a number such that 0<a-<1.
The following assertions are equivalent:

(i) for any polynomial p in A for which Re p=0 we have

aRep(T,) = Rep(T,) = 1/aRep(Ty);
(i) for any positive function u in C(X ) we have
au(T,) = u(T,) = 1ja u(Ty);

(iii) for any positive integer n, any positiué nX n-matrix (u;;) over C(X) and any
finite system hy, ..., h, of elements in H we have '

0 3 g Tyl ) = 3 oy Ty ) = Va3 (s )

(iv) for any positive integer n and any finite system hy, ..., h, of elements in &

we have : .

aZ TV by = Z(TEOh b)) = 1a S (TP=Phy, by
[ iJ : . iJ

(V) there exists a linear boundedly invertible operator S from K* onto K!,
such that |S||=1/Ya and

SV, = V,, SU,=U,S.

Proof. The implication (i)=(ii) follows from the fact that the real parts of
the polynomials in A4 are uniformly dense in the set of real functions in C(X).

The implication (ii)=(iii) comes from the Naimark dilation theorem as fol-
lows: according ‘to (i) f~f(T,)—af(Ty), (f€C(X)), is a positive linear map of
C(X) in B(9). Let [], ¥V, n) be the spectral dilation of this map. Thus & is a Hilbert
space, V is a bounded operator from $ into & and n a representation of C(X) in
B(8) such that

J(T)—af(T) =V*r(/)V (fEC(X))
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(ese for example [1], [5D. Let (u;)=(g:;)* (g;;) be a positive nX n: ‘matrix over C(X )
and Ay, ..., h,€9H. We have ,

2 (y(T2) —auy (T by, by) = Z (V* () Vh;, Vh) =
=2 (V*n (%'g’kigkj) Vh, hy) = ; 2 (m (gki)*n(gk) Vhj,Vh) =
= 21 S ) Vil = 0.

One obtains the second inequality in (iii) by simmetry. ‘

Taking (iii) with (u;;)=(g:;)*(g;;), where glj(z)=zf, Jj=1,2,...,n and g;(z)=0
for i=2 we obtain (iv).

Let us prove the implication (iv)=>(v). For any posmve integer n and h1 v h €H
‘we have

aI|Z'UJV1h ||2 =a 5’(V1 Ui-tvih, ) —aZ’(T“ Dy by =
Z(T“ Dhy by = 3 (VU4 ‘Vzh,,h)—IIZU’Vzh JI2
ij ij

‘Thus there exists a bounded operator S from K2 into &' such that | S||=1/}a and

j=1 j=

—

The second inequality in (iv) shows that S™! exists and || S™! =1//a. It is clear that
SV,=V,, SU,=U,S.

Since the implication (ii)=(i) is obvious, it remains to prove the implication
(v)=(ii). To do this, let K=a(S™H)*S . Then 0<K<l and it is easy to see that
KJ(U)=f(U,)K for any f€C(X).

Moreover
af (T)) = aV5 f(U2) Vo = V3aS~ lf(Ul)SVZ =

= VFa(S= Y S~ f(U)  = VEKf UV

Let Z be the positive square root of /— K. Then Z commutes with f(U,) for
any f€ C(X). Hence for all positive # in C(X) and 4 in H we have’

(W(T) —au(T)) h k) = (VFuUYV, - Vi Ku(U,) V) b, h) =
=WV I—-K)yu(U)Vih, h) = (V¥ Z2u(U ) Vi h, h) = (uw(U,) ZVi h, ZV h) = 0.

Hence A .
au(T,) = u(T)).

The second inequality in (ii) is obtained again by symmetry.
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The proof of the theorem is complete.

The inequalities contained in Theorem 1 generallze the Harnack mequalmes for
positive harmonic functions.

We say that T, ant T, are Harnack equivalent if they satisfy one of the (equivalent)
assertions of Theorem 1. (Note that T is always Harnack equivalent with 7,=7)).. -
This equivalence relation determines on the set of all contractions on' $ equivalence
classes. Such a.class will be called a Harnack part. The concept is analogous to
that of Gleason parts of the complex homomorphisms of a function algebra (see for
example [2]).

Corollary 1. Two contractions T,, T, are Harnack equivalent if and only if”
T%, T% are.
1°

Corollary 2 If T\ and T, are Harnack equivalent then U, and U2 are unitary
equivalent.

Proof. Using standard arguments we can show that if S=|S|U is the polar
decomposition of S then the fact that S has a bounded inverse lmphes that U is a.
unitary operator from K2 onto &' and UU,=U, U.

Note that, in general, UV,=V,, thus the two unitary dilations do not co-
incide.

Corollary 3. If T is an isometric operator on Sj then the Harnack part contain--
ing T reduces to {T}."

Proof. Suppose that T, is in the same Harnack part as 7,=T and let
[]Y, vV, U], [82, V,, U,] be the unitary dilations of T, T,, respectively. Let S
be the operator defined in Theorem 1. Since T, is an isometry we have V,T,=U,V,.
Therefore ’ :

Wr, = SV,T,= SU,V, = U,/

Hence
' T, =WViNT,=WUVy=T;.

Corollary 4. Let T,, T, be in the same Harnack part. Then T, and T, have
the same unitary part. In particular, if T, is completely non unitary then so is T),.

Proof. The maximal.subspaces of $ which reduce T; (i=1, 2), to unitary
operators are
={heH:UVheV,H, n=0, £1, £2:...}.

“For h€$9, and n=0, &1, &2, ... we have

UiVoh = S UISV,h = ST1UIVIhEV, H.
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Thus $, < H, and by synimetry g),l:ssz'.' Moreover, for h€ H, =9, we have
VoTih=S VT h=8S"UVih=U,S " Vih=U,V,h=V,T,h.

Thus T\ h=T,h.

In [3] C. Foias proves that the set By={T¢B(9), |T||<1} forms a Harnack
part, the Harnack part of the contraction 0. Using this result and Corollary 4 one
can also prove (see [3]) that there exist Harnack parts dlﬁ‘erent from B, and Wthh

contain more than one element. '
‘ 3. Analyticity of the operator S. Suppose that 7, T, are in the same Harnack
part and let S be the operator defined in Theorem 1. Since SV,=V,, SU,=U, S.
S3U=U7%S, we have

SRp =5V U9 = V Uisns =V U5 =KL,

SR2 =SV U9 = V UISh9 =V UK H =KL,
n=0 n=0 n=0
Thus v :
3. 1) SR2 = |L, SR = |L

From 3. 1) it follows that _
' (21)—8*(R195§1)c5§269\2 =M, (2.

Hence

(3.2) COS*ML (@) =M (532)
Since S*Uf = U2S (3.2) implies

3.3) S*M(RY) = M(22).

On the other hand , .
SR =S UKL = (] UIK! = R
n=0

n=0

Thus

(3. 4) SR2 = R,

If he$, then Py Vyh = lim UST"h. Thus SPw:Vyh = lim SUJT h =
=lmUIWVT3"h. But UV T;"h| = [V, T3 h| = IIVzT*"hII = U3V, T3 Al.
Thus |SPy: Vo TEh| = Lim |UFVT$ h|| = lim |USV, T3 ] = |PgzV, k). Which to-
gether prove . ‘

(3.5) ISPw:V3 k| = [Pe2 Vo hll,  (h€H).

Put : .
M2 = P2V H, M = SM2.

Since . : . . .
Ui P2 Voh = PV TXh - (h€S).
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it follows that 02 M2 cM? and UTM, = U1 SM? = SU{?]IZ c SSIRZ = ML, Set
= UHM!, T = UFM, S = S|M2.
According to (3.5), S"is a unitary.operator from 9)22 onto ‘Jﬁ‘ and
S'T; =TiS" |

It is easy to verify that U%|R? and consequently U*|R! are minimal unitary dila-

tions of T; and T, respectively. Since SU3= U} S, and S extends S’, by using standard

arguments we can conclude that S|®? is a unitary operator from R? onto R'.
From (3. 1) it follows that the operator S+—S|$§2 from |} onto K} has a

"bounded inverse. Since
o = K U, K, -
. for any /€ £} and k€ K7 we have :

(SELU k) =S, Uk)=(, SU,k) = (I, U, Sk) =0.
Thus S* 2! c €2 and by symmetry we obtain
(3. 6) ‘ St el =92,
So we have pfoved the following

Theorem 2. Let Ty, T, be two Harnack equivalent contractions on $ and let
S be the operator defined in Theorem 1. Then

() STM(Y) = M(E?), S*M,(2) = M, (£);
(ii) S, is a bounded operator from M, (2] D@ R? onto M, (L)PR' which has
bounded inverse and :
: Stel=02.
(iii) S|R? is a unitary operator from R* onto R".

From' assertions (i) and (ii) of Theorem 2 it follows that R!'=M(2') (8&'=
=M(2})) if and only if {2=M(22) (K'=M(L2)). In virtue of Theorem 1.2, ch.
II in [7] we obtain '

Corollary 5. If T, and T, are Harnack equwalem then T, is ofclass C.(Cop., Coo)
if and only if T, has this property

From assertion (ii) of Theorem 2'and Corollary 1 we conclude

Corollary 6. If T, and T, are Harnack equivalent then they have the same
defect indices.

Suppose now that § is separable. Taking the Fourier representations of the
bilateral shift involved, Theorem2 allows us to say (according to Lemma 3.1 Ch.
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V in [7]) that in these representations S*|M(8') is a bounded analytic function
{21, 22, S*()}. In the C., case S is a bounded analytic function too, namely
{92, 81 S}

In this last case we can establish an analytlc relation between characteristic func-
tions as follows

" Theorem 3. Let T, and T, be two Harnack equivalent contractions on H.
Suppose Ty (and consequently T,) belongs to the. class C.o. Let {€',2},0,(})},
{Q2,82.0,(1)} be the characteristic functions of Ty, T. , respectively. Then there
exist bounded, boundedly invertible, analytic functions {Q2, 21, S(1)} and {€", 22, (1)}
such that we have )

S(e)*0,(e") = 0,(e") > (e") a.e.
Proof. Let {€2, 25, S(A)} be the bounded analytic function constructed above.
From Theorem 2 it follows that

S(e)*0, (e") H? (531) c0,(eMH? (92)
Thus we can define the operator ¥ by

S(e)* 0, (e u(t) = 0,()(Sw(t) (ueH 2(i’«‘))

It is easy to 'verlfy that the operator ¥ commutes with the multiplication with e’
It results that X arises as multiplication operator from a bounded analytic function
{81, €2, 2(J)}. The fact that these functions are boundedly invertible results directly -
from Lemma 3.2 ch. V in [7] and Theorem 2 above.
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