On a Fourier $L^{1}\left(E_{n}\right)$-multiplier criterion

By W. TREBELS in Aachen (BRD)

Dedicated to Professor B. Sz.-Nagy on the occasion of his 60 th birthday

The main purpose of this note is to give a simple sufficient criterion for radial functions on the Euclidean n-space E_{n} to be the Fourier transform of an integrable function. The present criterion is a partial generalization of a well-known one-dimensional result due to Sz.-NaGy [9], namely

Theorem A. Let $h(v)$ be an even (continuous) function on ($-\infty, \infty$) satisfying the following conditions i) $h(v) \rightarrow 0$ for $v \rightarrow 0 \infty$, ii) $h^{\prime}(v) \in L(0, \infty)$, iii) h^{\prime} is locally of bounded variation except at the points $a_{0}=0<a_{1}<\cdots<a_{s}<\infty$ but in the neighbourhoods of a_{i} the integrals $\int_{0+} v\left|d h^{\prime}(v)\right|$,

$$
\left(\int^{a_{i}-}+\int_{a_{i}+}\right)\left|v-a_{i}\right| \log \left(1 / \mid v-a_{i}\right)\left|d h^{\prime}(v)\right| \quad(1 \leqq i \leqq s<\infty),
$$

and $\int^{\infty} v\left|d h^{\prime}(v)\right|$ converge. Then there exists an even integrable function H such that

$$
h(v)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} H(x) e^{-i v x} d x
$$

The case $s=0$ is the one considered in [1], [2]; for further details see also [4; p. 251, p. 276].

Apart from a regularization at the critical points $a_{i}, 1 \leqq i \leqq s$, introduced in the course of a partial integration, the proof mainly depends upon the absolute integrability of the Fejer-kernel on $(-\infty, \infty)$. For the n-dimensional analogue we will make heavy use of the absolute integrability of a suitable Riesz-kernel. This paper was written while the author held a DFG-fellowship; the author thanks Professor R. J. Nessel for a careful reading of the manuscript.

First let us give some notations. Let v, x, y denote elements of $E_{n}\left(x=\left(x_{1}, \ldots, x_{n}\right)\right.$, $x \cdot y=\sum_{k=1}^{n} x_{k} y_{k}$ the inner product, $|x|=x \cdot x^{1 / 2}$ the absolute value; let $m=\left(m_{1}, \ldots, m_{n}\right)$
be an n-tuple of non-negative integers with $|m|=\sum_{k=1}^{n} m_{k}, \dot{D}^{m}$ the differential operator $\left(\partial / \partial x_{1}\right)^{m_{1}} \ldots\left(\partial / \partial x_{n}\right)^{m_{n}},[\alpha]$ the largest integer less than or equal to $\alpha \in E_{1}$. A function $f(x)$, defined on E_{n}, is called radial if $f(x)=f(|x|)$. Let the Fourier transformation on $\mathbf{L}^{1}\left(E_{n}\right)$, the set of all integrable functions on E_{n}, be defined by

$$
[f]^{\wedge}(v) \equiv f^{\wedge}(v)=(2 \pi)^{-n / 2} \int_{E_{n}} f(x) e^{-i v \cdot x} d x
$$

and let $\left[L^{1}\left(E_{n}\right)\right]^{\wedge}$ be the set of all continuous functions which are equal to the Fourier transform of an \mathbf{L}^{1}-function.

For our multiplier theorem it is convenient to introduce the class $\mathbf{B V}_{j+1}$ consisting of those continuous functions h on $[0, \infty)$ such that $h, \ldots, h^{(j-2)}$ are absolutely continuous on $(0, \infty), h^{(j-1)}$ locally absolutely continuous, $\lim _{\tau \rightarrow \infty} h^{(i)}(\tau)=0$ for $0 \leqq i \leqq j-1$, and $h^{(j)}$ locally of bounded variation on $(0, \infty)$ with

$$
\begin{equation*}
\int_{0}^{\infty} \tau^{j}\left|d h^{(j)}(\tau)\right|<\infty . \tag{1}
\end{equation*}
$$

It follows readily that

$$
\begin{equation*}
\mathbf{B V} V_{j+1} \subset \mathbf{B} V_{j} \tag{2}
\end{equation*}
$$

Indeed, for $\varepsilon, R>0$ and $h \in \mathbf{B V}_{j+1}$ one has

$$
\int_{e}^{R} \tau^{j} d h^{(j)}(\tau)=\left.\sum_{v=0}^{j}(-1)^{v} \frac{j!}{(j-v)!} \tau^{j-v} h^{(j-v)}(\tau)\right|_{\varepsilon} ^{R}
$$

which, by hypothesis, remains bounded for $R \rightarrow \infty$. Observing that $\lim _{R \rightarrow \infty} h^{(j-v)}(R)=0$, $1 \leqq v \leqq j$, one necessarily has $h^{(j)}(R) \rightarrow 0$ for $R \rightarrow \infty$. Now Dirichlet's formula yields

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{j-1}\left|h^{(j)}(\tau)\right| d \tau=\int_{0}^{\infty} \tau^{j-1}\left|\int_{\tau}^{\infty} d h^{(j)}(\omega)\right| d \tau \leqq \\
& \leqq \int_{0}^{\infty}\left|d h^{(j)}(\omega)\right| \int_{0}^{\omega} \tau^{j-1} d \tau=j^{-1} \int_{0}^{\infty} \omega^{j}\left|d h^{(j)}(\omega)\right| .
\end{aligned}
$$

The classes $\mathbf{B V} V_{j+1}$ have already been considered in Butzer-Nessel-Trebels [5] in order to obtain a simple estimate of

$$
\begin{equation*}
\sum_{k=0}^{\infty}\binom{k+j}{j}\left|\Delta^{j+1} \alpha_{k}\right|<\infty, \quad \Delta \alpha_{k}=\alpha_{k}-\alpha_{k+1}, \quad \Delta^{j+1}=\Delta \Delta^{j} \tag{3}
\end{equation*}
$$

the latter being a multiplier condition on a Banach space with a total sequence $\left\{P_{k}\right\}$ of orthogonal bounded linear projections under the hypothesis that $f \sim \sum P_{k} f$ is (C, j)-bounded. In this respect, the following theorem is the concrete continuous
analogue of the abstract discrete multiplier theorem mentioned above. Indeed it is quite natural to replace the (C, j)-boundedness of the abstract Fourier expansion by the boundedness of the corresponding ($1, j$)-Riesz-means in case of Fourier integrals. Here the ($\kappa, \lambda)$-Riesz-means are defined for $\kappa, \lambda>0$ on S (the set of infinitely differentiable, rapidly decreasing functions) by

$$
R_{x, \lambda}(\varrho) f=\varrho^{n} r_{x, \lambda}(\varrho \cdot) * f, \quad\left[r_{x, \lambda}\right]^{\wedge}(v)= \begin{cases}\left(1-|v|^{\alpha}\right)^{\lambda}, & |v| \leqq 1 \tag{4}\\ 0, & |v| \geqq 1\end{cases}
$$

where $*$ convolution, $r_{x, \lambda}$, and its Fourier transform are to be understood in the distributional sense. It is known (see e.g. [6]) that

$$
\begin{equation*}
r_{x, \lambda} \in \mathbf{L}^{1}\left(E_{n}\right) \text { for } \quad x>0, \quad \lambda>(n-1) / 2 \tag{5}
\end{equation*}
$$

thus, (4) is meaningful for all $f \in \mathbf{L}^{1}\left(E_{n}\right)$ for these \varkappa, λ-values and $\left[r_{x, \lambda}\right]^{\wedge}$ exists in the classical sense.

Theorem 1. If $h \in \mathbf{B} V_{j+1}$ for $j=[(n-1) / 2]+1$, then $h(|v|) \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{\wedge}$.
Proof. Consider the function

$$
H(x)=\left[(-1)^{j} / j!\right] \int_{0}^{\infty} \tau^{j+n} r_{1, j}(\tau x) d h^{(j)}(\tau)
$$

which is integrable on account of the hypothesis and (5):

$$
\int_{E_{n}}|H(x)| d x \leqq \int_{0}^{\infty} \tau^{j}\left|d h^{(j)}(\tau)\right| \int_{E_{n}} \tau^{n}\left|r_{1, j}(\tau x)\right| d x<\infty
$$

Passing to Fourier transforms, by Fubini's theorem and partial integration

$$
\begin{gathered}
H^{\wedge}(v)=\left((-1)^{j} / j!\right) \int_{0}^{\infty} \tau^{j}\left\{\begin{array}{ll}
\left(1-\frac{|v|}{\tau}\right)^{j}, & |v| \leqq \tau \\
0, & |v| \geqq \tau
\end{array}\right\} d h^{(j)}(\tau)= \\
=\left((-1)^{j} / j!\right) \int_{|0|}^{\infty}(\tau-|v|)^{j} d h^{(j)}(\tau)= \\
=\left((-1)^{j} /(j!)\right)\left\{\left.(\tau-|v|)^{j} h^{(j)}(\tau)\right|_{|v|} ^{\infty}-j \int_{|v|}^{\infty}(\tau-|v|)^{j-1} h^{(j)}(\tau) d \tau\right\} .
\end{gathered}
$$

Now $h^{(j)}(\tau)$ is locally of bounded variation in $(0, \infty)$, and therefore the first term vanishes at $\tau=|v|$. Since $h^{(j)}(\tau) \rightarrow 0$ for $\tau \rightarrow \infty$, it follows that

$$
\left|R^{j} h^{(j)}(R)\right|=\left|R^{j} \int_{R}^{\infty} d h^{(j)}(\tau)\right| \leqq \int_{R}^{\infty} \tau^{j}\left|d h^{(j)}(\tau)\right|
$$

becomes infinitely small for $\boldsymbol{R} \rightarrow \infty$. Hence

$$
\dot{H}^{\wedge}(v)=\left((-1)^{j-1} /(j-1)!\right) \int_{|v|}^{\infty}(\tau-|v|)^{j-1} h^{(j)}(\tau) d \tau
$$

and thus, proceeding iteratively,

$$
H^{\wedge}(v)=-\int_{|v|}^{\infty}(\tau-|v|) h^{(2)}(\tau) d \tau=\int_{|v|}^{\infty} h^{\prime}(\tau) d \tau=h(|v|)
$$

Using (5) for arbitrary $x>0, \lambda=j=[(n-1) / 2]+1$, it is clear by the above proof that $|v|$ may be replaced by $|v|^{x}$ provided $\int_{0}^{\infty}|v|^{\alpha j}\left|d h^{(j)}\left(|v|^{x}\right)\right|<\infty$ and. $\lim _{\tau \rightarrow \infty} h^{(i)}(\tau)=0(0 \leqq i \leqq j-1)$ which, however, is equivalent to $h \in \mathbf{B V}_{j+1}$ on account of the homogeneity of the integral. Thus

Corollary. If $h \in \mathbf{B V}_{j+1}$ for $j=[(n-1) / 2]+1$, then $h\left(|v|^{x}\right) \in \mathbf{L}^{1}\left[\left(E_{n}\right)\right]^{\wedge}$ for $x>0$.
Obviously, Theorem 1 is a generalization of Sz.-Nagy's theorem in case $i=0$ to n-dimensions. In case there is a further singularity at the point $a \in(0, \infty)$ one could proceed analogously as in Sz.-Nagy's proof provided one can estimate $\left\{a^{j+n} r_{1, j}(\dot{a} x)-\tau^{j+n} r_{1, j}(\tau x)\right\}$ in the $\mathbf{L}^{1}\left(E_{n}\right)$-norm conveniently, e.g. by $O\left(|a-\tau|^{\alpha}\right)$ for some $\alpha>0$. However, we do not pursue this aspect further since there exists a convenient general multiplier theorem of LöfSTRÖm [6, 7] dealing with such a finite number of singularities.

In case that singularities are admitted only at the origin and/or at infinity, Löfström's result was improved by Boman [3] to ($\mathbf{C}^{N}(A)$ the set of all N-times continuously differentiable functions on the open $\left.A \subset E_{n}\right)$:

Theorem B. a) If $f \in \mathbf{C}^{N}\left(E_{n}\right)$, where $N=[n / 2]+1$, and there exist constants C and $\delta>0$ such that

$$
\left|D^{m} f(x)\right| \leqq C|x|^{-\delta-|m|} \quad\left(x \in E_{n}, \quad 0 \leqq|m| \leqq N\right),
$$

then $f \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{\wedge}$.
b) Let $f \in \mathbf{C}^{N}\left(E_{n} \backslash\{0\}\right), N=[n / 2]+1$, have compact support; and let there exist constants C and $\delta>0$ such that

$$
\left|D^{m} f(x)\right| \leqq C|x|^{\delta-|m|} \quad\left(x \in E_{n} \backslash\{0\}, \quad 0 \leqq|m| \leqq N\right),
$$

then $f \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{n}$:
To illustrate the range of Theorems 1 and B, consider

$$
f_{1}(x)=\left\{1+\log \left(1+|x|^{2}\right)\right\}^{-1}
$$

Obviously, f_{1} is radial and belongs to $\mathbf{C}^{\infty}\left(E_{n}\right)$; but since f_{1} decreases too weakly at infinity, Theorem B does not apply immediately, whereas a simple calculation shows
that $f_{1} \in \mathbf{B V} \mathbf{V}_{j+1}$. Thus $f_{1} \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{\wedge}$ by Theorem 1. Analogously one has (cf. Corollary) $\left(1+\log \log \left(e+|x|^{x}\right)\right)^{-\alpha} \in\left[L^{1}\left(E_{n}\right)\right]^{-}$for $x, \alpha>0$, etc.

To give an example with a singularity at the origin choose $f_{2}(x)=$ $=-\log ^{-1}|x| \chi(|x|)$ with some $\chi \in \mathbf{C}^{\infty}\left(E_{n}\right)$ satisfying $\chi(x)=1$ for $0 \leqq|x| \leqq 1 / e$ and $=0$ for $|x| \geqq 2 / e$. Again, Theorem 1 yields $f_{2} \in\left[L^{1}\left(E_{n}\right)\right]^{\prime}$, whereas Theorem B does not apply.

Naturally one could try "Bernstein's multiplier theorem" (see Peetre [8]): $\dot{\mathbf{W}}^{n / 2,1} \subset\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{\wedge}$, where $\dot{\mathbf{W}}^{n / 2,1}$ may be equivalently characterized by

$$
\int_{0}^{\infty} \tau^{-n / 2} \sup _{|y| \leq \tau}\left\|\Delta_{y}^{n} f(x)\right\|_{2} \frac{d \tau}{\tau}<\infty
$$

with $\Delta_{y} f(x)=f(x+y)-f(x)$. But to verify this condition in case of the above examples seems to be far harder than to check that $f \in \mathbf{B} \mathbf{V}_{j+1}$ (other characterizations of $\dot{\mathbf{W}}^{n / 2,1}$, known to the author, seem to be still more complicated).

The obvious disadvantage of Theorem 1 lies in the assumption that f has to be radial. Here another criterion, overlapping with Theorem 1 and but in some examples stronger than Theorem B, may help. Its proof rests upon the integrability of the Riesz-kernel $r_{x, 1}$ on E_{1} for $x>0$, so that the product kernel $\prod_{k=1}^{n} r_{x_{k}, 1}\left(x_{k}\right)$ is integrable on E_{n}. Thus

Theorem 2. Let f be a continuous function on E_{n}, even in each coordinate, differentiable in the sense that for $0 \leqq m_{i} \leqq 2$ the derivatives $D^{m} f(x)$ exist as locally integrable functions, that $\lim _{x_{k} \rightarrow \infty} D^{m} f(x)=0$ for $m_{k}=0$ or 1 or $2,1 \leqq k \leqq n$ and that

$$
\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left|D^{m} f(x)\right| \prod_{m_{k} \neq 0} x_{k}^{m_{k}-1} d x_{k}<\infty
$$

uniformly in x_{k} when $m_{k}=0$. Then $f\left(\left|x_{1}\right|^{\alpha_{1}}, \ldots ;\left|x_{n}\right|^{\alpha_{n}}\right) \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{\wedge}$ provided $x_{k}>0$, $1 \leqq k \leqq n$.

For the proof consider

$$
F(y)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{k=1}^{n} x_{k}^{1+\left(1 / x_{k}\right)} r_{x_{k}}\left(x_{k}^{1 / x_{k}} y_{k}\right) f_{x_{1} x_{i} \ldots x_{n} x_{n}}^{(2 n)}(x) d x
$$

which is clearly integrable, and proceed as in the proof of Theorem 1.
Theorem 2 is another generalization of Sz.-Nagy's theorem [9]; in case $\chi_{k}=1$, $1 \leqq k \leqq n$, his estimate of $\left\{a^{2} r_{1,1}(a \eta)-\tau^{2} r_{1,1}(\tau \eta)\right\}, a, \eta \in(0, \infty)$ in the $\mathbf{L}^{1}(-\infty, \infty)$ norm may be taken over to cover singularities on the hyperplanes $x_{k}=a>0,1 \leqq k \leqq n$. Thus a theorem may be stated which is analogous to Theorem A. But instead of formulating it, let us give an example to which Theorem 2 applies but Theorem B
does not since i) the function decreases at infinity too slowly, ii) Theorem B allows only a singularity at the origin and not on the hyperplanes $x_{k}=0,1 \leqq k \leqq n$. It is

$$
\left(1+\log \left(1+\left|x_{1}\right|^{x_{1}}+\cdots+\left|x_{n}\right|^{x_{n}}\right)\right)^{-n} \in\left[\mathbf{L}^{1}\left(E_{n}\right)\right]^{-}
$$

provided $x_{k}>0,1 \leqq k \leqq n$, as can easily be shown by Theorem 2 .
Let us conclude with the remark that Theorems 1 and 2 are based upon summability properties of the Fourier integral in direct analogy to the abstract series case as elaborated in [5].

References

[1] H. Berens-E. Görlich, Über einen Darstelliungssatz für Funktionen als Fourierintegrale und Anwendungen in der Fourieranalysis, Tôhoku Math. J., 18 (1966), 429-453.
[2]•A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Newième Congrès Math. Scand. (Helsingfors, 1938), 345-366:
[3] J. Boman, Saturation problems and distribution theory, Lecture Notes in Math., 187 (Berlin, 1971), 249-266.
[4] P. L. Butzer-R. J. Nessel, Fourier Analysis and Approximation. I: One-Dimensional Theory (New York-Basel, 1971).
[5]. P. L. Butzer-R. J. Nessel-W. Trebels, On summation processes of Fourier expansions in Banach spaces. II: Saturation theorems, Tôhoku Math. J., 24 (1972), 551-569.
[6] J. Löfström, Some theorems on interpolation spaces with applications to approximation in L ${ }_{p}$, Math. Ann., 172 (1967), 176-196.
[7] J. Löfström, Besov spaces in the theory of approximation, Ann. Math. Pura Appl., (4) 85 (1970), 93-184.
[8] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique, Ricerche Mat., 15 (1966), 3-36.
[9] B. Sz.-Nagy, Sur une classe générale de procédés de sommation pour les séries de Fourier, Acta Mat. Acad. Sci. Hung., 1 (1948), 14-52.

