Spectra of finite range Cesàro operators

By GERALD M. LEIBOWITZ in Storrs (Connecticut, U.S.A.)

In [BHS] BROWN, HALMOS, and SHIELDS studied the operators C_0 , C_1 , C_{∞} defined respectively on the spaces l^2 , $L^2(0, 1)$, $L^2(0, \infty)$, by

$$C_0 x(n) = \frac{1}{n+1} \sum_{k=0}^n x(k), \quad C_1 x(t) = \frac{1}{t} \int_0^t x(s) \, ds, \quad C_\infty x(t) = \frac{1}{t} \int_0^t x(s) \, ds.$$

In particular they determined, using Hilbert space techniques, that the adjoint of $I-C_1$ is a simple unilateral shift and the adjoint of $I-C_{\infty}$ is a simple bilateral shift, from which it follows that the spectrum of C_1 is the disk $\{\lambda: |1-\lambda| \leq 1\}$ (with point spectrum the open disk $\{\lambda: |1-\lambda| < 1\}$) and the spectrum of C_{∞} is the circle $\{\lambda: |1-\lambda| = 1\}$ (with point spectrum empty). We should point out that the fact that $I-C_{\infty}^*$ is unitary and has spectrum the unit circle can be obtained in another way, following ideas of GOLDBERG [G]. After mapping $L^2(0, \infty)$ isometrically onto the L^2 space of the multiplicative group G of positive real numbers (with respect to the Haar measure $\frac{dt}{t}$) via $x(t) \rightarrow t^{\frac{1}{2}}x(t)$, we see that C_{∞}^* , which is given by

 $C^*_{\infty}x(t) = \int_{t}^{\infty} \frac{x(s)}{s} ds$, is the operation of convolution by a certain function $\varphi \in L^1(G)$. Using the usual notation for Fourier transforms, one computes directly that $1-\hat{\varphi}$ has modulus identically 1 and has each point of the unit circle in its essential range. It follows at once that $I - C^*_{\infty}$ is unitarily equivalent to an operator which is unitary and has the entire unit circle as its spectrum.

In [Bo], BOYD used an explicit integral formula for the resolvent to show that the corresponding operator T_{∞} on $L^p(0, \infty)$ is a bounded operator mapping $L^p(0, \infty)$ into itself and having spectrum the circle $\left\{\lambda : \operatorname{Re} \frac{1}{\lambda} = \frac{p-1}{p}\right\}$ for 1 (with $<math>\frac{p-1}{p}$ defined to be 1 if $p = \infty$).

Here we determine the spectrum of the corresponding operator T_1 on the space $L^p(0, 1)$ $(1 and add a few remarks concerning <math>T_{\infty}$.

G. M. Leibowitz

Theorem. Let $1 and let <math>(T_1 x)(t) = t^{-1} \int_0^t x(s) ds$ for $x \in L^p(0, 1)$. Then T_1 is a bounded linear operator on $L^p(0, 1)$. The spectrum of T_1 is the closed disk $D_p = \left\{\lambda : \operatorname{Re} \frac{1}{\lambda} \geq \frac{p-1}{p}\right\}$. Each eigenvalue of T_1 has multiplicity 1, and the point spectrum of T_1 is the interior of D_p .

Proof. By HARDY's inequality for integrals [HLP, p. 240], if $y \in L^p(0, \infty)$ then $T_{\infty} y \in L^p(0, \infty)$ and $||T_{\infty} y||_p < \frac{p}{p-1} ||y||_p$ unless y=0 a.e. Hence T_{∞} is a bounded operator on $L^p(0, \infty)$, and since the constant is best possible, $||T_{\infty}||_p = \frac{p}{p-1}$. From this it follows that T_1 is a bounded operator on $L^p(0, 1)$ with norm at most $\frac{p}{p-1}$. For if $x \in L^p(0, 1)$ and $\tilde{x}(t) = x(t) (0 < t < 1)$, $\tilde{x}(t) = 0(t \ge 1)$, then

$$\|T_1 x\|_p = \left(\int_0^1 |T_{\infty} \tilde{x}(t)|^p dt\right)^{1/p} \leq \|T_{\infty} \tilde{x}\|_p \leq \frac{p}{p-1} \|\tilde{x}\|_p = \frac{p}{p-1} \|x\|_p.$$

We observe that if $x \in L^{p}(0, 1)$, then $x \in L^{1}(0, 1)$ and hence $T_{1}x$ is a continuous function on (0, 1). In particular, the range of T_{1} is a proper subspace of $L^{p}(0, 1)$ so 0 belongs to the spectrum of T_{1} .

If $\lambda \neq 0$ and $T_1 x = \lambda x$, it follows that x is continuous and hence by the fundamental theorem of calculus, that x is differentiable. Differentiating the relation $\lambda tx(t) = \int_{0}^{t} x(s) ds$, we have

$$\lambda t x'(t) + (\lambda - 1)x(t) = 0.$$

This is an Euler differential equation of first order and thus its solutions have the form $x(t) = ct^{\alpha}$ where α is a complex scalar. We find $\lambda \alpha + (\lambda - 1) = 0$ or $\alpha = \frac{1}{\lambda} - 1$. (Thus, considered as a mapping from the space of integrable functions to the space of continuous functions on (0, 1), T_1 has every nonzero number as a simple eigenvalue.) Since $t^{\alpha} \in L^p(0, 1)$ iff Re $(\alpha p) > -1$, $t^{\frac{1}{\lambda} - 1} \in L^p(0, 1)$ iff Re $\frac{1}{\lambda} > \frac{p-1}{p}$. So the point spectrum of T_1 is the interior of D_p and every eigenvalue of T_1 has geometric multiplicity 1. (Moreover, since $t^{\alpha} \notin L^p(0, \infty)$ for any α , the operator T_{∞} has a void point spectrum.)

Spectra of Cesàro operators

Next let the transformations P_{ζ} be defined by

$$(P_{\zeta}x)(t) = \int_{0}^{1} s^{-\zeta}x(st) \, ds.$$

Then by Boyd's formula, P_{ζ} is a bounded operator on $L^{p}(0, 1)$ if $\operatorname{Re} \zeta < \frac{p-1}{p}$ and for such $\zeta, \zeta P_{\zeta}T_{1} = \zeta T_{1}P_{\zeta} = P_{\zeta} - T_{1}$. Hence if $\operatorname{Re} \frac{1}{\lambda} < \frac{p-1}{p}$ and $\zeta = \lambda^{-1}$, we see that $-\zeta^{2}P_{\zeta} - \zeta I$ is a bounded operator inverse for $T_{1} - \lambda I$; so λ belongs to the resolvent set for T_{1} . Thus $\sigma(T_{1}) \subset D_{p}$.

The spectrum of a bounded operator being compact, we must have $\sigma(T_1) = D_p$. We observe that the condition $\operatorname{Re} \frac{1}{\lambda} \geq \frac{p-1}{p}$ is equivalent to the condition: $|\lambda|^2 \leq \frac{p-1}{p} \operatorname{Re} \lambda$, so that D_p is the disk with center $\left(\frac{q}{2}, 0\right)$ and radius $\frac{q}{2}$ in \mathbb{R}^2 (where $q = \frac{p-1}{p}$ is the conjugate index to p). Q.E.D.

The argument needs a slight modification when $p = \infty$. Since $t^{\alpha} \in L^{\infty}(0, 1)$ iff Re $\lambda \ge 0$, we find that $t^{\frac{1}{\lambda} - 1}$ is an eigenvector of T_1 on $L^{\infty}(0, 1)$ corresponding to the eigenvalue λ iff Re $\frac{1}{\lambda} \ge 1$. (Since $t^{\alpha} \in L^{\infty}(0, \infty)$ iff Re $\alpha = 0$, the eigenvalues of T_{∞} acting on $L^{\infty}(0, \infty)$ are the scalars λ with Re $\frac{1}{\lambda} = 1$. Hence the operator T_{∞} on $L^{\infty}(0, \infty)$ has spectrum which is entirely point spectrum.) Boyd's formula is still applicable, so $T_1 - \lambda I$ is invertible if Re $\frac{1}{\lambda} < 1$. We summarize as follows.

Theorem. Let T_1 be defined by the formula above. Then T_1 is a bounded linear operator on $L^{\infty}(0, 1)$. The spectrum of T_1 is the closed disk $D_{\infty} = \left\{\lambda : \operatorname{Re} \frac{1}{\lambda} \geq 1\right\}$. The point spectrum of T_1 is $D_{\infty} \setminus \{0\}$ and each eigenvalue of T_1 has multiplicity 1.

References

[BHS] A. BROWN, P. HALMOS, A. SHIELDS, Cesàro operators, Acta Sci. Math., 26 (1965), 125-137.
[Bo] D. BOYD, The spectrum of the Cesàro operator, Acta Sci. Math., 29 (1968), 31-34.
[G] R. R. GOLDBERG, Watson transforms on groups, Annals of Math., 71 (1960), 522-528.
[HLP] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, Cambridge University Press (1934).

THE UNIVERSITY OF CONNECTICUT

(Received November 4, 1971)