A generalization of the Halmos—Bram criterion for subnormality

By MARY R. EMBRY in Charlotte (North Carolina, USA)

Introduction. In [3] and [1] HALMOS and BRAM show that a continuous linear operator A on a complex Hilbert space X is subnormal if and only if $\sum_{i,j=0}^{n} (A^{i}x_{j}, A^{j}x_{i}) \ge 0$ for all finite collections $x_{0}, ..., x_{n}$ of X. In Section 1 we generalize this criterion by showing that A is subnormal if and only if $\sum_{i,j=0}^{n} (A^{i+j}x_{j}, A^{i+j}x_{i}) \ge 0$ for all finite subcollections $x_{0}, ..., x_{n}$ of X. As an application of this criterion we show in Section 2 that an operator A is the restriction of a normal partial isometry to an invariant subspace if and only if $A = A^{*}A^{2}$ and $||A|| \le 1$. In Section 3 we show, using our new criterion for subnormality, that an operator A is subnormal if and only if $\{A^{*n}A^{n}\}_{n=0}^{\infty}$ is a Hausdorff moment sequence.

Throughout the paper X is a complex Hilbert space with inner product (,)and norm || ||. If B is a continuous linear operator on X, then B^* is the adjoint of B. B is normal if $BB^* = B^*B$, quasi-normal if $B(B^*B) = (B^*B)B$, an isometry if $B^*B = I$ and a partial isometry if $(B^*B)^2 = B^*B$. An operator A is subnormal if it is the restriction of a normal operator B to an invariant subspace of B and hyponormal if $AA^* \leq A^*A$. A sequence $\{C_n\}_0^\infty$ of operators on X is a Hausdorff moment sequence if there

exists a positive operator measure φ on some interval [a, b] such that $C_n = \int_a^b t^n d\varphi$ for each nonnegative integer n.

1. A criterion for subnormality. The Halmos—Bram criterion that an operator A on X be subnormal is that $\sum_{i,j=0}^{n} (A^{i}x_{j}, A^{j}x_{i}) \ge 0$ for all finite collections x_{0}, \ldots, x_{n} of X. We generalize this as follows:

Theorem 1. An operator A on a complex Hilbert space X is subnormal if and only if A satisfies

(S₁)
$$\sum_{i,j=0}^{n} (A^{i+j}x_j, A^{i+j}x_i) \ge 0$$

for each finite collection x_0, \ldots, x_n of X.

M. R. Embry

Proof. The proof of the necessity of the condition is easy. Note that (S_1) is the special case of the Halmos—Bram condition which we obtain by choosing $x_i = A^i x'_i$ for i=0, ..., n.

To prove the sufficiency of the condition we imitate the techniques of Halmos and Bram and prove that if A satisfies condition (S_1) , then A is the restriction of a quasi-normal operator to an invariant subspace. This will complete our proof, since every quasi-normal operator is subnormal ([4, problem 154]).

Assume now that A satisfies condition (S_1) . The first step in the proof will be to show that A also satisfies

(S₂)
$$\sum_{i,j=0}^{n} (A^{i+j+1}x_j, A^{i+j+1}x_i) \leq ||A||^2 \sum_{i,j=0}^{n} (A^{i+j}x_j, A^{i+j}x_i).$$

To obtain this result we outline a modification of BRAM's proof in [1, Theorem 1, p. 76].

Let $\varepsilon > 0$ and let $A_1 = A/(||A|| + \varepsilon)$. A_1 also satisfies condition (S_1) . Let $Y = l^2(X)$. Define C on Y by $(Cy)_i = \sum_{j=0}^{\infty} A_1^{*i+j} A_1^{i+j} y_j$. An argument similar to that used by Bram shows that C is a well-defined, bounded operator on Y and that $C \ge 0$ on Y. Now define B on Y by $(By)_i = A_1 y_i$. A computation almost identical to that used by Bram shows that $||B^*CBy|| \le ||Cy||$ for all y in Y and hence by [5, p. 426] that $B^*CB \le C$ since $||B|| = ||A_1|| < 1$. It now follows that if x_0, \ldots, x_n are elements of X, then

$$\sum_{i, j=0}^{n} (A^{i+j+1}x_j, A^{i+j+1}x_i) \leq (||A|| + \varepsilon)^2 \sum_{i, j=0}^{n} (A^{i+j}x_j, A^{i+j}x_i).$$

Since ε was an arbitrary positive number, condition (S_2) is satisfied.

The second step in the proof of the theorem is the construction of a quasinormal extension of A. The following modification of HALMOS' proof in [3] will give us this result.

Let \tilde{X} be the set of all sequences $\{x_i\}_{i=-\infty}^{\infty}$ in X such that $x_i=0$ for i<0 and $x_i \neq 0$ for at most a finite number of *i*. On \tilde{X} define

$$(\tilde{x}, \, \tilde{y}) = \sum_{i,j} (A^{i+j} x_j, \, A^{i+j} y_i).$$

Let \tilde{Y} be the set of equivalence classes obtained by identifying \tilde{x} with 0 if $(\tilde{x}, \tilde{x})=0$. Then since A satisfies condition (S_1) , (,) is an inner product on \tilde{Y} . Define D on

Criterion for subnormality

 \tilde{X} by $(D\tilde{x})_i = Ax_i$. Using the fact that A also satisfies condition (S_2) , we have

$$(D\tilde{x}, D\tilde{x}) = \sum_{i,j} (A^{i+j+1}x_i, A^{i+j+1}x_j) \le ||A||^2 \sum_{i,j} (A^{i+j}x_i, A^{i+j}x_j) = ||A||^2 (\tilde{x}, \tilde{x}).$$

It now follows that D may be considered to be a continuous linear operator on \tilde{Y} .

Define E on \tilde{X} by $(E\tilde{x})_i = x_{i-1}$ and note that DE = ED on \tilde{X} . Furthermore on \tilde{X} we have the relation

$$(D\tilde{x}, D\tilde{y}) = \sum_{i,j} (A^{i+j+1}x_i, A^{i+j+1}x_j) = \sum_{i,j} (A^{i+j}x_i, A^{i+j}x_{j-1}) = (\tilde{x}, E\tilde{y}).$$

Thus on the completion of \tilde{Y} , the extensions of D and E satisfy the equation $E=D^*D$. However, we have already observed that D commutes with E. Therefore the extension of D to the completion of \tilde{Y} is a quasi-normal extension of A and the proof of the theorem is complete.

In [6, Theorem 7, p. 73] MAC NERNEY shows that a sequence $\{C_n\}_{n=0}^{\infty}$ of Hermitian operators on X is a Hausdorff sequence for the interval [a, b] if and only if

$$a\sum_{i,j=0}^{n} (x_i, C_{i+j}x_j) \leq \sum_{i,j=0}^{n} (x_i, C_{i+j+1}x_j) \leq b\sum_{i,j=0}^{n} (x_i, C_{i+j}x_j)$$

for each finite collection x_0, \ldots, x_n in X. Using this result and Theorem 1, we readily obtain the following:

Corollary. An operator A on X is subnormal if and only if $\{A^{*n}A^n\}_{n=0}^{\infty}$ is a Hausdorff moment sequence.

We note that if A is subnormal, then A is quasi-normal if and only if $A^{*n}A^n = \int t^n d\varphi$ where φ is a spectral measure (that is, φ is a projection-valued operator measure). The proof of this assertion is simple. If A is quasi-normal, then $A^{*n}A^n = (A^*A)^n$ for $n \ge 0$ and thus $A^{*n}A^n = \int t^n d\varphi$ where φ is the spectral resolution of A^*A . Conversely, if $A^{*n}A^n = \int t^n d\varphi$ and φ is projection-valued, then $A^{*n}A^n = (A^*A)^n$ for $n \ge 0$. Furthermore, by the last corollary A is subnormal and hence hyponormal. However if A is hyponormal and $A^{*2}A^2 = (A^*A)^2$, then $(A^*A - AA^*)A = 0$, proving that A is quasi-normal.

2. The operator equation $A = A^*A^2$. Consider the weighted shift A on l^2 defined by $A(x_0, x_1, ...) = (0, 2x_0, x_1, x_2, ...)$. A simple computation shows that $A = A^*A^2$. However, since the weights of A are not monotone increasing, A is not hyponormal [4, p. 160] and consequently not subnormal. Thus not every operator satisfying the equation $A = A^*A^2$ is subnormal. The additional hypothesis needed to force A to be subnormal is that $||A|| \leq 1$. We are now able to completely characterize operators satisfying these two conditions.

M. R. Embry

Theorem 2. Let A be an operator on a complex Hilbert space X. A is subnormal and the minimal normal extension of A is a partial isometry if and only if $||A|| \leq 1$ and $A = A^*A^2$.

Proof. Assume first that B is a normal partial isometry on a Hilbert space Y, containing X, and that B=A on X. Since every partial isometry has norm ≤ 1 , we have $||A|| \leq ||B|| \leq 1$. Let P be the projection of Y onto X. Then for each x in X we have $A^*A^2x = PB^*B^2x = PBB^*Bx$ (since B is normal) = PBx (since B is a partial isometry) = Bx = Ax and consequently, $A = A^*A^2$.

Now assume that $A = A^*A^2$ and $||A|| \le 1$. A simple inductive argument shows that $A^{*k}A^k = A^*A$ for each integer $k \ge 1$. Therefore if $x_0, ..., x_n$ are elements of X,

$$\sum_{i,j=0}^{n} (A^{i+j}x_j, A^{i+j}x_i) = \sum_{i,j=0}^{n} (Ax_j, Ax_i) + ||x_0||^2 - ||Ax_0||^2 =$$
$$= \left\| \sum_{i=0}^{n} Ax_i \right\|^2 + ||x_0||^2 - ||Ax_0||^2 \ge 0 \text{ since } ||A|| \le 1.$$

By Theorem 1 we know that A is subnormal. Let $B:Y \to Y$ be the minimal normal extension of A. It remains to show that B is a partial isometry. Let P be the projection of Y onto X. Then for x in X, $||PB^*B^2x|| = ||A^*A^2x|| = ||Ax|| = ||A^3x||$ (since $A^{*3}A^3 = A^*A) = ||B^3x|| = ||B^*B^2x||$. Therefore $B^*B^2x \in X$ for all x and consequently $B^*B^2 = B$ on X. Since B is the minimal normal extension of A, the set of vectors $\left\{\sum_{i=0}^{n} B^{*i}x_i:x_i \in X\right\}$ is dense in Y and consequently $B^*B^2 = B$ on a dense subset of Y. This is sufficient to imply that B is a partial isometry. The proof is complete.

The assertion in Theorem 2 parallels the assertion that an operator A is an isometry if and only if A is subnormal and the minimal normal extension of A is unitary.

References

- [1] J. BRAM, Subnormal operators, Duke Math. J., 22 (1955), 75-94.
- [2] R. G. DOUGLAS, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
- [3] P. R. HALMOS, Normal dilations and extensions of operators, Summa Brasil. Math., 2 (1950), 125-134.

[4] P. R. HALMOS, A Hilbert space problem book, Van Nostrand Co. (Princeton, 1967).

[5] E. HEINZ, Beiträge zur Störungtheorie der Spektralzerlegung, Math. Ann., 123 (1951), 415-438.

[6] J. S. MAC NERNEY, Hermitian moment sequences, Trans. Amer. Math. Soc., 103 (1962), 45-81.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

(Received October 25, 1971)