On products of Toeplitz operators

By DONALD SARASON in Berkeley (California, U.S.A.)*
Dedicated to Béla Sz.-Nagy on his sixtieth birthday

1. Introduction

Brown and Halmos show in [2] that if f and g are functions in L^{∞} of the unit circle and T_{f} and T_{g} are the corresponding Toeplitz operators on H^{2}, then for the equality $T_{f} T_{g}=T_{f g}$ to hold it is necessary and sufficient that either \bar{f} or g belong to H^{∞}. The sufficiency of the preceding condition has been recognized since Toeplitz operators were first studied; it forms the basis for the Wiener-Hopf factorization technique. The necessity of the condition tells us that the equality $T_{f} T_{g}=T_{f g}$ is rather special.

It is much less special, however, for the difference $T_{f} T_{g}-T_{f g}$ to be compact, and this circumstance has been useful in the spectral analysis of certain Toeplitz operators. Coburn [3] has shown that $T_{f} T_{g}-T_{f g}$ is compact if either f or \dot{g} is continuous, and Gohberg and Krupnik [9] have shown that $T_{f} T_{g}-T_{f g}$ is compact if f and g are both piecewise continuous and have no common discontinuities. In the present paper, a sufficient condition for the compactness of $T_{f} T_{g}-T_{f g}$ is presented which contains both of the conditions just mentioned.

For f and g in L^{∞}. and λ a point on the unit circle, we define

$$
\operatorname{dist}_{\lambda}(f, g)=\text { ess. } \limsup _{\substack{z \rightarrow \lambda \\|z|=1}}|f(z)-g(z)| .
$$

If we extend f and g harmonically into the unit disk by means of Poisson's formula, we can also write

$$
\operatorname{dist}_{\lambda}(f, g)=\underset{\substack{z \rightarrow \lambda \\|z|<1}}{\lim \sup _{n}}|f(z)-g(z)| .
$$

For f in L^{∞} we define

$$
\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right)=\inf \left\{\operatorname{dist}_{\lambda}(f, h): \quad h \in H^{\infty}\right\}
$$

[^0]A simple normal families argument shows that there exists an h in H^{∞} such that $\operatorname{dist}_{\lambda}(f, h)=\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right)$.

Theorem. If f and g are in L^{∞}, and if for each λ on the unit circle either $\operatorname{dist}_{\lambda}\left(\bar{f}, H^{\infty}\right)=0$ or $\operatorname{dist}_{\lambda}\left(g, H^{\infty}\right)=0$, then $T_{f} T_{g}-T_{f g}$ is compact.

The proof, which rests ultimately on Coburn's condition, is given in Section 2. R. G. Douglas [4, Corollary 7.52] has found an alternative proof which uses the theory of C^{*}-algebras.

The theorem says, roughly, that if the condition in the Brown-Halmos theorem holds locally, then the equality $T_{f} T_{g}=T_{f g}$ holds to within a compact perturbation. Because the condition in the Brown-Halmos theorem is a necessary as well as a sufficient one, it is natural to conjecture the converse of the above theorem. The converse, however, is false, as is shown by a counter example in Section 3. Section 4 contains a partial converse of the theorem.

2. Proof of the theorem

For f in L^{∞}, the function $\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right)$ is upper semicontinuous with respect to λ. This function therefore attains a maximum on the unit circle.

Lemma. If f is in L^{∞}, then dist $\left(f, H^{\infty}+C\right)=\max \left\{\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right):|\lambda|=1\right\}$.
Here, C denotes the space of continuous complex valued functions on the unit circle. The lemma is an immediate consequence of a result of Bishop and GlickSberg [8, p. 419] on sets of antisymmetry for function algebras (see [6] for a fuller explanation). To keep this paper as elementary as possible, a simple direct proof of the lemma is provided in Section 5.

Let f and g satisfy the hypotheses of the theorem. Choose $\varepsilon>0$, and let A and B be the sets of points λ. on the unit circle where $\operatorname{dist}_{\lambda}\left(\bar{f}, H^{\infty}\right) \geqq \varepsilon$ and $\operatorname{dist}_{\lambda}\left(g, H^{\infty}\right) \geqq \varepsilon$, respectively. The sets A and B are then closed and disjoint. Choose a nonnegative function u in C such that $u \leqq 1, u=0$ on A, and $u=1$ on B. Let $v=1-u$. By Coburn's condition we have (letting K_{1}, K_{2}, \ldots denote compact operators),

$$
\begin{equation*}
T_{f} T_{g}=T_{f} T_{u} T_{g}+T_{f} T_{v} T_{g}=\left(T_{f u}+K_{1}\right) T_{g}+T_{f}\left(T_{v g}+K_{2}\right)=T_{f u} T_{g}+T_{f} T_{v g}+K_{3} \tag{1}
\end{equation*}
$$

Since $\operatorname{dist}_{\lambda}\left(v g, H^{\infty}\right)<\varepsilon$ for all λ, it follows from the lemma that dist $\left(v g, H^{\infty}+C\right)<\varepsilon$. Hence, we can write $v g=h+w+\varphi$ where h is in H^{∞}, w is in C, and $\|\varphi\|_{\infty}<\varepsilon$. Because $T_{f} T_{h}=T_{f h}$ and $T_{f} T_{w}=T_{f w}+K_{4}$ (by Coburn's condition), we have

$$
\begin{equation*}
T_{f} T_{v g}-T_{f v g}=T_{f} T_{\varphi}-T_{f \varphi}+K_{4}=S_{1}+K_{4}, \tag{2}
\end{equation*}
$$

where $\left\|S_{t}\right\| \leqq\|f\|_{\infty}\|\varphi\|_{\infty}+\|f \varphi\|_{\infty} \leqq 2 \varepsilon\|f\|_{\infty}$. Exactly the same reasoning gives

$$
\begin{equation*}
T_{f u} T_{g}-T_{f u g}=S_{2}+K_{5}, \tag{3}
\end{equation*}
$$

where $\left\|S_{2}\right\| \leqq 2 \varepsilon\|g\|_{\infty}$. Combining.(1)-(3), we obtain

$$
T_{f} T_{g}=T_{f u g}+T_{f v g}+S_{1}+S_{2}+K_{6}=T_{f g}+S_{1}+S_{2}+K_{6}
$$

Hence, the distance of $T_{f} T_{g}-T_{f g}$ from the set of compact operators is at most $\left\|S_{1}\right\|+\left\|S_{2}\right\| \leqq 2 \varepsilon\left(\|f\|_{\infty}+\|g\|_{\infty}\right)$. As ε can be chosen arbitrarily small, it follows that $T_{f} T_{g}-T_{f g}$ is compact. The theorem is proved.

3. Counter example to the converse

To obtain the desired counter example, we take $g=\bar{\psi}$ where ψ is the inner function $\exp \left(\frac{z+1}{z-1}\right)$. We take for f a real function in L^{∞} with the following properties: (i) f is continuous except at $z=1$; (ii) $f /(1-z)$ is in L^{2}; (iii) f is not in $H^{\infty}+C$. We defer the construction of f until later. We note that dist ${ }_{1}\left(f, H^{\infty}\right)>0$ by the lemma in Section 2. Also, it is easy to see that dist ${ }_{1}\left(g, H^{\infty}\right)=1$. The condition of the theorem therefore fails at $\lambda=1$. We show that, nevertheless, the operator $T_{f} T_{g}-T_{f g}$ is compact.

Because

$$
\left(T_{f} \dot{T}_{g}-T_{f g}\right) T_{\psi}=T_{f} T_{\psi} T_{\psi}-T_{f \psi} T_{\psi}=T_{f} T_{\Psi \psi}-T_{f \Psi \psi}=T_{f}-T_{f}=0
$$

the operator $T_{f} T_{g}-T_{f g}$ annihilates the subspace ψH^{2}. Hence, it will be enough to show that the restriction of $T_{f} T_{g}-T_{f g}$ to $H^{2} \ominus \psi H^{2}$ is compact. Also, the operator $T_{g}=T_{\psi}$ annihilates $H^{2} \ominus \psi H^{2}$, so we need only show that the restriction of $T_{f g}$ to $H^{2} \ominus \psi H^{2}$ is compact. We shall show that, actually, the transformation from $H^{2} \ominus \psi H^{2}$ into L^{2} of multiplication by $f g$ is compact. Because multiplication by g sends $H^{2} \dot{\ominus} \psi H^{2}$ isometrically onto $\bar{\psi} H^{2} \ominus H^{2}$, this amounts to showing that the transformation of $\bar{\psi} H^{2} \ominus H^{2}$ into L^{2} of multiplication by f is compact. Let S denote the latter transformation.

To prove the compactness of S, we introduce the isometry V of L^{2} of the circle onto $L^{2}(-\infty, \infty)$ defined by

$$
(V h)(x)=\pi^{-1 / 2}(x+i)^{-1} h\left(\frac{x-i}{x+i}\right)
$$

This isometry transforms the operator on L^{2} of multiplication by f into the operator on $L^{2}(-\infty, \infty)$ of multiplication by $\varphi(x)=f\left(\frac{x-i}{x+i}\right)$. From (ii) it follows that φ is in $L^{2}(-\infty, \infty)$. Let W be the Fourier-Plancherel transformation of $L^{2}(-\infty, \infty)$ onto itself. Then W transforms the operator on $L^{2}(-\infty, \infty)$ of multiplication by φ into the operator of convolution with the square-integrable function $k=(2 \pi)^{1 / 2} W \varphi$. Now it is easy to check that the combined transformation $U=W V$ sends $\bar{\psi} H^{2} \ominus H^{2}$
onto $L^{2}(-1,0)$ (regarded as the subspace of functions in $L^{2}(-\infty, \infty)$ vanishing off $(-1,0))$. Hence U takes S into the transformation of $L^{2}(-1,0)$ into $L^{2}(-\infty, \infty)$ of convolution with k, that is, into the integral operator with kernel $K(x, y)=$ $=k(x-y)(-\infty<x<\infty,-1<y<0)$. The square-integrability of k implies the squareintegrability of K, so the integral operator in question is a Hilbert-Schmidt operator. Therefore S is compact, as desired.

It remains to construct a function f with the required properties. For this we employ the notion of mean oscillation.

Let m denote normalized Lebesgue measure on the unit circle. For f in L^{1} of the circle and I a subarc of the circle, define $a v_{I} f=m(I)^{-1} \int_{I} f d m$ and

Further, define

$$
M(f, I)=m(I)^{-1} \int_{I}\left|f-a v_{I} f\right| d m
$$

$$
M_{r}(f)=\sup \{M(f, I): m(I) \leqq r\} \text { for } 0<r \leqq 1, \text { and } M_{0}(f)=\lim _{r \rightarrow 0} M_{r}(f) .
$$

The quantity $M_{1}(f)$ is called the mean oscillation of f, and in case $M_{1}(f)<\infty$ we say that f has bounded mean oscillation (or that f is in BMO). In case $M_{0}(f)=0$ we say that f has vanishing mean oscillation (or that f is in VMO). The class BMO has recently been studied by Fefferman and Stein [7], who have proved, among other results, that a function belongs to BMO if and only if it can be written as $u+\tilde{v}$ where u and v belong to L^{∞} and \tilde{v} is the conjugate function of v. We need here the less difficult half of this equivalence, the half that asserts $L^{\infty}+\left(L^{\infty}\right)^{\sim} \cdot \subset$ BMO. This inclusion is bounded in the sense that there is a positive constant c with the property $M_{1}(u+\tilde{v}) \leqq c\left(\|u\|_{\infty}+\|v\|_{\infty}\right)$ for all u, v in L^{∞} [7].

The class VMO also has a simple characterization; it consists of all functions $u+\tilde{v}$ with u and v in C. Here we require only the inclusion $C+\tilde{C} \subset \mathrm{VMO}$, which can be proved as follows. As the inclusion $C \subset$ VMO is obvious, it will be enough to show that $\bar{C} \subset$ VMO. Let v belong to C, and choose $\varepsilon>0$. Then there is a trigonometric polynomial p such that $\|v-p\|_{\infty}<\varepsilon$. Since \tilde{p} is continuous we have

$$
M_{0}(\tilde{v})=M_{0}(\tilde{v}-\tilde{p}) \leqq M_{1}(\tilde{v}-\tilde{p}) \leqq c\|v-p\|_{\infty}<c \varepsilon .
$$

Because ε is arbitrary this shows that $M_{0}(\tilde{v})=0$, as desired.
Now it is trivial that a real L^{∞} function belongs to $H^{\infty}+C$ if and only if it belongs to $C+\widetilde{C}$. Thus, to guarantee that the f we construct satisfies condition (iii), it will suffice to arrange that $M_{0}(f)>0$.

To construct f we introduce the subarcs $I_{n}=\left\{e^{i \theta}: 2^{-n} \leqq \theta \leqq 2^{-n}+5^{-n}\right\}$, $n=1,2, \ldots$. We define f to be 0 off $\cup I_{n}$. On I_{n} we define f so that it is real, continuous, bounded in modulus by 1 , vanishes at the endpoints of I_{n}, and satisfies

$$
\int_{I_{n}} f d m=0, \int_{I_{n}}|f| d m \geqq \frac{1}{2} m\left(I_{n}\right) .
$$

From the preceding equality and inequality we have $M_{0}(f) \geqq 1 / 2$, and thus (iii) holds. As (i) is obvious, it only remains to check (ii), which amounts to showing that the function $f\left(e^{i \theta}\right) / \theta$ belongs to L^{2}. On I_{n} we have $|f| \theta \mid \leqq 2^{n}$, and so

$$
\left.\int_{I_{n}}|f| \theta\right|^{2} d m \leqq 2^{2 n} m\left(I_{n}\right)=(2 \pi)^{-1}(4 / 5)^{n}
$$

The square-integrability of f / θ is now obvious, and the construction is complete.
It appears that any necessary and sufficient condition, in terms of the structures of f and g, for the compactness of $T_{f} T_{g}-T_{f g}$ will have to take account of subtleties of the behavior of the Gelfand transforms of f and g on the fibers of the Gelfand space of L^{∞}.

4. A partial converse

The above theorem does have a converse of sorts.
Theorem. If g is in L^{∞} and if $T_{h} T_{g}-T_{h g}$ is compact for all h in H^{∞}, then g is in $H^{\infty}+C$.

This result was first conjectured by R. G. Douglas, who has independently found the following proof.

Under the hypotheses of the theorem, if h is any function in H^{∞} and ψ is any inner function, then the operator

$$
T_{\bar{\psi}}\left(T_{h} T_{g}-T_{h g}\right)=T_{\psi h} T_{g}-T_{\Psi h g}
$$

is compact. As the functions ψh are dense in L^{∞} [5], we may conclude that $T_{f} T_{g}-T_{f g}$ is compact for all f in L^{∞}.

For f in L^{∞}, let Γ_{f} be the Hankel operator induced by f, that is, the operator from H^{2} to $\left(H^{2}\right)^{\perp}$ of multiplication by f followed by projection onto $\left(H^{2}\right)^{\perp}$. A theorem of Hartman [10] (see also [1]) states that Γ_{f} is compact if and only if f belongs to $H^{*}+C$. Now a simple calculation shows that $T_{f} T_{g}-T_{f g}=-\Gamma_{f}^{*} \Gamma_{g}$, and thus $\Gamma_{f}^{*} \Gamma_{g}$ is compact for all f in L^{∞}. Taking $f=g$ we conclude that $\Gamma_{g}^{*} \Gamma_{g}$ is compact, and hence that Γ_{g} is compact. Therefore g is in $H^{-}+C$ by Hartman's theorem, as desired.

5. Proof of the lemma

We present here a simple direct proof of the lemma of Section 2. The proof depends on the fact that $H^{\infty}+C$ is an algebra [4].

Let f belong to L^{∞}. It is obvious that $\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right) \leqq \operatorname{dist}\left(f, H^{\infty}+C\right)$ for each λ, so it will suffice to show that $\operatorname{dist}\left(f, H^{\infty}+C\right) \leqq \max \left\{\operatorname{dist}_{\lambda}\left(f, H^{\infty}\right):|\lambda|=1\right\}$. Let M denote the preceding maximum. Choose $\varepsilon>0$, and for each λ choose an n_{λ}
in $H^{-\infty}$ such that dist $\left(f, h_{\lambda}\right)<M+\varepsilon$. Because $\operatorname{dist}_{z}\left(f, h_{\lambda}\right)$ is an upper semicontinuous function of z, there is for each λ an open subarc J_{λ} of the unit circle containing λ such that $\operatorname{dist}_{z}\left(f, h_{\lambda}\right)<M+2 \varepsilon$ for all z in J_{λ}. Choose a finite number of the sub$\operatorname{arcs} J_{\lambda}$ that cover the unit circle. Denote these subarcs by J_{1}, \ldots, J_{p} and the corresponding functions h_{2} by h_{1}, \ldots, h_{p}. Choose a partition of unity $\left\{w_{k}\right\}_{k=1}^{q}$ of the unit circle subordinate to the cover $\left\{J_{n}\right\}_{n=1}^{p}$ and consisting of nonnegative functions in C. Thus $\sum_{1}^{q} w_{k}=1$ everywhere, and for each k there is an $n(k)$ such that $J_{n(k)}$ contains the support of w_{k}. By the latter property, if $w_{k}(\lambda) \neq 0$ then $\operatorname{dist}_{\lambda}\left(f, h_{n(k)}\right)<$ $<M+2 \varepsilon$.

Now let $g=\sum_{1}^{q} w_{k} h_{n(k)}$. Then g is in $H^{-}+C$, and for any λ on the unit circle, $\operatorname{dist}_{\lambda}(f, g)=\operatorname{dist}_{\lambda}\left(\sum_{k} w_{k}(\lambda) f, \sum_{k} w_{k} h_{n(k)}\right) \leqq \sum_{k} \operatorname{dist}_{\lambda}\left(w_{k}(\lambda) f, w_{k} h_{n(k)}\right)=$ $=\sum_{k} \operatorname{dist}_{\lambda}\left(w_{k}(\lambda) f, w_{k}(\lambda) h_{n(k)}\right)=\sum_{k} w_{k}(\lambda) \operatorname{dist}_{\lambda}\left(f, h_{n(k)}\right)<\sum_{k} w_{k}(\lambda)(M+2 \varepsilon)=M+2 \varepsilon$.
It follows that $\|f-g\|_{\infty}<M+2 \varepsilon$. We may conclude that dist $\left(f, H^{\infty}+C\right) \leqq M$, and the lemma is proved.

References

[1] V. M. Adamyan, D. Z. Arov and M. G. Krein, On infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen., 2 (1968), 1-19.
[2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. reine angew. Math., 213 (1963), 89-102.
[3] L. A. Coburn, The C^{*}-algebra generated by an isometry, Bull. Amer. Math. Soc., 73 (1967), 722-726.
[4] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press (New York, 1972).
[5] R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math., 31 (1969), 313-320.
[6] R. G. Douglas and D. Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc., 26 (1970), 117-120.
[7] C. Fefferman and E. M. Stein, H^{p} Spaces of several variables, Acta Math., 129 (1972), 137193.
[8] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc., 105 (1962), $415-435$.
[9] I. C. Gohberg and N. Ya. Krupnik, On an algebra generated by Toeplitz matrices, Funkcional. Anal. i Priložen., 3 (1969), 46-56.
[10] P. Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc., 9 (1958), 862-866.

UNIVERSITY OF CALIFORNIA, BERKELEY

[^0]: * Research supported in part by National Science Foundation Grant GP-25 082. The author is a fellow of the Alfred P. Sloan Foundation.

