On products of Toeplitz operators

By DONALD SARASON in Berkeley (California, U.S.A.)*

Dedicated to Béla Sz.-Nagy on his sixtieth birthday

1. Introduction

BROWN and HALMOS show in [2] that if f and g are functions in L^{∞} of the unit circle and T_f and T_g are the corresponding Toeplitz operators on H^2 , then for the equality $T_f T_g = T_{fg}$ to hold it is necessary and sufficient that either \overline{f} or g belong to H^{∞} . The sufficiency of the preceding condition has been recognized since Toeplitz operators were first studied; it forms the basis for the Wiener—Hopf factorization technique. The necessity of the condition tells us that the equality $T_f T_g = T_{fg}$ is rather special.

It is much less special, however, for the difference $T_f T_g - T_{fg}$ to be compact, and this circumstance has been useful in the spectral analysis of certain Toeplitz operators. COBURN [3] has shown that $T_f T_g - T_{fg}$ is compact if either f or g is continuous, and GOHBERG and KRUPNIK [9] have shown that $T_f T_g - T_{fg}$ is compact if f and g are both piecewise continuous and have no common discontinuities. In the present paper, a sufficient condition for the compactness of $T_f T_g - T_{fg}$ is presented which contains both of the conditions just mentioned.

For f and g in L^{∞} and λ a point on the unit circle, we define

dist_{$$\lambda$$} (f, g) = ess. lim sup $|f(z) - g(z)|$.
|z|=1

If we extend f and g harmonically into the unit disk by means of Poisson's formula, we can also write

$$\operatorname{dist}_{\lambda}(f, g) = \limsup_{\substack{z \to \lambda \\ |z| < 1}} |f(z) - g(z)|.$$

For f in L^{∞} we define

$$\operatorname{dist}_{\lambda}(f, H^{\infty}) = \inf \{\operatorname{dist}_{\lambda}(f, h): h \in H^{\infty}\}.$$

* Research supported in part by National Science Foundation Grant GP-25 082. The author is a fellow of the Alfred P. Sloan Foundation.

A simple normal families argument shows that there exists an h in H^{∞} such that $\operatorname{dist}_{\lambda}(f, h) = \operatorname{dist}_{\lambda}(f, H^{\infty}).$

Theorem. If f and g are in L^{∞} , and if for each λ on the unit circle either $\operatorname{dist}_{\lambda}(f, H^{\infty}) = 0$ or $\operatorname{dist}_{\lambda}(g, H^{\infty}) = 0$, then $T_{f}T_{g} - T_{fg}$ is compact.

The proof, which rests ultimately on Coburn's condition, is given in Section 2. R. G. DOUGLAS [4, Corollary 7. 52] has found an alternative proof which uses the theory of C^* -algebras.

The theorem says, roughly, that if the condition in the Brown-Halmos theorem holds locally, then the equality $T_f T_g = T_{fg}$ holds to within a compact perturbation. Because the condition in the Brown-Halmos theorem is a necessary as well as a sufficient one, it is natural to conjecture the converse of the above theorem. The converse, however, is false, as is shown by a counter example in Section 3. Section 4 contains a partial converse of the theorem.

2. Proof of the theorem

For f in L^{∞} , the function dist_{λ}(f, H^{∞}) is upper semicontinuous with respect to λ . This function therefore attains a maximum on the unit circle.

Lemma. If f is in L^{∞} , then dist $(f, H^{\infty} + C) = \max \{ \text{dist}_{\lambda}(f, H^{\infty}) : |\lambda| = 1 \}$.

Here, C denotes the space of continuous complex valued functions on the unit circle. The lemma is an immediate consequence of a result of BISHOP and GLICKSBERG [8, p. 419] on sets of antisymmetry for function algebras (see [6] for a fuller explanation). To keep this paper as elementary as possible, a simple direct proof of the lemma is provided in Section 5.

Let f and g satisfy the hypotheses of the theorem. Choose $\varepsilon > 0$, and let A and B be the sets of points λ on the unit circle where dist $(f, H^{\infty}) \ge \varepsilon$ and dist $(g, H^{\infty}) \ge \varepsilon$, respectively. The sets A and B are then closed and disjoint. Choose a nonnegative function u in C such that $u \le 1$, u = 0 on A, and u = 1 on B. Let v = 1 - u. By Coburn's condition we have (letting $K_1, K_2, ...$ denote compact operators),

 $T_{f}T_{g} = T_{f}T_{u}T_{g} + T_{f}T_{v}T_{g} = (T_{fu} + K_{1})T_{g} + T_{f}(T_{vg} + K_{2}) = T_{fu}T_{g} + T_{f}T_{vg} + K_{3}.$ (1)

Since dist₁(vg, H^{∞}) < ε for all λ , it follows from the lemma that dist (vg, $H^{\infty} + C$) < ε . Hence, we can write $vg = h + w + \varphi$ where h is in H^{∞} , w is in C, and $\|\varphi\|_{\infty} < \varepsilon$. Because $T_f T_h = T_{fh}$ and $T_f T_w = T_{fw} + K_4$ (by Coburn's condition), we have

(2)
$$T_f T_{pq} - T_{fpq} = T_f T_q - T_{fq} + K_4 = S_1 + K_4,$$

where $||S_1|| \le ||f||_{\infty} ||\varphi||_{\infty} + ||f\varphi||_{\infty} \le 2\varepsilon ||f||_{\infty}$. Exactly the same reasoning gives (3)

$$T_{fu}T_g - T_{fug} = S_2 + K_5,$$

8

where $||S_2|| \leq 2\varepsilon ||g||_{\infty}$. Combining (1)—(3), we obtain

$$T_f T_g = T_{fug} + T_{fvg} + S_1 + S_2 + K_6 = T_{fg} + S_1 + S_2 + K_6.$$

Hence, the distance of $T_f T_g - T_{fg}$ from the set of compact operators is at most $||S_1|| + ||S_2|| \le 2\varepsilon (||f||_{\infty} + ||g||_{\infty})$. As ε can be chosen arbitrarily small, it follows that $T_f T_g - T_{fg}$ is compact. The theorem is proved.

3. Counter example to the converse

To obtain the desired counter example, we take $g = \overline{\psi}$ where ψ is the inner function $\exp\left(\frac{z+1}{z-1}\right)$. We take for f a real function in L^{∞} with the following properties: (i) f is continuous except at z=1; (ii) f/(1-z) is in L^2 ; (iii) f is not in $H^{\infty} + C$. We defer the construction of f until later. We note that $\operatorname{dist}_1(f, H^{\infty}) > 0$ by the lemma in Section 2. Also, it is easy to see that $\operatorname{dist}_1(g, H^{\infty})=1$. The condition of the theorem therefore fails at $\lambda=1$. We show that, nevertheless, the operator $T_f T_g - T_{fg}$ is compact.

Because

$$(T_f T_g - T_{fg})T_{\psi} = T_f T_{\overline{\psi}}T_{\psi} - T_{f\overline{\psi}}T_{\psi} = T_f T_{\overline{\psi}\psi} - T_{f\overline{\psi}\psi} = T_f - T_f = 0,$$

the operator $T_f T_g - T_{fg}$ annihilates the subspace ψH^2 . Hence, it will be enough to show that the restriction of $T_f T_g - T_{fg}$ to $H^2 \ominus \psi H^2$ is compact. Also, the operator $T_g = T_{\overline{\psi}}$ annihilates $H^2 \ominus \psi H^2$, so we need only show that the restriction of T_{fg} to $H^2 \ominus \psi H^2$ is compact. We shall show that, actually, the transformation from $H^2 \ominus \psi H^2$ into L^2 of multiplication by fg is compact. Because multiplication by g sends $H^2 \ominus \psi H^2$ isometrically onto $\overline{\psi} H^2 \ominus H^2$, this amounts to showing that the transformation of $\overline{\psi} H^2 \ominus H^2$ into L^2 of multiplication by f is compact. Let S denote the latter transformation.

To prove the compactness of S, we introduce the isometry V of L^2 of the circle onto $L^2(-\infty,\infty)$ defined by

$$(Vh)(x) = \pi^{-1/2} (x+i)^{-1} h\left(\frac{x-i}{x+i}\right).$$

This isometry transforms the operator on L^2 of multiplication by f into the operator on $L^2(-\infty, \infty)$ of multiplication by $\varphi(x) = f\left(\frac{x-i}{x+i}\right)$. From (ii) it follows that φ is in $L^2(-\infty, \infty)$. Let W be the Fourier—Plancherel transformation of $L^2(-\infty, \infty)$ onto itself. Then W transforms the operator on $L^2(-\infty, \infty)$ of multiplication by φ into the operator of convolution with the square-integrable function $k = (2\pi)^{1/2} W\varphi$. Now it is easy to check that the combined transformation U = WV sends $\overline{\psi}H^2 \ominus H^2$ onto $L^2(-1, 0)$ (regarded as the subspace of functions in $L^2(-\infty, \infty)$ vanishing off (-1, 0)). Hence U takes S into the transformation of $L^2(-1, 0)$ into $L^2(-\infty, \infty)$ of convolution with k, that is, into the integral operator with kernel K(x, y) = $= k(x-y)(-\infty < x < \infty, -1 < y < 0)$. The square-integrability of k implies the squareintegrability of K, so the integral operator in question is a Hilbert-Schmidt operator. Therefore S is compact, as desired.

It remains to construct a function f with the required properties. For this we employ the notion of mean oscillation.

Let *m* denote normalized Lebesgue measure on the unit circle. For *f* in L^1 of the circle and *I* a subarc of the circle, define $av_I f = m(I)^{-1} \int f dm$ and

$$M(f, I) = m(I)^{-1} \int_{I} |f - av_{I}f| dm.$$

Further, define

 $M_r(f) = \sup \{ M(f, I): m(I) \le r \}$ for $0 < r \le 1$, and $M_0(f) = \lim_{r \to 0} M_r(f)$.

The quantity $M_1(f)$ is called the mean oscillation of f, and in case $M_1(f) < \infty$ we say that f has bounded mean oscillation (or that f is in BMO). In case $M_0(f)=0$ we say that f has vanishing mean oscillation (or that f is in VMO). The class BMO has recently been studied by FEFFERMAN and STEIN [7], who have proved, among other results, that a function belongs to BMO if and only if it can be written as $u+\tilde{v}$ where u and v belong to L^{∞} and \tilde{v} is the conjugate function of v. We need here the less difficult half of this equivalence, the half that asserts $L^{\infty} + (L^{\infty})^{\sim} \subset$ BMO. This inclusion is bounded in the sense that there is a positive constant c with the property $M_1(u+\tilde{v}) \leq c(||u||_{\infty} + ||v||_{\infty})$ for all u, v in L^{∞} [7].

The class VMO also has a simple characterization; it consists of all functions $u+\tilde{v}$ with u and v in C. Here we require only the inclusion $C+\tilde{C}\subset$ VMO, which can be proved as follows. As the inclusion $C\subset$ VMO is obvious, it will be enough to show that $\tilde{C}\subset$ VMO. Let v belong to C, and choose $\varepsilon > 0$. Then there is a trigonometric polynomial p such that $||v-p||_{\infty} < \varepsilon$. Since \tilde{p} is continuous we have

 $M_0(\tilde{v}) = M_0(\tilde{v} - \tilde{p}) \le M_1(\tilde{v} - \tilde{p}) \le c \|v - p\|_{\infty} < c\varepsilon.$

Because ε is arbitrary this shows that $M_0(\tilde{v})=0$, as desired.

Now it is trivial that a real L^{∞} function belongs to $H^{\infty} + C$ if and only if it belongs to $C + \tilde{C}$. Thus, to guarantee that the f we construct satisfies condition (iii), it will suffice to arrange that $M_0(f) > 0$.

To construct f we introduce the subarcs $I_n = \{e^{i\theta}: 2^{-n} \le \theta \le 2^{-n} + 5^{-n}\}$, $n=1, 2, \ldots$. We define f to be 0 off $\bigcup I_n$. On I_n we define f so that it is real, continuous, bounded in modulus by 1, vanishes at the endpoints of I_n , and satisfies

$$\int_{I_n} f \, dm = 0, \int_{I_n} |f| \, dm \ge \frac{1}{2} \, m(I_n).$$

Products of Toeplitz operators

From the preceding equality and inequality we have $M_0(f) \ge 1/2$, and thus (iii) holds. As (i) is obvious, it only remains to check (ii), which amounts to showing that the function $f(e^{i\theta})/\theta$ belongs to L^2 . On I_n we have $|f/\theta| \le 2^n$, and so

$$\int_{I_n} |f/\theta|^2 \, dm \leq 2^{2n} m (I_n) = (2\pi)^{-1} (4/5)^n.$$

The square-integrability of f/θ is now obvious, and the construction is complete.

It appears that any necessary and sufficient condition, in terms of the structures of f and g, for the compactness of $T_f T_g - T_{fg}$ will have to take account of subtleties of the behavior of the Gelfand transforms of f and g on the fibers of the Gelfand space of L^{∞} .

4. A partial converse

The above theorem does have a converse of sorts.

6

Theorem. If g is in L^{∞} and if $T_h T_g - T_{hg}$ is compact for all h in H^{∞} , then g is in $H^{\infty} + C$.

This result was first conjectured by R. G. DOUGLAS, who has independently found the following proof.

Under the hypotheses of the theorem, if h is any function in H^{∞} and ψ is any inner function, then the operator

$$T_{\overline{\Psi}}(T_h T_g - T_{hg}) = T_{\overline{\Psi}h} T_g - T_{\overline{\Psi}hg}$$

is compact. As the functions $\overline{\psi}h$ are dense in L^{∞} [5], we may conclude that $T_f T_g - T_{fg}$ is compact for all f in L^{∞} .

For f in L^{∞} , let Γ_f be the Hankel operator induced by f, that is, the operator from H^2 to $(H^2)^{\perp}$ of multiplication by f followed by projection onto $(H^2)^{\perp}$. A theorem of HARTMAN [10] (see also [1]) states that Γ_f is compact if and only if f belongs to $H^{\infty} + C$. Now a simple calculation shows that $T_f T_g - T_{fg} = -\Gamma_f^* \Gamma_g$, and thus $\Gamma_f^* \Gamma_g$ is compact for all f in L^{∞} . Taking f=g we conclude that $\Gamma_g^* \Gamma_g$ is compact, and hence that Γ_g is compact. Therefore g is in $H^{\infty} + C$ by Hartman's theorem, as desired.

5. Proof of the lemma

We present here a simple direct proof of the lemma of Section 2. The proof depends on the fact that $H^{\infty} + C$ is an algebra [4].

Let f belong to L[•]. It is obvious that $\operatorname{dist}_{\lambda}(f, H^{\circ}) \leq \operatorname{dist}(f, H^{\circ}+C)$ for each λ , so it will suffice to show that $\operatorname{dist}(f, H^{\circ}+C) \leq \max \{\operatorname{dist}_{\lambda}(f, H^{\circ}): |\lambda|=1\}$. Let M denote the preceding maximum. Choose $\varepsilon > 0$, and for each λ choose an h_{λ}

11

D. Sarason: Products of Toeplitz operators

in H^{\bullet} such that dist $(f, h_{\lambda}) < M + \varepsilon$. Because dist_z (f, h_{λ}) is an upper semicontinuous function of z, there is for each λ an open subarc J_{λ} of the unit circle containing λ such that dist_z $(f, h_{\lambda}) < M + 2\varepsilon$ for all z in J_{λ} . Choose a finite number of the subarcs J_{λ} that cover the unit circle. Denote these subarcs by J_1, \ldots, J_p and the corresponding functions h_{λ} by h_1, \ldots, h_p . Choose a partition of unity $\{w_k\}_{k=1}^q$ of the unit circle subordinate to the cover $\{J_n\}_{n=1}^p$ and consisting of nonnegative functions in C. Thus $\sum_{1}^{q} w_k = 1$ everywhere, and for each k there is an n(k) such that $J_{n(k)}$ contains the support of w_k . By the latter property, if $w_k(\lambda) \neq 0$ then dist_{λ} $(f, h_{n(k)}) < M + 2\varepsilon$.

Now let $g = \sum_{1}^{q} w_k h_{n(k)}$. Then g is in $H^{-} + C$, and for any λ on the unit circle,

$$\operatorname{dist}_{\lambda}(f,g) = \operatorname{dist}_{\lambda}\left(\sum_{k} w_{k}(\lambda)f, \sum_{k} w_{k}h_{n(k)}\right) \leq \sum_{k} \operatorname{dist}_{\lambda}\left(w_{k}(\lambda)f, w_{k}h_{n(k)}\right) =$$

$$= \sum_{k} \operatorname{dist}_{\lambda} \left(w_{k}(\lambda) f, w_{k}(\lambda) h_{n(k)} \right) = \sum_{k} w_{k}(\lambda) \operatorname{dist}_{\lambda} \left(f, h_{n(k)} \right) < \sum_{k} w_{k}(\lambda) \left(M + 2\varepsilon \right) = M + 2\varepsilon.$$

It follows that $||f-g||_{\infty} < M+2\varepsilon$. We may conclude that dist $(f, H^{\infty}+C) \leq M$, and the lemma is proved.

References

- V. M. ADAMYAN, D. Z. AROV and M. G. KREIN, On infinite Hankel matrices and generalized problems of Carathéodory—Fejér and F. Riesz, Funkcional. Anal. i Priložen., 2 (1968), 1-19.
- [2] A. BROWN and P. R. HALMOS, Algebraic properties of Toeplitz operators, J. reine angew. Math., 213 (1963), 89–102.
- [3] L. A. COBURN, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc., 73 (1967), 722-726.
- [4] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press (New York, 1972).
- [5] R. G. DOUGLAS and W. RUDIN, Approximation by inner functions, Pacific J. Math., 31 (1969), 313-320.
- [6] R. G. DOUGLAS and D. SARASON, Fredholm Toeplitz operators, Proc. Amer. Math. Soc., 26 (1970), 117-120.
- [7] C. FEFFERMAN and E. M. STEIN, H^p Spaces of several variables, Acta Math., 129 (1972), 137 193.
- [8] I. GLICKSBERG, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc., 105 (1962), 415-435.
- [9] I. C. GOHBERG and N. YA. KRUPNIK, On an algebra generated by Toeplitz matrices, Funkcional. Anal. i Priložen., 3 (1969), 46—56.
- [10] P. HARTMAN, On completely continuous Hankel matrices, Proc. Amer. Math. Soc., 9 (1958), 862-866.

UNIVERSITY OF CALIFORNIA, BERKELEY

(Received September 21, 1971)