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The main purpose of this note is to give a simple sufficient criterion for radial
functions on the Euclidean n-space E, to be the Fourier transform of an integrable
function. The present criterion is a partial generalization of a well- known one- dlmen-

_sional result due to Sz.-NAGY [9], namely

- Theorem A. Let h(v) be an even (continuous) function on (— oo, o) satlsfy-
ing the following conditions i) 4 (v) -0 for v —*eo, ii) A'(v) € L(0, <), iii) /" is locally of
bounded variation except at the points @,=0<a,<:.-<@a,<o> but ‘in- the neigh-

bourhoods of g, the integrals [ v|di’ (v)]
_ . o

( [+ f) lo— a,l log (1/jv—a 1)|dh'<u>| (i <z<s<oo),
and f v Idﬁ’(p)] converge. Then there exists an even integrable function H such that
h(v) = (27;)—'1/? | f H(x)e™ " dx.

The case s=0 is the one considered in [1], [2] for further details see also [4;
p. 251, p. 276].

Apart from a regularization at the critical points g, 1<I<S _introduced in
the. course of a partial integration, the proof mainly depends upon the absolute
_ integrability of the Fejér-kernel on (—ee, o). For the n-dimensional analogue ‘we
will make heavy use of the absolute integrability of a suitable Riesz-keérnel. This paper
was written while the author held a DFG-fellowship; the author thanks Professor
R. J. NESSEL for a careful reading of the manuscript.

_First let us give some notations. Let v, x, y denote elements of E,(x=(x,, ..., x,)),

n .
- X-y = 2 x,y.theinner product, [x| = x - x'/?

the absolutevvalue; letm=(m,,...,m,)
k=1 ,



22 ) . ) W. Trebels

. n .
be an n-tuple of non-negative ‘integers with |mi| = > wm,, D™ the differential
k=1

operator (9/0x,)™ ...(0/dx,)™, [«] the largest integer iess than or equal to a€E,.
A function f(x), defined on E,, is called radial if f(x)=f(|x|). Let the Fourier trans-
formation on L'(E,), the set of all integrable functions on E,, be defined by

~ (U) = fA (U) = (27[)—"/2 ./' f(x)e-,'u.x dx

and let [L!(E,)]” be the set of ali continuous functions which are equal to the Fourier
transform of an L' -function. :

For our multiplier theorem it is convenient to introduce the class BV, con-
sisting of those continuous functions 4 on [0, ) such that A, ..., /=% are ab-
solutely continuous on (0, <), Y~ locally absolutely continuous, lxm /1(')(1) 0

for 0=i=j—1, and 19 locally of bounded variation on (0, =) with

©o

) | [ ©1dh (@) <.
' 0
It follows readily that
0)) L " BV, CBV,.
Indeed, for ¢, R=0 and #¢BV,, ; one has
R !
[ < dnd () = 2 (- oy R ()R

which, by hypothesis, remains bounded for R—o. Observing that Ilim h="(R)=0,

1 =v=j, one necessarily has A’(R) ~0 for R—ce. Now Dirichlet’s formula yields

frffllh(f’(r)ldr: j‘orf"ifdh(j)(w)ldfé
0 o T

.= / [dh9 (w)| / tlgr = j! / @’ |dhD (w)|.

The classes BV, have already been considered in BUTZER—NESSEL—TREBELS
[5] in order to obtam a simple estimate of

(3) Z (k+J) |Aj+lak|<°°, Aak = ak ak+l’ Aj+1 = AA",
k=0

: the-latter being a multiplier condition on a Banach space with a total sequence

{P,} of orthogonal bounded linear projections under the hypothesis that f~ > P, f

is (C, j)-bounded. In this respect, the following theorem is the concrete continuous -
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analogue of the abstract discrete multiplier theorem mentioned above. Indeed it is -
quite natural to replace the (C, j)-boundedness of the abstract Fourier expansion
by the boundedness of the corresponding (1, j)-Riesz-means in case of Fourier
integrals. Here the (%, 1)-Riesz-means are defined for %, A=0o0n S (the set ofmﬁmtely
differentiable, rapidly decreasing functions) by

(1—|v1*)l ol =1
@ Rop@F = @ras@)*fs Tl 0= A

oj=1

where % convolution, r, ;, and its Fourier transform are to be understood in the
dlstrlbutlonal sense. It is known (see e.g. [6]) that '

) i 1 €LNE,) for x>0, /1>(n—1)/2

thus, (4) is meaningful for all fe L (E,) for these x, l-values and [r,, ,1] exists m the
c]assxcal sense.

Theorem 1. IfheBVJ+1 Jor j = [(n—l)/2]+l then h(|v[)E[Ll( a1

Proof. Consider the function
H(x) = [(—= 1/ [ o/*"r, j(ex) dh (x)
. o .
which is integrable on account of the hypothesis and (5):

f [H(x)] dxéjrfldh‘f’(i)l f%"{rl'j(r.x)l dx < oo,
0 . E, :

n

‘Passing to Fourier transforms, by Fubini’s theorem and partial integrat'ion.
SN | PR G [
H@) = (=5 [0 7<) "EH e =
0 0, |v|>r

(—1)1/1*) f (= [ol)’ dhm(r) =
lv)

((—1)’/(J')){(T-—|Ul)’h(’)(f)|w| J f (=]~ W(r)dr}

lol

Now AP (7) is locally of bounded variation in (0, =), and therefore the first term
vanishes at 7=|v|. Since A4 (1) -0 for 7 - <, it follows that

|R!h(1)(R)l—‘RJ /‘ th)(r)‘s TJldh(l)(T)’
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- becomes infinitely small for R — <. Hence

“H" (v)—((— Y- 1)) / (x—Joly'~ ‘h”’(r)dr
lol
and thus, proceeding iteratively,

H (v)=-— _7 (t—|oDAP () dr = f K (®)ydr = h(|v)).

T !
Usmg (5) for arbltrary x=0, 1= ] = [(n—l)/2]+1 it is clear by the above

proof that [v| -may be. replaced by [v]* provided f [v]* |dhD (Jo)| << and.

hm KD (1)=0 (0=i=j—1) which, however is equlvalent to heBV,+1 on account

of the homogenelty of the integral. Thus
Corollary. IfhEBVj“forj [(n—1)/21+1, then h(|v|")€L1[( )]“ Jor x=0.

Obviously, Theorem. 1 is a generalization of Sz.-Nagy’s theorem in case i=0
to n-dimensions. In case there is a further singularity at the point a€(0, «) one
could proceed analogously as in Sz.-Nagy’s proof provided one can estimate
{a’*"ry, j(ax)—7*"ry ;(zx)} in the L' (E,)-norm conveniently, e.g. by O(Ja—1|*) for
some a=>0. However, we do not pursue this aspect further since there exists a con-
venient - general multiplier theorem of LoOrsTROM [6, 7] dealing. with such a finite
number of singularities. : V

In case that singularities are admitted only at the origin and/or at infinity,
Lofstrém’s result was improved by BoMaN [3] to (C¥ (4) the set of all N-times con-
tmuously differentiable functions on the open A CE,): '

_ Theorem B: a) If f¢ CN(E,,) where N = [n/2]41, ahd there exist constants C
and 0=0 such that

|D"’f(x)|§C|x|“"|'"l (xEE,,, 0=|m|=N),
then f¢[L*(E))] . N ' ' :

b) Let f€ C"(E,\{0}), N = [1/2]+1, have compact support; and let there exist
* constants C and §>0 such that . '

ID"f ()| =C|x[?~I"  (xe EN{0}, O0=|m| éN),

then fe[L*(E)] . ‘

To illustrate the tange of Theorems 1 and B, cons1der :

J1() = {1+log (1+]x?)}".

Obviously, f; is radial and belongs to C*(E,); but since f; decreases too weakly at
infinity, Theorem B does not apply immediately, whereas a simple calculation shows
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thatf, €BV;,,.Thusf, ¢[L'(E,)]" by Theorem 1. Analogously one has (cf. Corollary)
. (1+loglog (e+[x[))"*€ L (E) for x, a=0, etc.
To give an example with a s1ngular1ty at the origin choose f,(x) =
= —log™!|x]x(|x]) with some x € C*(E,) satisfying x(x) 1 for 0=|x|=1/e and =0
for |x|=2/e. Again, Theorem 1 yields f, €[L'(E,)]” , whereas Theorem B does not
apply.
‘Naturally one could try “Bernsteln s multiplier theorem” (see PEETRE [8])

W21 c[LY(E,)]", where W21 may be equivalently characterized by
= - dr . A .
[ =2 sup s f )], — <o
0 M ELI T

with 4,f(x) = f(x+y)—f(x). But to verify this condition in case of the above
examples seems to be far harder than to check that f¢BV,,, (other characteriza-
tions of W2 known to the author, seem to be still more complicated).

The obvious disadvantage of Theorem 1 lies in the assumption that f has to
_be radial. Here another criterion, overlapping with Theorem 1 and but in some exam-
ples stronger than T heorem B, may help Its proof rests upon the integrability of the

Riesz-kernel r, ; on E for x>0, so that the product kernel ]] Tt (Xi) 18 mtegrable ‘
on E Thus

Theorem 2. Let f be a continuous function on E,, even in each cobrdinate,
differentiable . in the sense that for 0=m;=2 the derivatives D™f(x) -exist as locally
integrable functions, that lim D"f(x)=0 for m=0o0r 1 or 2, 1=k=n and that

Xy =02

B f D" f()] JT xi dx <o
0 o my #£0
uniformly in x, when m,=0.
1=k=n.
" For the proof consider

F(y) :fm..f
(V] ]

which is clearly integrable, and proceed as ir‘1 the proof of Theorem 1. _
Theorem 2 is another generalization of Sz.-Nagy’s theorem [9]; in case x,=1,
1=k=n, his estimate of {a®r, (an)—12r, ; ()}, @ n€(0, =) in the L!(— oo, eo)-
norm may be taken over to cover singularities on the hyperplanes x, =a>0, 1=k=n.-
- Thus a theorem may be stated which is analogous to Theorem A. But instead of
formulating it, let us give an example to which Theorem 2 applies but Theorem B ‘

Then f(x,*1, ... |x,[) €[L* (E)]" provided x>0,

. .
k!]; x1+(l/*k) T (xll""yk)fizln;f,..x,_x,,‘(x) dx,
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does not since i) the function decreases at infinity too .slowly, ii) Theorem B allows
only a singularity at the origin and not on the hyperplanes x,=0, 1=k=n. It is

(1+log (L4{xy [ 4+ + [x,[*)) " € [L* (E)]

provided x,=>0, 1=k=n, as can easily be shown by Theorem 2.

Let us conclude with the remark that Theorems 1 and 2 are based upon sum-
mability properties of the Fourier integral in direct analogy to the abstract series case
as elaborated in [5]. ‘ ‘
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