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1. Introduction 

BROWN a n d HALMOS s h o w in [2] t h a t i f / a n d g a r e f u n c t i o n s in L°° o f t h e u n i t 

circle and Tj- and Tg are the corresponding Toeplitz operators on H2, then for the 
equality TfTg = Tfg to hold it is necessary and sufficient that e i t h e r / or g belong to 
H°°. The sufficiency of the preceding condition has been recognized since Toeplitz 
operators were first studied; it forms the basis for the Wiener—Hopf factoriza-
tion technique. The necessity of the condition tells us that the equality TjTg—TS g is 
rather special. 

It is much less special, however, for the difference TfTg — Tfg to be compact, 
and this circumstance has been useful in the spectral analysis of certain Toeplitz 
operators. COBURN [3] has shown that TsTg — Tig is compact if either / or g is. 
continuous, and GOHBERC. and KRUPNIK [9] have shown that TfTg — Tfg is com-
pact if / and g are both piecewise continuous and have no common discontinu-
ities. In the present paper, a sufficient condition for the compactness of TfTg — Tfg 

is presented which contains both of the conditions just mentioned. 
For / and g in L°° and X a point on the unit circle, we define 

distA ( / , g) = ess. lim sup | / ( z ) — g(z)\. 
-z-A 
1*1=1 

If we e x t e n d / a n d g harmonically into the unit disk by means of Poisson's formula, 
we can also write 

dist^ ( / , g) — lim sup | / (z) — g(z)|y 
z— X 
|z|< 1 

For / in LT we define 

d i s t A ( / , / / ~ ) = i n f { d i s t , ( / ,A) : heH~}. 
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A simple normal families argument shows that there exists an h in H°° such tha t 
d i s t A ( / , / 0 = d i s t A ( / , / r ) . 

T h e o r e m . I f f and g are in LT, and if for each A on the unit circle either 
distA(/ , H°°)=0 or distA(g, H°°)=0, then T f T g - T f g is compact. 

The proof, which rests ultimately on Coburn ' s condition, is given in Section 2. 
R. G. DOUGLAS [4, Corollary 7. 52] has found an alternative proof which uses the 
theory of C*-algebras. 

The theorem says, roughly, tha t if the condition in the Brown—Halmos theo- , 
rem holds locally, then the equality TfTg=Tfg holds to within a compact per turba-
tion. Because the condition in the Brown—Halmos theorem is a necessary as well as 
a sufficient one, it is natural to conjecture the converse of the above theorem. The con-
verse, however, is false, as is shown by a counter example in Section 3. Section 4 con-
tains a partial converse of the theorem. 

2. Proof of the theorem 

For / i n LT, the funct ion d i s t ; ( / , H°°) is upper semicontinuous with respect 
to A. This funct ion therefore attains a max imum on the unit circle. 

L e m m a . If f is in LT, then dist ( / , H°° + C) = max {distA(/, H°°): U| = 1}. 

Here, C denotes the space of continuous complex valued funct ions on the unit 
circle. The lemma is an immediate consequence of a result of BISHOP and GLICKSBERG 
[8, p. 419] on sets of antisymmetry for funct ion algebras (see [6] for a fuller explana-
tion). To keep this paper as elementary as possible, a simple direct proof of the lemma 
is provided in Section 5.. 

Let / and g satisfy the hypotheses of the theorem. Choose e > 0, and let A and 
B be the sets of points Aon the unit circle where d i s t ; ( / , and dist, (g, 
respectively. The sets A and B are then closed and disjoint. Choose a nonnegative 
funct ion u in C such that u^l, u=0 on A, and u= 1 on B. Let v = 1 — u. By Coburn ' s 
condition we have (letting Klt K2, ... denote compact operators), 

(1) T f T t = Tf TuTg + Tf TvTg = (Tfu 4- K,)Tg + Tf (Tvg + K2) = TfuTg + Tf Tvg + K3. 

Since dis t^ug, H°°)<s fo r all A, it follows f r o m the lemma that dist (vg, H°° + C) < e. 
Hence, we can write vg — h + w + cp where h is in H w is in C, and || j| „ -= e. Be-
cause TfTh = Tfh and 7 7 T w = Tfw + K4 (by Coburn ' s condition), we have 

(2) Tf Tvg — Tfvg = Tf Trp — Tf<p + K4 = Sy+ K4, 

where ||S
L
\\ S | | /LII<plL + | | /<P |L ^ 2 E [ | / L . Exactly the same reasoning gives 

(3) Tfu Tg — Tfug = S2 + K5, 
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where | | S 2 | | S2eUgL- Combining (1)—(3), we obtain 

Tg — Tfug + Tfvg + + S2 + K6 = Tfg + + S2 + K6. 

Hence, the distance of TfTg — Tfg f rom the set of compact operators is at most 
||Sill + ||S2 | | ^ 2e( | | / !L + | | g | | J . As e can be chosen arbitrarily small, it follows that 
TfTg — Tfg is compact. The theorem is proved. 

3. Counter example to the converse 

To obtain the desired counter example, we take g = $ where i¡/ is the inner 

function exp 11. We take f o r / a real function in LT with the following prop-

erties: (i) / is continuous except at z = 1 ; (ii) / /(1—z) is in L2; (iii) / is not in 

H°° + C. We defer the construction of / until later. We note that d i s t ^ / , 

by the lemma in Section 2. Also, it is easy to see that d i s t ^ g , i /~ ) = l . The condi-

tion of the theorem therefore fails at l — We show that, nevertheless, the operator 

TfTg — Tfg is compact. 
Because 

(•TfTg — Tfg)Tt = Tf Tj — T0 T, = T f T ^ — Tfw = Tf — Tf — 0, 

the operator TfTg — Tjg annihilates the subspace i j / H 2 . Hence, it will be enough 
to show that the restriction of TfTg — Tfg to H2 Q\j/H2 is compact. Also, the operator 

annihilates H2Q ijjH2, so we need only show that the restriction of Tfg 

to H2 Q i j / H 2 is compact. We shall show that, actually, the transformation f rom 
H2Q\j/H2 into L2 of multiplication by fg is compact. Because multiplication by 
g sends H2Q<j/H2 isometrically onto \J/H2QH2, this amounts to showing that the 
transformation of ij/H2QH2 into L2 of multiplication b y / i s compact. Let S denote 
the latter transformation. 

To prove the compactness of S, we introduce the isometry V of L2 of the circle 
onto L2(—°°, defined by 

(Vh)(x)^n-il2(x + i)~1h U—V 
^ x i 

This isometry transforms the operator on L2 of multiplication b y / i n t o the operator 
x — i 

From (ii) it follows that <p on L2( — °o, oo) of multiplication by (p(x) = / 

is in L2( — oo, oo). Let W be the Fourier—Plancherel transformation of L2( — «=) 
onto itself. Then W transforms the operator on X 2 ( — o o ) of multiplication by 
(p into the operator of convolution with the square-integrable function k = (2n)1!2 Wcp. 
Now it is easy to check that the combined transformation t / = WV sends \jjH2QH2 
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onto L2{ —1,0) (regarded as the subspace of functions in L2(—vanishing 
o f f ( —1,0)). Hence U takes S into the transformation of L2{—1,0) into L2{— 
of convolution with k, that is, into the integral operator with kernel K(x, ,y)= 
= k(x—y) (—oo<x<oo, — 1 < j < 0 ) . The square-integrability of k implies the square-
integrability of K, so the integral operator in question is a Hilbert—Schmidt operator. 
Therefore S is compact, as desired. 

It remains to construct a function / with the required properties. For this we 
employ the notion of mean oscillation. 

Let m denote normalized Lebesgue measure on the unit circle. For / in L1 

of the circle and I a subarc of the circle, define a v j f ^ m ^ ) ' 1 f fdm and 
i 

M ( f , / ) = m(I)~l f \f—avjf\dm. 
Further, define 1 

M r ( / ) = s u p { M ( / , / ) : m(/)=Sr} f o r 0 < r = § l , and A f 0 ( / ) = l i m M r ( J ) . 

The quantity M 1 ( f ) is called the mean oscillation of / , and in case M t ( / ) < 
we say t h a t / h a s bounded mean oscillation (or t h a t / i s in BMO). In case M0(f)=0 
we say that / h a s vanishing mean oscillation (or that / i s in VMO). The class BMO 
has recently been studied by FEFFERMAN and STEIN [7], who have proved, among 
other results, that a function belongs to BMO if and only if it can be written as 
w+5 where u and v belong to L°° and v is the conjugate function of v. We need here 
the less difficult half of this equivalence, the half that asserts LT+(LT)~ c BMO. 
This inclusion is bounded in the sense that there is a positive constant c with the 
property Mi{u + v) ^ c(||w|L + | |f |L) for all w, v in L°° [7]. 

' The class VMO also has a simple characterization ; it consists of all functions 
u+v with u and v in C. Here we require only the inclusion C+Cc. VMO, which 
can be proved as follows. As the inclusion C C V M O is obvious, it will be enough 
to show that C G V M O . Let v belong to C, and choose E > 0 . Then there is a trigono-
metric polynomial p such that ||t>— p\\„ < e. Since p is continuous we have 

M0{v) = M0(v-p) ^ M^v-p)^ c||t>-/?|U<ce. 
Because e is arbitrary this shows that M0(v)=0, as desired. 

Now it is trivial that a real L°° function belongs to H°° + C if and only if it belongs 
to C + C. Thus, to guarantee that the / we construct satisfies condition (iii), it will 
suffice to arrange that M o ( / ) > 0 . 

To construct / we introduce the subarcs /„ = {ew:2~" g f l g 2 " " + 5""}, 
« = 1,2, ... . We de f ine / to be 0 off U /„. On /„ we de f ine / so that it is real, continuous, 
bounded in modulus by 1, vanishes at the endpoints of /„, and satisfies 

J f d m = 0, f \f\dm^m(In). 
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From the preceding equality and inequality we have M 0 ( / ) S 1/2, and thus (iii) 
holds. As (i) is obvious, it only remains to check (ii), which amounts to showing 
that the function f(ew)/0 belongs to L2. On /„ we have | / / 0 | s 2 " , and so 

/\f/0\2 dm =§22"m(/„) = ( 2 t t ) 1 (4/5)«. 

The square-integrability of f/8 is now obvious, and the construction is complete. 
It appears that any necessary and sufficient condition, in terms of the structures' 

o f / and g, for the compactness of TfTg — Tfg will have to take account of subtleties 
of the behavior of the Gelfand transforms of / and g on the fibers of the Gelfand 
space of LT. 

4. A partial converse 

The above theorem does have a converse of sorts. 

T h e o r e m . If g is in L™ and if ThTg — Thg is compact for all h in H~, then g is 
in H°° + C. 

This result was first conjectured by R. G. DOUGLAS, who has independently 
found the following proof. 

Under the hypotheses of the theorem, if h is any function in H" and i¡j is any 
inner function, then the operator 

(Th Tg — Thg) = T$hTg — T$hg 

is compact. As the functions ij/h are dense in V [5], we may conclude that TfTg — Tfg 

is compact for all / in LT. 
For / in LT, let rf be the Hankel operator induced by / , that is, the operator 

f rom H2 to (H2)1 of multiplication by / fo l l owed by projection onto (H2)±. A theo-
rem of HARTMAN [10] (see also [1]) states that TY is compact if and only i f / b e l o n g s 
to H" + C. Now a simple calculation shows that TfTg — Tfg=—r*jFg, and thus 
r)rg is compact for all / i n LT. Taking f—g we conclude that r*Tg is compact, 
and hence that Fg is compact. Therefore g is in H~ + C by Hartman 's theorem, as 
desired. 

5. Proof of the lemma 

We present here a simple direct proof, of the lemma of Section 2. The proof 
depends on the fact that H~ + C is an algebra [4]. ' 

L e t / b e l o n g to LT. It is obvious that distA(/ , H~) S d i s t ( / , H" + C) for each 
X, so it will suffice to show that dist ( / , H°° + C) S max {distA(/, H~): |A| = 1}. 
Let M denote the preceding maximum. Choose e 0, and for each A choose an hk 
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in H" s u c h t h a t d i s t ( / , hx) < M+e. B e c a u s e d i s t z ( / , hx) is a n u p p e r s e m i c o n t i n u o u s 

f u n c t i o n o f z, t h e r e is f o r e a c h X a n o p e n s u b a r c Jx o f t h e u n i t c i rc le c o n t a i n i n g X 

s u c h t h a t d i s t z ( / , h j < M+2e f o r all z in Jx. C h o o s e a finite n u m b e r o f t h e s u b -

a r c s Jx t h a t c o v e r t h e u n i t c i rc le . D e n o t e t h e s e s u b a r c s b y J i } ...,JP a n d t h e c o r r e -

s p o n d i n g f u n c t i o n s hx b y h h p . C h o o s e a p a r t i t i o n o f u n i t y { w j j [ = 1 o f t h e 

u n i t c i rc le s u b o r d i n a t e t o t h e c o v e r {./„}£= t a n d c o n s i s t i n g o f n o n n e g a t i v e f u n c t i o n s 

in C. T h u s ^ wk—1 e v e r y w h e r e , a n d f o r e a c h k t h e r e is a n n(k) s u c h t h a t Jn(k) c o n -

t a i n s t h e s u p p o r t o f w k . By t h e l a t t e r p r o p e r t y , if w k ( X ) r * 0 t h e n d i s t A ( / , h n { k ) ) < 

< M+2e. 
« 

N o w let S = 2 wkKw T h e n g is in H~ + C, a n d f o r a n y X o n t h e u n i t c i rc le , 

d is t A ( / , g) = d is t ; . ( 2 wk(X)f, 2 wkhn(k))S 2 d is tA (wk(X)f, wkhn(k)) = 
k k k 

= 2 d i s t , (wk ( X ) f , wk (A) K (k)) = 2 Wk (A) d i s t , ( / , h„ {k)) < 2 ^ № (M + 2e) =.M + 2s. 
k k k 

I t f o l l o w s t h a t I I Z - g l L < M+2s. W e m a y c o n c l u d e t h a t d i s t ( / , H~ + C) ^ M, 

a n d t h e l e m m a is p r o v e d . 
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