Spectra of finite range Cesàro operators

By GERALD M. LEIBOWITZ in Storrs (Connecticut, U.S.A.)

In [BHS] Brown, Halmos, and Shields studied the operators C_{0}, C_{1}, C_{∞} defined respectively on the spaces $l^{2}, L^{2}(0,1), L^{2}(0, \infty)$, by

$$
C_{0} x(n)=\frac{1}{n+1} \sum_{k=0}^{n} x(k), \quad C_{1} x(t)=\frac{1}{t} \int_{0}^{t} x(s) d s, \quad C_{\infty} x(t)=\frac{1}{t} \int_{0}^{t} x(s) d s .
$$

In particular they determined, using Hilbert space techniques, that the adjoint of $I-C_{1}$ is a simple unilateral shift and the adjoint of $I-C_{\infty}$ is a simple bilateral shift, from which it follows that the spectrum of C_{1} is the disk $\{\lambda:|1-\lambda| \leqq 1\}$ (with point spectrum the open disk $\{\lambda:|1-\lambda|<1\}$) and the spectrum of C_{∞} is the circle $\{\lambda:|1-\lambda|=1\}$ (with point spectrum empty). We should point out that the fact that $I-C_{\infty}^{*}$ is unitary and has spectrum the unit circle can be obtained in another way, following ideas of Goldberg [G]. After mapping $L^{2}(0, \infty)$ isometrically onto the L^{2}. space of the multiplicative group G of positive real numbers (with respect to the Haar measure $\frac{d t}{t}$) via $x(t) \rightarrow t^{\frac{1}{2}} x(t)$, we see that C_{∞}^{*}, which is given by $C_{\infty}^{*} x(t)=\int_{t}^{\infty} \frac{x(s)}{s} d s$, is the operation of convolution by a certain function $\varphi \in L^{1}(G)$. Using the usual notation for Fourier transforms, one computes directly that $1-\hat{\varphi}$ has modulus identically 1 and has each point of the unit circle in its essential range. It follows at once that $I \rightarrow C_{\infty}^{*}$ is unitarily equivalent to an operator which is unitary and has the entire unit circle as its spectrum.

In [Bo], Boyd used an explicit integral formula for the resolvent to show that the corresponding operator T_{∞} on $L^{p}(0, \infty)$ is a bounded operator mapping $L^{p}(0, \infty)$ into itself and having spectrum the circle $\left\{\lambda: \operatorname{Re} \frac{1}{\lambda}=\frac{p-1}{p}\right\}$ for $1<p \leqq \infty$ (with $\frac{p-1}{p}$ defined to be 1 if $p=\infty$).

Here we determine the spectrum of the corresponding operator T_{1} on the space $L^{p}(0,1)(1<p \leqq \infty)$ and add a few remarks concerning T_{∞}.

Theorem. Let $1<p<\infty$ and let $\left(T_{1} x\right)(t)=t^{-1} \int_{0}^{t} x(s) d s$ for $x \in L^{p}(0,1)$. Then T_{1} is a bounded linear operator on $L^{p}(0,1)$. The spectrum of T_{1} is the closed disk $D_{p}=\left\{\lambda: \operatorname{Re} \cdot \frac{1}{\lambda} \geqq \frac{p-1}{p}\right\}$. Each eigenvalue of T_{1} has multiplicity 1 , and the point spectrum of T_{1} is the interior of D_{p}.

Proof. By Hardy's inequality for integrals [HLP, p. 240], if $y \in L^{p}(0, \infty)$ then $T_{\infty} y \in L^{p}(0, \infty)$ and $\left\|T_{\infty} y\right\|_{p}<\frac{p}{p-1}\|y\|_{p}$ unless $y=0$ a.e. Hence T_{∞} is a bounded operator on $L^{p}(0, \infty)$, and since the constant is best possible, $\left\|T_{\infty}\right\|_{p}=\frac{p}{p-1}$. From this it follows that T_{1} is a bounded operator on $L^{p}(0,1)$ with norm at most $\frac{p}{p-1}$. For if $x \in L^{p}(0,1)$ and $\tilde{x}(t)=x(t)(0<t<1), \quad \tilde{x}(t)=0(t \geqq 1), \quad$ then

$$
\left\|T_{1} x\right\|_{p}=\left(\int_{0}^{1}\left|T_{\infty} \tilde{x}(t)\right|^{p} d t\right)^{1 / p} \leqq\left\|T_{\infty} \tilde{x}\right\|_{p} \leqq \frac{p}{p-1}\|\tilde{x}\|_{p}=\frac{p}{p-1}\|x\|_{p}
$$

We observe that if $x \in L^{p}(0,1)$, then $x \in L^{1}(0,1)$ and hence $T_{1} x$ is a continuous function on $(0,1)$. In particular, the range of T_{1} is a proper subspace of $L^{p}(0,1)$ so 0 belongs to the spectrum of T_{1}.

If $\lambda \neq 0$ and $T_{1} x=\lambda x$; it follows that x is continuous and hence by the fundamental theorem of calculus, that x is differentiable. Differentiating the relation $\lambda t x(t)=$ $=\int_{0}^{t} x(s) d s ;$ we have

$$
\lambda t x^{\prime}(t)+(\lambda-1) x(t)=0
$$

This is an Euler differential equation of first order and thus its solutions have the form $x(t)=c t^{\alpha}$ where α is a complex scalar. We find $\lambda \alpha+(\lambda-1)=0$ or $\alpha=\frac{1}{\lambda}-1$. (Thus, considered as a mapping from the space of integrable functions to the space of continuous functions on $(0,1), T_{1}$ has every nonzero number as a simple eigenvalue.) Since $t^{\alpha} \in L^{p}(0,1)$ iff $\operatorname{Re}(\alpha p)>-1, t^{\frac{1}{\lambda}-1} \in L^{p}(0,1)$ iff $\operatorname{Re} \frac{1}{\lambda}>\frac{p-1}{p}$. So the point spectrum of T_{1} is the interior of D_{p} and every eigenvalue of T_{1} has geometric multiplicity 1. (Moreover, since $t^{\alpha} \notin L^{p}(0, \infty)$ for any α, the operator T_{∞} has a void point spectrum.)

Next let the transformations P_{ζ} be defined by

$$
\left(P_{\zeta} x\right)(t)=\int_{0}^{1} s^{-\zeta} x(s t) d s
$$

Then by Boyd's formula, P_{ζ} is a bounded operator on $L^{p}(0,1)$ if $\operatorname{Re} \zeta<\frac{p-1}{p}$ and for such $\zeta, \zeta P_{\zeta} T_{1}=\zeta T_{1} P_{\zeta}=P_{\zeta}-T_{1}$. Hence if $\operatorname{Re} \frac{1}{\lambda}<\frac{p-1}{p}$ and $\zeta=\lambda^{-1}$, we see that $-\zeta^{2} P_{\zeta}-\zeta I$ is a bounded operator inverse for $T_{1}-\lambda I$; so λ belongs to the resolvent set for T_{1}. Thus $\sigma\left(T_{1}\right) \subset D_{p}$.

The spectrum of a bounded operator being compact, we must have $\sigma\left(T_{1}\right)=D_{p}$: We observe that the condition $\operatorname{Re} \frac{1}{\lambda} \geqq \frac{p-1}{p}$ is equivalent to the condition: $|\lambda|^{2} \leqq$ $\leqq \frac{p-1}{p} \operatorname{Re} \lambda$, so that D_{p} is the disk with center $\left(\frac{q}{2}, 0\right)$ and radius $\frac{q}{2}$ in R^{2} (where $q=\frac{p-1}{p .}$ is the conjugate index to p). Q.E.D.

The argument needs a slight modification when $p=\infty$. Since $t^{\alpha} \in L^{\infty}(0,1)$ iff $\operatorname{Re} \lambda \geqq 0$, we find that $t^{\frac{1}{\lambda}-1}$ is an eigenvector of T_{1} on $L^{\infty}(0,1)$ corresponding to the eigenvalue λ iff $\operatorname{Re} \frac{1}{\lambda} \geqq 1$. (Since $t^{\alpha} \in L^{\infty}(0, \infty)$ iff $\operatorname{Re} \alpha=0$, the eigenvalues of T_{∞} acting on $L^{\infty}(0, \infty)$ are the scalars λ with $\operatorname{Re} \frac{1}{\lambda}=1$. Hence the operator T_{∞} on $L^{\infty}(0, \infty)$ has spectrum which is entirely point spectrum.) Boyd's formula is still applicable, so $T_{1}-\lambda I$ is invertible if $\operatorname{Re} \frac{1}{\lambda}<1$. We summarize as follows.

Theorem. Let \dot{T}_{1} be defined by the formula above. Then T_{1} is a bounded linear operator on $L^{\infty}(0,1)$. The spectrum of T_{1} is the closed disk $D_{\infty}=\left\{\lambda: \operatorname{Re} \frac{1}{\lambda} \geqq 1\right\}$. The point spectrum of T_{1} is $D_{\infty} \backslash\{0\}$ and each eigenvalue of T_{1} has multiplicity 1.

References

[BHS] A. Brown, P. Halmos, A. Shields, Cesàro operators, Acta Sci. Math., 26 (1965),",125-137. [Bo] D. Boyd, The spectrum of the Cesàro operator, Acta Sci. Math., 29 (1968), 31-34.
[G] R. R. Goldberg, Watson transforms on groups, Annals of Math., 71 (1960), 522-528.
[HLP] G. H. Hardy, J. E. Littlewood, G: Pólya, Inequalities, Cambridge University Press (1934). the university of connecticut

