Spectra of convolution operators

By DAVID.W. BOYD in Vancouver (Canada) ${ }^{1)}$

1. Introduction. A number of recent papers have dealt with the question of determining the spectrum of operators which are special cases of the following type of operator:

$$
\begin{equation*}
T f(t)=\int_{0}^{\infty} k(s) f(t s) d s \tag{1}
\end{equation*}
$$

Here k is a given measurable function and the operator is considered as a mapping from $L^{p}(0, \infty)$ into itself. A sufficient condition for T to act as a bounded operator from $L^{p}(0, \infty)$ to itself is the well known result of Hardy, Littlewood and Pólya [6, p. 230] to the effect that

$$
\begin{equation*}
\|T\|_{p} \leqq \int_{0}^{\infty}|k(s)| s^{-1 / p} d s=N_{p}(k)<\infty \tag{2}
\end{equation*}
$$

For example, Brown, Halmos and Shields [2] by Hilbert space methods found the spectrum of the Cesàro operator

$$
\begin{equation*}
P f(t)=\frac{1}{t} \int_{0}^{t} f(s) d s=\int_{0}^{1} f(t s) d s \tag{3}
\end{equation*}
$$

In [1], this author gave an explicit formula for the resolvent of \boldsymbol{P} as an operator on $L^{p}(0, \infty), 1 \leqq p \leqq \infty$, and from this deduced the spectrum of P. Leibowitz [10] determined the spectrum of P as an operator on $L^{p}[0,1]$. Recently, Rhoades [11] extended the considerations to operators corresponding to Gamma type summation methods. Leibowitz [9] has determined the spectrum of operators of the type (1) where $k(s)$ vanishes for $s \geqq 1$, and for some $\varepsilon>0$ satisfies

$$
\begin{equation*}
\int_{0}^{1} k(s) s^{\varepsilon-(1 / p)} d s<\infty . \tag{4}
\end{equation*}
$$

Rhoades and Leibowitz also consider these operators as acting on $L^{p}(0,1)$, and

[^0]Leibowitz completely determines the spectrum in this case without the extra condition (4).

It is well known (see for example [12, p. 304, p. 311], [13, p. 36]) that operators of the type (1) are essentially convolution operators. This fact was used in [9]. Using this, it is clear that the spectrum of T as an operator on $L^{p}(0, \infty)$ is exactly the spectrum of the following operator $K *$ acting on $L^{p}(\mathbf{R})$:.

$$
\begin{equation*}
K * u(x)=\int_{-\infty}^{\infty} K(x-y) u(y) d y \tag{5}
\end{equation*}
$$

where $K(x)=k\left(e^{-x}\right) e^{-x / q},(q=p /(p-1))$. The condition (2) translates into the condition $\|K *\|_{p} \leqq\|K\|_{1}$ which is a familiar inequality for convolutions [3, p. 528], [12, p. 97]. Note that the expression $\|K *\|_{p}$ denotes the operator norm of $K *$ acting on $L^{p}(\mathbf{R})$.

It is surely a familiar fact that the spectrum of $K *$ acting on $L^{p}(\mathbf{R})$ is the closure of the range of \hat{K}, the Fourier transform of K. Since we have been unable to locate a proof of this in the literature except for $p=1$ and 2 , a proof is presented here as Theorem 1. From this it follows that the spectrum of T in $L^{p}(0, \infty)$ is the closure of the range of the Mellin transform

$$
\begin{equation*}
\hat{k}\left(-\frac{1}{p}+i \xi\right)=\int_{0}^{\infty} k(s) s^{-(1 / p)+i \xi} d s \tag{6}
\end{equation*}
$$

For completeness, we also present some results concerning the point spectrum of convolution operators (Theorem 2) and point out that the Riesz-Thorin theorem produces an interesting inequality when applied to operators of type (1).
2. Convolution operators. In this section we will consider the operator $K *$ defined by (5) for $K \in L^{1}(\mathbf{R})$. We denote the Fourier transform of K by

$$
\begin{equation*}
\hat{K}(\xi)=\int_{-\infty}^{\infty} K(x) e^{i \xi x} d x \tag{7}
\end{equation*}
$$

We will always assume that $1 \leqq p \leqq \infty$. The spectrum of a bounded operator from a Banach space X into itself will be denoted by $\sigma(T ; X)$.

The following deep result is due to Wiener and now usually established within the framework of the theory of Banach Algebras. See [4, p. 107] for a proof.

Lemma 1. Let $K \in L^{1}(\mathbf{R})$ and suppose that λ is a complex number such that $\lambda \neq 0$, and $\lambda \neq \widehat{K}(\xi)$ for any $\xi \in \mathbf{R}$. Then there is a function $A_{\lambda} \in L^{1}(\mathbf{R})$ such that

$$
\begin{equation*}
\lambda A_{\lambda}-K * A_{\lambda}=K . \tag{8}
\end{equation*}
$$

Corollary 1. The spectrum of $K *$ as an operator on $L^{p}(\mathbf{R})$ is contained in the closure of the range of \mathcal{R} on \mathbf{R}.

Proof. If λ is not in the given set then by Lemma 1 , there is an $A_{\lambda} \in L^{1}(\mathbf{R})$ satisfying (8). Since convolution is a commutative operation, one readily verifies that the operator $\lambda^{-1}\left(I+A_{\lambda^{*}}\right)$, which is a bounded operator on $L^{p}(\mathbf{R})$, is the inverse of $(\lambda-K *)$, so λ is in the resolvent set of $K *$.

Lemma 2. Let $1<p<\infty$. Let $K \in L^{1}(\mathbf{R})$ and suppose that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|x K(x)| d x=M<\infty \tag{9}
\end{equation*}
$$

Then, for each $\xi \in \mathbf{R}$, and $\delta>0$, there are functions $u_{\delta} \in L^{p}(\mathbf{R})$ of unit norm such that

$$
\left\|\hat{K}(\xi) u_{\delta}-K * u_{\delta}\right\|_{p}=0(\delta) \quad \text { as } \quad \delta \rightarrow 0
$$

Proof. For any $\delta>0$ and $\xi \in \mathbf{R}$, let

$$
\begin{equation*}
v_{\delta}(x)=\int_{\xi-\delta}^{\xi+\delta} e^{-i \eta x} d \eta=2 e^{-i \xi x}(\sin \delta x) / x \tag{10}
\end{equation*}
$$

Then $v_{\delta} \in L^{p}(\mathbf{R})$ for $1<p<\infty$ and

$$
\begin{equation*}
\left\|v_{\delta}\right\|_{p}=\delta^{1-(1 / p)}\left\|v_{1}\right\|_{p} \tag{11}
\end{equation*}
$$

Also, by interchange of order of integration, we have

$$
\begin{equation*}
K * v_{\delta}(x)=\int_{\xi-\delta}^{\xi+\delta} e^{-i \eta x} \hat{K}(\eta) d \eta \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
E_{\delta}(x)=\hat{K}(\xi) v_{\delta}(x)-K * v_{\delta}(x)=\int_{\xi-\delta}^{\xi+\delta} e^{-i \eta x}(\hat{K}(\xi)-\hat{K}(\eta)) \dot{d} \eta \tag{13}
\end{equation*}
$$

The assumption (9) means that $\hat{K}^{\prime}(\eta)$ exists and $\left|\hat{K}^{\prime}(\eta)\right| \leqq M$ for all ξ, and with (13) this gives

$$
\begin{equation*}
\left|E_{\delta}(x)\right| \leqq M \delta^{2} \tag{14}
\end{equation*}
$$

We need a slightly better estimate than this for large x which we obtain from (13) by integration by parts, obtaining

$$
\begin{equation*}
\left|E_{\delta}(x)\right| \leqq 4 M \delta x^{-1} \tag{15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|E_{\delta}(x)\right|^{p} d x \leqq \int_{|x|<4 / \delta}\left(M \delta^{2}\right)^{p} d x+\int_{|x|>4 / \delta}\left(4 M \delta x^{-1}\right)^{p} d x=0\left(\delta^{2 p-1}\right) \tag{16}
\end{equation*}
$$

Define $u_{\delta}=v_{\delta} /\left\|v_{\boldsymbol{\delta}}\right\|$, and use (11) and (16) to complete the proof.
Theorem 1. Let $K \in L^{1}(\mathbf{R})$. Let $1<p<\infty$. Then the spectrum of $K *$ as an operator on $L^{p}(\mathbf{R})$ is the closure of the range of \hat{K} on \mathbf{R}.

Proof. Denote the closure of the range of \hat{K} by σ. By Corollary 1 the spectrum is contained in σ. It suffices then to show that if $\lambda=\hat{K}(\xi)$ for some $\xi \in \mathbf{R}$ then λ is in the spectrum of $K *$. If $p=\infty$, the function $e^{-i \xi x}$ is an eigenvector of $K *$ with eigenvalue $\hat{K}(\xi)$, proving that $\sigma\left(K * ; L^{\infty}\right)=\sigma$. For $p=1$, the result follows by taking adjoints reducing to $p=\infty$. Finally if $1<p<\infty$, we use Lemma 2 as follows: let $K_{n}(x)=K(x)$ if $|x| \leqq n$ and zero otherwise. Then K_{n} satisfies (9) so there is a $u_{n} \in L^{p}$ with $\left|u_{n}\right|=1$ and

$$
\begin{equation*}
\left\|K_{n} * u_{n}-\hat{K}_{n}(\xi) u_{n}\right\|_{p}<1 / n \tag{17}
\end{equation*}
$$

We also have
and

$$
\begin{equation*}
\left\|K_{n} *-K *\right\|_{p} \leqq\left\|K_{n}-K\right\|_{1}=\int_{|x| \geqq n}|K(x)| d x=\varepsilon_{n} \tag{18}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Combining (17), (18), (19), we find that

$$
\begin{equation*}
\left\|K * u_{n}-\hat{K}(\xi) u_{n}\right\|_{p} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{20}
\end{equation*}
$$

which shows that $\hat{K}(\xi) \in \sigma\left(K_{*} ; L^{p}(\mathbf{R})\right)$.
Corollary 2. Let k be a measurable function on ($0, \infty$) satisfying

$$
\begin{equation*}
\int_{0}^{\infty}|k(s)| s^{-1 / p} d s<\infty \tag{21}
\end{equation*}
$$

Let T be defined as in (1) and \hat{k} as in (6). Then the spectrum of T as an operator on $L^{p}(0, \infty)$ is the closure of the range of $\hat{k}\left(-\frac{1}{p}+i \xi\right)$ as ξ varies over \mathbf{R}.

Proof. Let $K(x)=k\left(e^{-x}\right) e^{-x / q}$ where $q=p /(p-1)$. Then $K \in L^{1}(\mathbf{R})$. For any $f \in L^{p}(0, \infty)$, let $Q f(x)=f\left(e^{x}\right) e^{x / p}$. Then Q is an isometry of $L^{p}(0, \infty)$ onto $L^{p}(\mathbf{R})$. Furthermore $Q T Q^{-1} u(x)=K * u(x)$ for all $u \in L^{p}(\mathbf{R})$. Thus $\sigma\left(T ; L^{p}(0, \infty)\right)=$ $=\sigma\left(K^{*} ; L^{p}(\mathbf{R})\right)$ which is the closure of the range of \mathcal{K} by Theorem 1. However, $\hat{K}(\xi)=\hat{k}\left(-\frac{1}{p}+i \xi\right)$.

Remarks 1. The proof of Theorem 1 for $p \neq 1$ could be accomplished by noting that the norm of the operator $K *$ on $L^{1}(\mathbf{R})$ is the same as the L^{1} norm of the function K, so the algebra of operators K^{*} is isometric with $L^{1}(\mathbf{R})$. The proof used for $1<p<\infty$ could also be modified to treat the case $p=1$.
2. Note that we made use of the Fourier transform only for $K \in L^{1}(\mathbf{R})$ and not for elements of $L^{p}(\mathbf{R})$. The usual proof of Theorem 1 for $p=2$ uses the fact
that the Fourier transform is a unitary operator on $L^{2}(\mathbf{R})$ so that $K *$ is unitarily equivalent to multiplication by $\hat{K}(\check{\zeta})$. Such a proof is not available for $p \neq 2$.
3. Our Corollary 2 contains the result of Leibowitz quoted in the introduction.
3. Point spectrum. Suppose that K satisfies the conditions of Theorem 1. The next theorem determines conditions under which a value λ will be in the point spectrum of K 米 acting on $L^{p}(\mathbf{R})$. We denote the point spectrum by $\pi\left(K * ; L^{p}\right)$. Our conditions are necessary and sufficient only in case $p=1,2$ or ∞. In contrast to Theorem 1, we need the Fourier transform of elements of $L^{p}(\mathbf{R})$. We recall that if $1 \leqq p \leqq 2$, and $u \in L^{p}$, then $\hat{u} \in L^{q}$, while if $2<p \leqq \infty, \hat{u}$ is a tempered distribution [7, p. 142 and p. 146]. The results of Theorem 2 can be translated into results for operators T of the form (1).

Theorem 2. Let $K \in L^{1}(\mathbf{R})$ and for each complex number λ, let $E_{\lambda}=\{\xi: \hat{K}(\xi)=\lambda\}$. Then
(a) $\lambda \in \pi\left(K^{*} ; L^{1}\right)$ if and only if E_{λ} contains an interval,
(b) if $1<p<2$ and if E_{λ} is of measure zero, then $\lambda \notin \pi\left(K_{*} ; L^{p}\right)$, while if E_{λ} contains an interval then $\lambda \in \pi\left(K^{*} ; L^{p}\right)$,
(c) $\lambda \in \pi\left(K_{*} ; L^{2}\right)$ if and only if E_{λ} has positive measure,
(d) if $2<p<\infty$ and if E_{λ} is a finite set then $\lambda \uplus \pi\left(K * ; L^{p}\right)$, while if E_{λ} is of positive measure then $\lambda \in \pi\left(K * ; L^{p}\right)$,
(e) $\lambda \in \pi\left(K_{*} ; L^{\infty}\right)$ if and only if E_{λ} is non-empty.

Proof. Suppose that E_{λ} contains an interval $(a-\delta, a+\delta)$. Let $F(\check{c})=$ $=\max (1-|\xi|, 0)$ and $u(x)=\int_{R} F((\xi-a) / \delta) e^{-i \xi x} d \xi$. Then $u \in L^{p}(\mathbf{R})$ for all $p \geqq 1$, and since $F((\xi-a) / \delta)=0$ for $|\xi-a|>\delta$, we readily check that $K * u=\lambda u$. Similarly, if E_{λ} is of positive measure so contains a subset E of finite positive measure, then let $u(x)=\int_{E} e^{-i \xi x} d \xi$. Since χ_{E} is in L^{q} for $1 \leqq q \leqq 2$, we have $u \in L^{p}$ for $2 \leqq p \leqq \infty$, and as above, $K * u=\lambda u$. These remarks prove one direction of each of (a) to (d).

Conversely, suppose that u is in L^{p} and $K * u=\lambda u$. If $p=1$, this implies that

$$
\begin{equation*}
\hat{K}(\xi) \hat{u}(\xi)=\lambda \hat{u}(\xi) \tag{22}
\end{equation*}
$$

for all ξ, and since \hat{u} is continuous and vanishes except on E_{λ} by (22), it will vanish identically unless E_{λ} contains an interval. This proves (a), since $\hat{u}(\xi)=0$ for all ξ implies that $u=0$ a.e.

If $1<p \leqq 2$, equation (22) is valid a.e. so that $\hat{u}(\xi)$ vanishes for almost all $\xi \notin E_{\lambda}$, and hence vanishes a.e. if $E_{\dot{\lambda}}$ is of measure zero. By the uniqueness theorem $\hat{u}(\xi)=0$ a.e. implies that $u=0$ a.e. This completes the proof of (b) and (c).

If $2<p \leqq \infty$ and $K * u=\lambda u$ for $u \in L^{p}$, then (22) holds as a statement about tempered distributions. If φ is a testing function with support contained in an interval
I in the complement of E_{λ}, then there is a testing function ψ such that $(\hat{K}-\lambda) \psi=\varphi$. To see this, note that there is a $v \in L^{1}$ such that $\hat{v}(\xi)=(\hat{K}(\xi)-\lambda)^{-1}$ for $\xi \in I[5$, p. 29]. Now let $\hat{\psi}=v * \hat{\varphi}$, and invert the Fourier transform to obtain ψ. Using

$$
(\hat{K}-\lambda) \hat{u}=0
$$

we have

$$
0=\langle(\hat{K}-\lambda) \hat{u}, \psi\rangle=\langle\hat{u},(\hat{K}-\lambda) \psi\rangle=\langle\hat{u}, \varphi\rangle .
$$

This shows that the support of \hat{u} is contained in $E_{\dot{\lambda}}$. If E_{λ} is finite then Theorem 4. 12 and Theorem 4.11 of $[7$, p. 152] show that \hat{u} is a finite linear combination of point measures. But then $u \notin L^{p}$ if $p<\infty$. This contradiction shows that $\lambda \notin \pi\left(K * ; L^{p}\right)$ and completes the proof of (d).

The proof of (e) is left to the reader.
4. Norms. According to Corollary 1 , the spectral radius of a T given by (1) as an operator on $L^{p}(0, \infty)$ is given by

$$
r_{p}(T)=\max _{\infty<\xi<\infty}\left|\hat{k}\left(-\frac{1}{p}+i \xi\right)\right| .
$$

This is also the norm of T in case $p=2$, since T is a normal operator. This can also be proved directly using the Fourier transform as in Kober [8]. For $p=1$ or ∞, the norm of T is given by $N_{p}(k)$ of (2). If we associate with T the convolution operator $K *$ as in Corollary 2, then $N_{p}(k)=\|K\|_{1}=\|K *\|_{1}=\|K *\|_{\infty}$, and $r_{p}(T)=\max |\hat{K}(\xi)|=$ $=\|K *\|_{2}$. Thus the Riesz-Thorin convexity theorem shows that in general

$$
\begin{equation*}
\|T\|_{p} \leqq N_{p}(k)^{\gamma} r_{p}(T)^{1-\gamma} \quad \text { where } \quad \gamma=|2-p| / p \tag{23}
\end{equation*}
$$

5. An example. Let T defined by the following expression:

$$
T f(t)=\int_{0}^{1} s^{-1+(2 / p)} f(t s) d s-\int_{1}^{\infty} s^{-1} f(t s) d s
$$

Then $\hat{k}\left(-\frac{1}{p}+i \xi\right)=-2 i \xi /\left(p^{-2}+\xi^{2}\right)$, and hence $r_{p}(T)=p$, and the spectrum of T on $L^{p}(0, \infty)$ is the set $\{i \eta:|\eta| \leqq p\}$. According to Theorem 2, there is no point spectrum if $p<\infty$, while if $p=\infty$, the whole spectrum consists of point spectrum. We do not know the value of $\|T\|_{p}$ but it is easy to compute $N_{p}(k)=2 p$, and hence (23) gives the estimate

$$
\|T\|_{p} \leqq 2^{|p-2| / p} p
$$

and obviously $\|T\|_{p} \geqq r_{p}(T)=p$. It would be interesting to show that $\|\dot{T}\|_{p}>p$ if $p \neq 2$.

References

[1] D. W. Boyd, The spectrum of the Cesàro operator, Acta Sci. Math., 29 (1968), 31-34.
[2] A. Brown, P. R. Halios and A. L. Shields, Cesàro operators, Acta Sci. Math., 26 (1965), 125-137.
[3] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience (1958).
[4] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative normed rings, Chelsea (1964).
[5] R. Goldberg, Fourier Transforms, Cambridge Tracts, No. 52 (1962).
[6] G. H. Hardy, J. E. Littlewood and G.Pólya, Inequalities (Cambridge, 1934).
[7] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley (1968).
[8] H. Kober, On a theorem' of Schur and on fractional integrals of purely imaginary order, Trans. Amer.. Math. Soc., 50 (1941), 160-174.
[9] G. Leibowitż, A convolution approach to Hausdorff integral operators (to appear).
[10] G. Leibowitz, Spectra of finite range Cesàro operators, Acta Sci Math., 35 (1973), 27-28.
[11] B. E. Rhoades, Spectra of soms Hausdorff operators, Acta Sci. Math., 32 (1971), 91—100.
[12] E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Oxford, 1937).
[13] H. S. Wilf, Finite sections of some classical inequalities, Springer-Verlag (1970).

THE UNIVERSITY OF BRITISH COLUMBIA
Vancouver, canada
(Received July 18, 1972)

[^0]: ${ }^{1)}$ Supported in part by Canadian N. R. C. grant A8128.

