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1. Introduction 

The vital importance of the Markov property of processes in control theory 
was first pointed out by R. BELLMAN in [1]. As a consequence of this perception he 
was able to give a necessary and sufficient condition for the optimality of control 
for discrete-time Markov decision processes. For continuous-time processes there 
are no general results known. In the deterministic case the Bellman equation could 
only be proved to be a sufficient condition of optimality (cf. [1], [2]). On the consi-
deration of stochastic problems there arise additional difficulties from the absence 
of a sufficiently general definition of the controlled Markov process. FLEMING [6], 
[7], M A N D L [12], WONHAM [15] have given conditions for the optimality of the con-
trol of diffusion processes, governed by stochastic differential equations, GRIGELIONIS 

and SHIRYAEV [8] have investigated the properties of the optimal expense function of 
processes for which the value of the control parameter has been allowed to change 
only in fixed "switching times", while KUSHNER [ 1 1 ] has regarded families of Markov 
processes with the strategy space as an index set and has given a sufficient condition 
of optimality for them. 

The aim .of the present paper is. to prove a necessary and sufficient, optimality 
condition for the control of general discrete or continuous-time Markov processes, 
by employing the functional analytic theory of Markov processes, which was 
developed by HILLE, YOSIDA, FELLER, D Y N K I N , and others in the last 2 5 years. 

First we give a sufficiently general formulation, of the optimal stochastic control 
problem. Controlled Markov processes are defined similarly to [11], [13] as families 
of processes. Unless otherwise stated, our considerations hold both for discrete-
and continuous-time processes, i.e., both the set N of the non-negative integers 
and the set R+ of the non-negative reals are allowed to be the time axis T. 
In our investigations we shall necessarily consider time dependent controls and 
so time-inhpmogeneous (non-autonomous) processes. The theory of one para-
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meter semigroups of operators — which will be extensively used throughout 
the paper — is only adequate to describe time-homogeneous processes. But in [13] 
it was proved, that to every inhomogeneous process on the state space E', there 
exists an equivalent homogeneous process on the product state space E= TX E'. 
This way we do not restrict the generality by assuming that our processes are homoge-
neous and their state space is of the form TX E'. Studying Markov processes we 
shall refer to the monographs of D Y N K I N [ 4 ] , [ 5 ] . For control strategies we allow 
measurable mappings of the state space into the control region, that is, we con-
sider problems with Markov feed-back control policies. While in the deterministic 
case the effectivity of open loop and feed-back strategies are the same, for stochastic 
problems one is obliged to consider closed loop controls (cf. [3]). In the present 
paper we call a control strategy optimal, if it minimizes the expected loss of the 
integral form for an arbitrary initial state. 

The main result of this paper, proved in the third chapter is a necessary and 
sufficient condition for the existence of optimal control strategies. The theorem 
is formulated in the form öf a generalized boundary value problem and also presents 
a characterisation of the optimal strategy. It can be regarded as a comman generaliza-
tion of the results of papers [1], [6], [7], [8], [11], [12], [13] and [15]. Two corollaries 
of the main theorem are given in thé fourth chapter. They specialize the main theo-
rem for problems having some local control dependence, and this allows a simplifica-
tion of the optimality conditions. The recursive equations of the dynamic program-
ming and the optimality condition of FLEMING for controlled diffusion processes 
are also derived as examples for the application of the optimality theorem. 

For the computation of an optimal control strategy, or for the verification of 
its existence, by the optimality theorem given below one has to solve a generalized 
boundary value problem. Considerations about the existence of its solution can be 
found in the papers of KRYLOV [ 9 ] , [ 1 0 ] . The results of the present paper, especi-
ally Corollary 2, can be -used with success to prove the optimality of a strategy 
given in advance, e.g., by means of a necessary condition of optimality, and they 
serve to an extent as substitutions for the existence theorems of optimal control. 

The author would like to thank Prof. P. H . MÜLLER, Prof. H . LANGER, Dr. sc. 
V. NOLLAU from the Technische Universität Dresden and Prof. K. TANDORI from 
the University Szeged'for their valuable suggestions during the course of this work. 

2. Optimal Markovian control problems 

First we make some further assumptions about the structure of the time axis, 
; the state space and the control region, which will enable us to apply the results of 
[4], [5] to our problems. The time axis T will be considered as a measurable topo-
logical space with its usual topology and the cr-field of its Borel sets ST. The state 
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space E is defined as the topological product of the time axis,and some topological 
measurable space (E',^',S'), together with the product c-field $ = ,T®£'. Further 
on we assume that all open sets and also all one-point-sets of E are measurable. 
We shall call the measurable space (D, 2f) with measurable one-point-sets the cont-
rol region, while B(is, S) denotes the Banach space of all bounded measurable real 
valued functions on (E, S\ with the usual supremum norm. 

Suppose we are given an open subset GczE, a class of measurable mappings 
from (G, f l G, S f l G) into (D, 3>), and a family of (homogeneous) right-continuous 
strong Markov processes {S17; U w i t h EU=(£U,CU, J(u

t, P^) on the state space 
(E, c6, $), stopped at the first exit from G. In this paper we call {Eu; U£<%} a con-
trolled Markov process with the target set E\G and the class of admissible con-
trol strategies (or policies) if the following conditions are satisfied: 

a) If Ui U1£aU and i f , l i s an arbitrary (finite or infinite) subinterval of T, 
and . 

TH* v'V = f o r i f = 7 ' x < i E 

' \ c / 2 ( s ,x ' ) for si I, x£E 
then 

b) For the transition function of a v we have 

(2.1) Pv{t,(s,x% (T\{s + t})XE') = 0 . 

for any U^tfi, x= (5, x') £E, t£T ({t>} is the set containing the only point v). 
c) The first exit time tu of the process Bv from G is a Markov time for Eu. 
d) If I denotes an arbitrary interval in T then U1 (x)= U2(x) implies 

(2.2) = n H t f ^ O 

for all , x € / X £ ' , r a IXE', m s , t£T. 
e) The domains D(AU) of the weak infinitesimal Operators Au of the processes 

3 U stopped at z v coincide for all (We denote this common domain 
by D.) 

Let there be given a controlled Markov process {3V\ U s u c h that, for all 
x£E, U^fy we have for some A ' - 0 (E^ denotes the expectation w.r. to 
the measure Vv

x), and non-negative functions p £ B ( E \ G , S n (E\G), q 6 B(GX D, 
(gr\G)®3>){we shall also write qu(x):=q(x, U(x))). For all x£E we define the 
performance functionals on °U by 

tv 

(2-3) JX(U): = EV
X {/>(£&) + / U ( f f ) ) d t } 

0 
Our aim is to find a strategy such that 

JX(U*)^JAU) 

for all x£E, U^ty. A strategy with this property is said to be optimal. 
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R e m a r k s . For the definitions and propositions, cited here cf. D Y N K I N [5]. 
We call E=(£,C,J(t,Fx) a homogeneous Markov process on the state space 
(E, <€, S), if: 

a) £ is a function defined on a sample space £2 with values in TKJ {+ oo}. 
b) ^ is a partial map from TXQ into (E, $), and i (i, ct))=£((co) is defined 

for all co£Q, t£Tn(0, ((cu)). For a fixed co0£Q the function £((co0) is called 
a trajectory of process E. 

c) Mt is a ff-field on Q,:= {co:C(<y)>/} (t£T). 
d) P^ is for all x£E a functional defined on a er-field Jl of subsets of Q with 

J t z > U A -
t£T 

And for these elements the following conditions are satisfied : 

(1) If sSt and A£Jis then A n {to:C((o)>t}eJlt. 
(2) {Z,(ir}:={co:UcD)(Lr}£J/t (t£T,r£g). 
(3) P x is a probability measure on Jl for all x£E. 
(4) For all f f i f , t£T, 

P(t,x,ry.=Y>x(Ur) 

is an ^-measurable function of x. P is called the transition function of 
the process 3 . 

(5) P(0, x , £ \ { x } ) = 0 for all x£E. 
(6) For all s,t£T, we have 

Vx(S,+.Zr\Jt,) = P{S,Zt,r) 

P x a.e. on Q,. 
(7) For all 16 T, to € Q, there exists an co, £ Q such that 

C(£o,) = C(co)- t and ^(co,) = £s+I(co) for 0 =1 s < C(co) -1. 

A Markov process is said to be right-continuous if all of its trajectories are right-
continuous. Every right-continuous Markov process is measurable, that is, 

(2.4) {(s,co):sst, co€Qt, ¿s(co)er}£(jrn[0,/])®J/t 

for all t£T, r£<S, where t] denotes the restriction of ST to interval [0, /]. 
A mapping T of Q into Tu {+ is called a Markov time for S = (£, Jlt, P x ) if 

R(CO) C ( O J ) 

and for all t £ T 
{<w: t (co) =-1} € Jl, n Jf 
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Where Jf denotes the cr-field generated by all sets of the form {co:^t(<u)£F} for 
r^g, t£T. We set A£Jtx, if A c Q t : = {co:t(a>) < + <*=} and for any t£ T 

Ar>{co:T(co) s t}£Jlt 

By this definition J t z is a c-field on Q t . ([15]. 3.16.) 
A measurable Markov process is said to be strongly Markovian if for an arbitrary 

Markov time x and for all t £ T, x e E, r £ i 

(2.5) Vx(l;T+ter\Jir) = P(t,ZT,r) 

holds P* a.e. on Q t ([5]. 3.18). 
The function T = T ( C O ) defined by 

t(oj): = sup {t: {£s(co):i i} c G} 

is called the first exit time from the set G ([5], 4.1). Conditions for the first exit time 
to be Markov are given by D Y N K I N in [5],. Chapter 4. 

Let 3=(^, JTU P x ) be a right-continuous strong Markov process and r the 
Markov time of the first exit from the set G. If we set 

= f ^ f o r * ( * ) = £ ( « > 

| + c o for l ( f f l )<( ( f f l ) 

f,(fl)):;= 5nUnp.t(»)](®) . C H ) 

Jit\ = {A£Jf:Acz{C > i} and An{x>t}eJZ,} 

then the process 3 = ( £ , Jtt, Px) is also a right-continuous strong Markov process, 
arid is said to arise of 3 by stopping it at T ([5], 10.4). 

A sequence of functions/„ £ B (E, £') is said to tend weakly to / £ B (£, S) if for 
every signed measure <p of bounded variation, defined on the cr-field $ 

Jfnd(p -+ffdcp 

holds as In B ( E , S ) the weak convergence o f / „ t o / i s equivalent to 

(i) /„(x) —/(x) for all x^E as n—oo, and 
(ii) there exists a isT>0 such that || / J ^K for all n£N. 

With every Markov process J f „ Y x ) we can associate a semigroup 
of linear operators {Tt}tiT on the Banach space B(£, S) defined by 

(2-6) T,f(x): = E x f ( Q 

where E x means the expectation w.r. to the measure P x . A function / £ B (£, £') is 
said to be weakly continuous (w.r. to the semigroup Tt) if 

ii -lim Tt f = / 
( J O 
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If T i s the set of all non-negative reals, the weak infinitesimal operator of {Tt}tiT is 
defined by 

Af: = vv-lim T , f ~ f 

11 o t 

for all f£Yl(E,$) such that the right-hand side tends weakly to a weakly continuous 
function. If T equals the set of all non-negative integers, we define A for all. 
/ € B ( £ , 6") by 

A f - T J - f 

and call it infinitesimal operator of Tt as well. 
For every controlled Markov process J i ^ , ^ ) ; we can 

construct by tranformation of the sample space a controlled Markov process 
such that for every U£aU the processes a " and Eu are equi-

valent (DYNKIN [ 4 ] ) . ( E . g . we set S u for the canonical process of Ev, cf. [ 4 ] Lemma 
2. 3). By this we may omit index U of Jlt without loss of generality. The ^-in-
dependence of the exit time r is a consequence of its definition and the fact that f 
does not depend on U. 

3. A necessary and sufficient condition of optimality 

T h e o r e m . Let G, q andp given as in the second section and let 
qu be weakly continuous w.r. to T/7 [ U T h e n there exists an optimal strategy 
U* if and only if the boundary value problem 

(3.1) min (Auf+qlj)ix) — 0 for x£G, 
Uitl 

(3.2) f{x) = p{x) . for x£E\G 

possesses a solution f£B(E, $). In this case the minimum occurs in (3. 1) for U*. 

R e m a r k s . (3. 1) means in detail that for any element x of G 

(3.3) Au*f(x) + qv*(x) = 0, 

(3.4) Avf(x) + qv(x)s 0 ( t / € ^ ) . , 

Au denotes the weak infinitesimal operator of the processes arising from Ev by 
stopping at the first exit f rom G. 

If qv is continuous then right-continuity of Ev implies weak continuity of 
qv. ([5]. Lemma 2. 2.) 
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P r o o f . Sufficiency: I f f * £ D ( A u ) , and r is a Markov time for process Ev, then 
by [5], Theorem 5. 1 we have 

(3.5) / * ( * ) = E ? / * ( f t ) — f A v f * ( Q d t 
o 

L e t / * be the required solution of the boundary value problem (3. 1)—(3. 2). 
Since / * 6 D = D(/417) (U£%), and the first exit time t from G is a Markov time for 
all Eu (U^i), (3. 5) holds for every Let us observe that the right continuity o f 
the processes Ev and the fact that G is open imply £ E\G. By virtue of this and of 
equations (3. 5), (3. 2), (3. 3) we have. 

(3. 6) f*(x) =. EG* {f*(Q- J Au*/*(£,) dt} = E f q ° * ( £ , ) * } . 

o o 

Analogously but with the aid of. (3. 4) instead of (3. 3) we get for all U£°U 

(3. 7) / * ( * ) = E u
x f * ( Q ~ f Av/*(£,)dt s Eg {/>&) + fgv(Qdt}. 

o o 

On account of (2. 3) the relations (3. 6) and (3. 7) imply for arbitrary XJ^l, . 

JX(U*) = E v
x*{p(Q+ Jqm(Qdt}s n{p(Q+ ¡qV(Qdt\ = JX(U). 

, o o 

But the last equation implies that U* is optimal. Hence the sufficiency of our assump-
tion is proved. 

Necessity: Let U* denote the optimal control strategy, and let us introduce-
/ * by f*(x):=Jx(U*). By the boundedness of p, q and E^T we find t h a t / * e B ( £ , S). 

First we shall prove equation (3. 3) and that / * € D. Eq. (2. 3), the definition o f 
the stopped processes and that o f / * show that 

(3.8) . T r r ( x ) = E T x { T > h ) r ( i h ) + E u
x * x { r ^ ) f * ( Q = 

a = Ef *(,>„}n;P(Q + Er z{r>„} E&* J qV*(Q dt + Ef *{t3„} p{Q 
o 

(XA denotes the characteristic function of the set A). For the first term of the right-
hand side of (3. 8) we obtain by applying [5] Theorem (3. 1) that 

E r * { t > « E g > ( « = n*x{<>h)n*{ehp(Q\Jth): 

where the operator 6, is defined by 

9,1(0}): = l(<o,) 
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fy is any random variable; cf. (7) in the definition of Markov processes.) Taking into 
account the Jth measurability of X{t=,h}> the basic properties of conditional expecta-
tions, and the definition of 0h, we find: 

<3.9) = 

= = E u
x*X{z>h}P^H+rM-,,(0})) = E V X{.>U)P(Q-

F o r the second term of (3. 8) we find with q0'.= XG' qu* that 

o o 
OO CO 

= / E . r El*q0 (£,) dt - f EST Xir^H) q0 (Q dt. 
0 0 

The change of the order of integration was allowed by the measurability of the proces-
ses (cf. (2. 4)) and by Fubini's theorem. Let us observe that qo(^)=0, then by means 
of definition of Tt

u* we obtain: 

<3.10) EJ[*Z{T>LK)EGT / q v \ Q d t = J E%*E^q0(Qdt = 
o o 

. — J Tt+hq0 (x) dt = J Tt
u* q0(x)dt = E f f q^,) dt = 

O h . . h 

= EST {qv\Qdt- fTrq0(x)dt. 
o o 

Substituting (3. 9), (3. 10) into (3. 8) and taking into account of the definition of / * 
we get 

r r / * ( * ) = EST{/?&)+ ¡qv*(Qdt}~ J T,u*q0(x)dt = f*(x) — / 7 T < 7 o ( * ) ^ . 
0 0 0 

'On account of the definition of Au* we obtain hence that 
« 

A 
T<U* f* f* 1 P 

Au*f* = vv-lim " \ J = H'-lim-p / T^*q0dt = -q0 
/•to " n J 

. o 

Since q0 is weakly continuous we get that / * £ D so (3. 3) is proved. 
Now we prove inequality (3. 4) indirectly. Let us assume, there exist a strategy 

•U0 and state x 0 £E such that 

¿u°f*(xo) + qu°(xo) < o. 
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From the weak continuity (w.r. to of qu° and Au°f* it follows the existence of a 
t o > 0 such that for all w e h a v e 

Tt
v°(AL'°fl -r(lv")(x,>)^0. 

But with the notation t0(co):=min [i0, r(a»)] we obtain the inequality 

(3.11) m J ( A v ° r + q v ° ) ( Q d t ^ 0 . _ 
o 

Let us denote by the control strategy 

TT t _\u*(s>x') for ^ i o H . x'ZE', 
• Ui[.s,x). f o r s0 + t0,, x'£E', 

where s0 denotes the time-component of x0, more precisely x0=(s0, x'0) with some 
x'0£E'. Since J(U*)= / * 6 D and T0 is a Markov time, we may apply [5] Theorem 5. 1 
(cf. also Eq. (3. 5)) to and we get 

(3.12) JX0(U*) =P(xo) = {/*(£„) + f° Au>f*(c,)dt} 
o 

In virtue of the definition o f / ( C / j ) we obtain: 

(3.13) JX0(U1) = E"xi{p(Q+fqu^t)dt} = 
o 

= E u 4 { p ( Q + fqu'(Qdt} + E^{f q'^i^dt}. 
o . 0 

For the first term of (3. 13) it holds the decomposition 

E u4{P(Q+FQUl(Qdt} = 

r 
= E & X M P ( Q + X{X>ZO}P { Q + E £ 

jq(Qdt 
«0 

The second and the third term of the last equation can be transformed analogously 
to formulae (3. 9), (3. 10) and we obtain 

E u4{P(Q+¡qVi(Qdt} = 

= E ^ y _ { z o = z ] p ( Q + E£; { T ,R O } E & p ( Q + E£ Z { r > r o } E& fqu<(Qdt. 
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By the properties (2. 1), (2. 2) and the definition of U^ this equals . 

+ {/»(«+ fqv'(Qdt} = 
o 

= Eg« [x{^)p(Q+x{^)n:0{p(Q+ f\u\Qdt}] = m r 
o 

In this way for (3. 13) we get that 

(3.13') JXo(Ut) = E£ {/* (U + / V ' «,)<&}. 
o 

By subtraction (3. 12) from (3. 13'), and by the definition of Ut we obtain 

MUJ-J^U*) = E?> { / * f e 0 ) - / * & „ ) } + E& f ( A ^ p + qV')(Qdt = 
o 

= J(Au°f* + qv°) (£,) dt. 
o . ,, 

But by (3. 11) this means 
•/.voO/.Wxo (£/*)• 

in contradiction to the supposed optimality of U*. 
The necessity of (3. 2) follows from the fact that P ^ ( T = 0 ) = 1 for all 

x£E\G. By this our theorem is proved. 

R e m a r k s . As we see from the proof, the so lu t ion /* of (3. 1)—(3. 2) has the 
meaning of expected loss in the state x, if we apply the optimal strategy: 

P(x)=Jx(U*). 

From the proof one can see, that we may formulate our theorem in any other 
topology. E.g. in the strong topology we find: Let qu be strong continuous (w.r. 
to T"). Then there exists an optimal control strategy U*£% if and only if the bound-
ary value problem (3..1)—(3.2) possesses a solution f*£B(E, In this case Au 

means the strong infinitesimal operator of P.17. 

4. Applications of the main theorem 

In this part of our paper let us assume that °ll contains all constant strategies 
U(x) = d (deD). 

We denote by D L the set of all functions / £ D such that for any x. the equality 
Ut (x )= U2(x) implies 

(4. 1) Av>f(x) = AUzf(x) 

i.e. D L : = { / £ D : Z 7 1 ( X ) = U2(x)=>Au'f(x)=AV2/(x)}. 
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C o r o l l a r y 1. Given a controlled Markov process {Eu; UrJU) with D = D L , 
if qu is weakly continuous w.r. to Tf then for the existence of an optimal control strategy 

is necessary and sufficient that there exist an f*£B(E, S) and a U'£aU, which 
satisfy the relations 

(4.2) Av'Wf*(x) + q(x,U'(x)) = 0 for x£G, 

(4.3) A*f*(x) + q(x,d) S 0 for d£D, x£G, 

(4.4) f*(.x) = p(x) for xeE\G 

(Ad denotes the infinitesimal operator of 3U for which U=d). 

P r o o f . Necessity; Let U*£<% be optimal. Then (4. 2) follows with U':= U* from 
(3. 3), if we observe, that by (4. 1) 

(4.5). Auf(x) = Au(x)f(x) 

holds for all U€<%,f€D=DL. 
Let us suppose the existence of an x0 £ E, d0 £ D such that 

where f*(x)=Jx(U'). But since U=d0 is an admissible strategy, according to the 
theorem the last inequality contradicts the optimality of U'. 

Sufficiency: For an arbitrary x£E there exists a U'(x)£D such that 

A"f*(x) + q(x,d) 3= Aa'Wf*(x) + q(x, CT(*)).= 0 

Put U*(x):=U'(:c)e<r By (4. 5) the equation (3.3) holds true for U*. Let 
¡arbitrary, then (3. 4) follows from (4. 3), and Theorem implies the statement of 
Corollary 1. 

C o r o l l a r y 2. Let U*f*:=J(U*)£DL and let T?qu be weakly continuous. 
Then U* is optimal if and only if for U* and f* relations (4. 2)—(4. 4) hold true 
(with U*=U'). 

P r o o f . Analogous to the proof of Corollary 1. 

R e m a r k s : We can restate Corollary 1 in the following form: There exists an 
optimal control strategy if and only if there exists &n.f*£B(E, S) such that for all 
x£G we have 

(4. 6) min [A"f* (x) + q(x, d)] = (AV* «/*) (x) + q (x, U* (x)) - 0 
d€D 

and for all x £ E \ G we have f ( x ) — p(x), furthermore the strategy U* for which 
the minimum occurs in (4: 6) belongs to 
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Worth of noting is that this way Corollary 1 states the optimal policy U* to 
be independent on the class of admissible control strategies. This implies that exactly 
those classes have optimal policies which contain the strategy U* obtained by 
minimization of equation (4. 6) (assuming that such a minimization exists). > 

From practical point of view the main advantage of Corollary 1 over Theorem 
is that the minimization in it has to be carried out only over the control region, 
the cardinality of which is generally smaller than that of the class of the admissible 
strategies. 

Corollary 2 is useful if we want to decide about a given strategy U* (which has 
been determined earlier e.g. by the application of a necessary condition of optimality) 
whether it is optimal or not. In this case we have to prove the truth of. (4. 1) only 
for f*=J(U*), and have the advantage of minimizing over the control region. 

Finally, for the illustration of the theorems above, we give two examples which 
show how to derive the results of Bellman and Fleming from those of this paper. 

Discrete-time dynamic programming: . " 

Let the time be discrete. T=N, let the sets D, E' be finite and denote, by % the 
set of all functions from TXE' in D. Furthermore for all let Eu be a Markov 
chain on the state space E = TXE' with 

for all k, i,j£T, x'£E', d£D (cf. (1. 1)). For G we choose a bounded subset of 
TXE'. From Corollary 1 it follows that a control U* is optimal iff there is an / * 
such that 

(5.5 )f*(k,x')= min [Eg^pf* (k+\,a+l) + ci (k, x\ U(k, x')) for (k,x')£G, 
Utl r r ' t c n 

In (5. 5)—(5. 6) we recognize the well-known recursive equations of the stochastic 
dynamic programming [1]. 

Controlled diffusions (cf. FLEMING [6], [7], M A N D L [12]). 

Let T=R+, E'<zR"~l, D c7?m and let % the class of all measurable bounded 
functions from ¿ ' into D. Let the functions b', o',p, q be continuously differentiable and 
bounded together with their first order partial derivatives, and let a' \=\a'a'T (where 
<j'T is the matrix transposed of o') such that the eigenvalues of a'(x) are bounded 
from below by some c > 0 for all We introduce the notations 

P«(i,(k,x')>{i}xE) = X{k+i)(j) I 

(5.6) f*(k,x') = p(k,x') for (k,x') £E\G 

a = 
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where w't is a Brownian motion process on E ' . Then the Ito integral equation 

Zt = x + f b , U(Q) dt+j a(Q dwt 
0 0 

determines a Markov process for all x £ E , with the infinitesimal generator: 

AvRx) = _ J atJ (x) + (a (x, U(x)); fx(x)) 

where fx denotes the gradient o f / a n d <;) the inner product in R". From this we see-
that D=Djr, holds, and by Corollary 1 it follows: 

Necessary and sufficient for the optimality of U* is the existence of a n / * £ B(E, 
satisfying 

n [)f* 
2 aij (*) a a + min (*> d); f* (x) + q (x, d)] for 

i,j= 1 OX; OXj dgD 

f{x) = p{x) for x£E\G. 
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