On p-pure subgroups of torsion-free cotorsion groups

By L. C. A. VAN LEEUWEN in Delft (Netherlands)

1. Introduction. In this paper we give an explicit form for the structure of torsion-free cotorsion groups (Theorem 1). We apply this to a special class of groups, the torsion-free abelian groups without elements of infinite p-height. A torsionfree abelian group G has an element a of infinite p-height if the equation $p^{n} x=a$ is solvable in G for any integer $n \geqq 1$ (p a prime). Boyer and MADER [5] have determined the structure of a torsion-free abelian group G without elements of infinite p-height in terms of p-pure and p-basic subgroups. With the aid of the torsion-free cotorsion groups we state the torsion-free part of their result more precisely (Theorem 2). Then we investigate the p-pure subgroups of groups G without elements of infinite p-height which have the additional property that G is complete with respect to the p-adic topology, the so-called p-closed groups. The similarity with the closed p-groups defined by Fuchs for the torsion case is obvious ([6], p. 114) and one can easily prove the analogues of theorems of p-groups for the torsionfree case (Lemma 3 and 4). Our main object is, however, to derive results on the extensions of homomorphisms for p-pure subgroups of torsion-free cotorsion groups. Our theorems 3 and 4 are generalizations of corresponding results of Armstrong [1] for p-pure subgroups of the group of p-adic integers. Let S be a p-pure subgroup of a p-closed group G and let B be a p-basic subgroup of S. Then $\operatorname{Hom}(S / B, G / S)=0$ (or equivalently $\operatorname{Ext}(S / B, S)=0)$ is a sufficient condition that every $\alpha \in \operatorname{Hom}(B, S)$ has an extension to an endomorphism of S. Therefore we investigate the groups S with Hom $(S / B, G / S)=0$. In Theorems 5 and 6 we give some equivalent statements for the condition Hom $(S / B, G / S)=0$. It turns out that, if the rank of $S \leqq \varkappa_{0}, S$ is completely decomposable into a direct sum of copies of some torsion-free quotient-divisible group of rank 1. Finally we investigate the groups S as above but without the restriction Hom $(S / B, G / S)=0$. In theorem 7 the structure of these groups is reduced to the case where S is a subgroup of $Z(p)$. containing 1 and with the property that S, as a ring, is a subring of $Z(p)$.

Our notation and terminology is, for the main part, in accordance with that of Fuchs [6]; for unexplained notions we refer to his book [6].
2. The structure of torsion-free cotorsion groups. Torsion-free cotorsion groups were defined by Harrison [9]. For convenience let us summarize some results of [9]. The word group will always mean abelian group. The additive group of rationals is denoted by Q, the additive group of integers by Z. A group G is reduced if it has no non-trivial divisible subgroup. A reduced group G is called cotorsion if G a subgroup of a group M with M / G torsion-free imply that G is a direct summand of M, i.e. Ext $(H, G)=0$ for all torsion-free groups H.
(i) There is a one-to-one correspondence between all divisible torsion groups and all torsion-free cotorsion groups. If D is a divisible torsion group, the correspondence is $D \rightarrow$ Hom ($Q / Z, D$). If G is torsion-free cotorsion, the inverse of this correspondence is $G \rightarrow(Q / Z) \otimes G$.
A result of Fuchs [7, p. 123] states:
(ii) A torsion-free group is a cotorsion group if and only if it is a reduced algebraically compact group.
In [9, Prop. 2. 1., p. 371] it is proved:
(iii) A group is torsion-free cotorsion if and only if it is isomorphic to a direct summand of a complete (unrestricted) direct sum of p-adic integers.

Definition. The height of the p-adic integer π is the integer $k(\geqq 0)$ such that $\pi \in p^{k} Z(p)$, but $\pi \notin p^{k+1} Z(p)$, where $Z(p)$ is the group of p-adic integers. In order to find the structure of torsion-free cotorsion groups it is enough to determine the groups Hom ($Q / Z, D$) for arbitrary divisible torsion groups D (by (i)). The following theorem holds:

Theorem 1. Let D be a divisible torsion group and suppose $D=\sum_{p_{i}} \sum_{\alpha_{p_{i}}} C\left(p_{i}^{\infty}\right)$, where $C\left(p_{i}^{\infty}\right)$ is the quasi-cyclic group of type $p_{i}\left(p_{i}\right.$ a prime $)$. Then

$$
\begin{equation*}
\operatorname{Hom}(Q / Z, D) \cong \sum_{p_{j}}^{*} \sum_{\alpha_{p_{j}}}^{\prime} Z\left(p_{j}\right) \tag{1}
\end{equation*}
$$

where the first (complete) sum Σ^{*} is taken over all prime numbers p_{j} and, for each prime number p_{j}, the number of components π_{λ} with height $=k$ in $\left\langle\ldots, \pi_{j}, \ldots\right\rangle \in \sum Z\left(p_{j}\right)$ is. finite $(k=0,1,2, \ldots)$.

A proof of Theorem 1 is given in [11]. All torsion-free cotorsion groups have the structure (1) of an interdirect sum of groups of p-adic integers for different primes p and by the result of FUCHS $[7, \mathrm{p} .123,(\mathrm{j})]$ the torsion-free reduced algebraically compact groups have this form. The following remarks are due to Prof. L. Fuchs.

We have $\Sigma Z(p) \subset \Sigma^{\prime} Z(p) \subset \Sigma^{*} Z(p)$, where Σ^{\prime} / Σ is the maximal divisible subgroup of Σ^{*} / Σ, the latter group being again algebraically compact. Actually, Σ^{\prime} is the completion of Σ is the n-adic topology (cf. [9], p. 379), so Σ is dense is Σ^{\prime} which
means Σ^{\prime} / Σ is divisible ($[9]$, p. 380). Thus Σ^{*} will be the direct sum of Σ^{\prime} and a reduced algebraically compact group $\cong \Sigma^{*} / \Sigma^{\prime}$. Now we are going to use the concept of p-basic subgroup (p a prime), introduced in [7] by Fuchs. Let G be an arbitrary torsion-free abelian group. Then B_{0} is called a p-basic subgroup of G, if the following conditions are satisfied:
(i) B_{0} is a direct sum of infinite cyclic groups.
(ii) B_{0} is a p-pure subgroup of G, i.e. $p^{r} B_{0}=B_{0} \cap p^{r} G$ for $r=0,1,2, \ldots$.
(iii) The factor group G / B_{0} is p-divisible: i.e. $p^{n} \bar{x}=\bar{a}$ is solvable in G / B_{0} for any $\bar{a} \varepsilon G / B_{0}$ and any integer $n \geqq 0$.

In [7] it is shown that every torsion-free group G contains p-basic subgroups for every prime p. Moreover, the p-basic subgroups of G (for the same prime) are all isomorphic.

For each $\lambda \in \Lambda$ (the index set Λ is arbitrary) let $Z(p)$; be the group of p-adic integers and Z_{λ} the infinite cyclic group of finite p-adic integers. Let $P=\sum_{\lambda \in \Lambda}^{*} Z(p)_{\lambda}$ be the complete direct sum and $R=\sum_{\lambda \in A} Z(p)_{\lambda}$ the discrete direct sum of the groups $Z(p)_{\lambda}$. If we introduce the n-adic (p-adic) topology for abelian groups (see [9]), then P is complete in the n-adic topology and the n-adic topology coincides with the p-adic topology. R is a pure subgroup of P, hence it possesses a completion in P for the coinciding n-adic and p-adic topologies. Let $C=\left(\sum_{\lambda} Z(p)_{\lambda}\right)^{*}$ be the completion of R in P, then, by the remarks of Fuchs, $C=\sum_{\lambda}^{\prime} Z(p)_{\lambda}$, and C is a torsionfree cotorsion group. Moreover C is a direct summand of P.

Let G be an arbitrary torsion-free abelian group. One can define a homomorphism $\sigma: G \rightarrow P$ (into) such that the subgroup of elements of infinite p-height in G is the kernel of σ [5]. Assume now that G has no elements of infinite p-height. Then P contains an isomorphic copy $\sigma(G)$ of G. It is known that $\sigma(G)$ is a p-pure subgroup of P and hence $\sigma(G)$ possesses a p-adic completion in P. Let B be a p-basic subgroup of G, then $\sigma(B)$ is a p-basic subgroup of $\sigma(G)$. And $\sigma(B) \leqq \sigma(G)$ implies (2) . p-adic completion of $\sigma(B) \leqq p$-adic completion of $\sigma(G)$.
$\sigma(B)$ is dense in $\sigma(G)$ in the \dot{p}-adic topology, hence $\sigma(G) \leqq p$-adic completion of $\sigma(B)$, which implies
(3) p-adic completion of $\sigma(G) \leqq p$-adic completion of $\sigma(B)$.
(2) and (3) imply that $\sigma(B)$ and $\sigma(G)$ have identical completions in the p-adic topology. We have proved:

Lemma 1. Let G be a torsion-free group without elements of infinite p-height. If B is a p-basic subgroup of G, then B and G have identical completions is the p-adic topology.

If B is a p-basic subgroup of G, then its isomorphic copy $\sigma(B)$ (in $\sigma(G)$) has the form $\sum_{\lambda \in \Lambda} Z_{\lambda}$ ([5]). As a direct consequence of Lemmal we get:

Lemma 2. $R=\sum_{\lambda} Z(p)_{\lambda}$ and $\sigma(B)=\sum_{\lambda} Z_{\lambda}$ have the same p-adic completion in P. As we have seen the p-adic completion of R has the form $C=\sum_{\lambda}^{\prime} Z(p)_{\lambda}$, so $\sigma(B)$ and $\sigma(G)$ have the same p-adic completion C by the lemma's 1 and 2 . Also $\sigma(G)$ is p-pure in P implies $\sigma(G)$ is a p-pure subgroup of C. The torsion-free part of Corollary 2.7 in [5] may be slightly sharpened in the following form:

Theorem 2. Every torsion-free abelian group G without elements of infinite p-height may be considered to be a p-pure subgroup of some torsion-free cotorsion group $C=\sum_{\lambda}^{\prime} Z(p)_{\lambda}$ and containing $B=\sum_{\lambda} Z_{\lambda}$ as a p-basic subgroup. C is the p-adic completion of G and B.

According to a definition in [6], $\S 34$, p. 114 for p-groups we define a torsionfree group G without elements of infinite p-height to be a p-closed group if every Cauchy sequence in G has a limit in G, i.e. if G is complete with respect to the p-adic topology. It is easy now to give results for p-closed groups which are analogous to the corresponding properties of p-groups. Here are 2 examples:

Lemma 3. The torsion-free group G is p-closed if and only if G is the p-adic completion of a p-basic subgroup B of G (cf. Theorem 34.1 in [6]).

Lemma 4. Two p-closed groups are isomorphic if and only if their p-basic subgroups are isomorphic (cf. Corollary 34. 2, [6], p. 115).
3. Extending homomorphisms. Now we apply the structure theorem 2 to the investigation of torsion-free abelian groups without elements of infinite p-height. We are able to generalize results of Armstrong [1] who obtained extension theorems for homomorphisms of p-pure subgroups of the group of p-adic integers. Let S be a p-pure subgroup of $G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$ and let S contain $B=\sum_{\lambda} Z_{\lambda}$ as a p-basic subgroup. Both G and B are fixed.

Now $\operatorname{Hom}(G / S, G)=0$, since the homomorphic image of a p-divisible group is again p-divisible. But G does not contain p-divisible subgroups $\neq 0$. Then

$$
0=\operatorname{Hom}(G / S, G) \rightarrow \operatorname{Hom}(G, G) \stackrel{j}{+} \operatorname{Hom}(S, G) \rightarrow \operatorname{Ext}(G / S, G) \rightarrow \operatorname{Ext}(G, G)=0
$$

is exact, where $\operatorname{Ext}(G, G)=0$ since G is a cotorsion group. The action of j is to restrict $\pi \in \operatorname{Hom}(G, G)$ to S. Consequently, every $\alpha \in \operatorname{Hom}(S, G)$ has an extension to an endomorphism of G if and only if $\operatorname{Ext}(G / S, G)=0$.

In case there exists an extension $\bar{\alpha} \in \operatorname{Hom}(G, G)$ of $\alpha \in \operatorname{Hom}(S, G)$, then $\bar{\alpha}$ is uniquely determined, i.e. if $\bar{\alpha}, \bar{\beta}$ are endomorphisms of G which agree on S, then
$\bar{\alpha}=\bar{\beta}$. For S is contained in the kernel of the difference $\bar{\gamma}=\bar{\alpha}-\bar{\beta}$. Thus $\bar{\gamma}(G)$ is a homomorphic image of the p-divisible group G / S, and, for this reason, is p-divisible. Since G is p-reduced and since $\bar{\gamma}(G) \leqq G$, it follows that $\bar{\gamma}(G)=(\bar{\alpha}-\bar{\beta})(G)=0$. Thus $\bar{\alpha}=\bar{\beta}$.

Lemma 5. Let L be a subgroup of a torsion-free group H and G an arbitrary torsion-free cotorsion group. Let L_{*} be the smallest pure subgroup of H containing L and p a rational prime. Then the following are equivalent:
(1) L is a p-pure subgroup of H.
(2) The p-primary component of the torsion-group L_{*} / L is 0 .
(3) $\operatorname{Ext}(H / L, G)=0$.
(4) $\operatorname{Ext}\left(L_{*} / L, G\right)=0$ (cf. Lemma [1], p. 317).

Proof. (1) \rightarrow (2) ([1], p. 317). Since L_{*} is pure in H and H is torsion-free, H / L_{*} is torsion-free. Hence $\operatorname{Ext}\left(H / L_{*}, G\right)=0$, since G is cotorsion. Now $0=\operatorname{Ext}\left(H / L_{*}, G\right) \rightarrow$ $\rightarrow \operatorname{Ext}(H / L, G) \rightarrow \operatorname{Ext}\left(L_{*} / L, G\right) \rightarrow 0$ is exact, hence $\operatorname{Ext}(H / L, G)=0 \leftrightarrow \operatorname{Ext}\left(L_{*} / L, G\right)=0$ or (3) \leftrightarrow (4). Finally L_{*} / L is a torsion-group and G is torsion-free, so $\operatorname{Ext}\left(L_{*} / L, G\right) \cong$ $\cong \operatorname{Hom}\left(L_{*} / L, D / G\right)$, where D is the divisible hull of G. The maximal torsion subgroup T of D / G is a p-group and so $\operatorname{Hom}\left(L_{*} / L, D / G\right)=\operatorname{Hom}\left(L_{*} / L, T\right)=\operatorname{Hom}(p$-primary component of $\left.L_{*} / L, T\right)$, which is zero if and only if the p-primary component of L_{*} / L is 0 , since T is divisible. Hence $\operatorname{Ext}\left(L_{*} / L, G\right)=0 \leftrightarrow p$-primary component of L_{*} / L is 0 or (4) \leftrightarrows (2). This completes the proof.

Assume again that G is a torsion-free cotorsion group without elements of infinite p-height and let S be a subgroup of G. Then lemma 5 implies, taking $S=L$ and $H=G$, that S is a p-pure subgroup of G if and only if $\operatorname{Ext}(G / S, G)=0$. Using our result above about the extension of homomorphisms we get a slight extension of a theorem of Armstrong:

Theorem 3. Let G be a torsion-free cotorsion group without elements of infinite p-height (p-closed group). Let S be a subgroup of G, then the following are equivalent:
(i) S is a p-pure subgroup of G.
(ii) $\operatorname{Ext}(G / S, G)=0$.
(iii) Every homomorphism of S into G may be extended to an endomorphism of G. (cf. Theorem, [1], p. 318).

Every torsion-free abslian group S without elements of infinite p-height may be considered to be a p-pure subgroup of a p-closed group by theorem 2, hence such a group satisfies conditions (ii) and (iii).

Now the structure of $\operatorname{Hom}(G, G)$ for a p-closed group G can easily be derived. Let $G=\sum_{m}^{\prime} Z(p)$. We know that $B=\sum_{m} Z$ is a p-basic subgroup of G. Hence B is a p-pure subgroup of G, but then $\operatorname{Hom}(B, G) \cong \operatorname{Hom}(G, G)$ by theorem 3. And $\operatorname{Hom}(B, G)=\operatorname{Hom}\left(\sum_{m} Z, G\right) \cong \sum_{m}^{*} \operatorname{Hom}(Z, G) \cong \sum_{m}{ }^{*} G$. Hence $\operatorname{Hom}(G, G) \cong \sum_{m}^{*} G$ Now we are interested is the endomorphism groups of p-pure subgroups of G. First we prove: Let S and T be p-pure subgroups of $G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$. Then each element of Hom (S, T) may be extended uniquely to an endomorphism of G. Indeed, we know that $\operatorname{Hom}(S, G) \cong \operatorname{Hom}(G, G)$. Hence $\operatorname{Hom}(S, T)$ is a subgroup of $\operatorname{Hom}(G, G)$. Every $\alpha \in \operatorname{Hom}(S, T)$ is a homomorphism of S into G, hence $\alpha \in \operatorname{Hom}(S, G)$. But then α has a unique extension $\bar{\alpha}$ to an endomorphism of G.

Next we show: When the elements of $\operatorname{Hom}(S, T)$ are identified with their extensions, then $\operatorname{Hom}(S, T)$ is a p-pure subgroup of $\operatorname{Hom}(G, G)$.

Let $\alpha \in \operatorname{Hom}(S, T)$ and identify α with its extension in $\operatorname{Hom}(G, G)$. Suppose $\alpha=\dot{p}^{k} \mu, \mu \in \operatorname{Hom}(G, G)$. Then $p^{k} \mu(a) \in T$ for each $a \in S$. By p-purity of T in G, $\mu(a) \in T$ for each $a \in S$ and therefore $\mu \in \operatorname{Hom}(S, T)$.

We have proved the well known
Theorem 4. Let S and T be p-pure subgroups of a ρ-closed group G. Then eash element of $\operatorname{Hom}(S, T)$ may be extended uniquely to an endomorphism of G and when the elements of Hom (S, T) are identified with their extensions, then $\operatorname{Hom}(S, T)$ is a p-pure subgroup of $\operatorname{Hom}(G, G)$ (cf. [1], Lemma, p. 139).

Remark. In particular, if S is a p-pure subgroup of $G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$, then each $\alpha \in \operatorname{Hom}(S, S)$ may be extended to an endomorphism $\bar{\alpha}$ of G and when we identify α and $\bar{\alpha}$, then $\operatorname{Hom}(\dot{S}, S)$ is a p-pure subgroup of $\operatorname{Hom}(G, G) \cong \sum_{m}^{*} G$, with $|\Lambda|=m$. The question now arises to characterize those p-pure subgroups S of p-closed groups G which have the additional property that $\operatorname{Hom}(S, S) \cong \sum_{m}^{*} S$.

Let S be a p-pure subgroup of $G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$ containing $B=\sum_{\lambda} Z_{\lambda}$ as a p-basic subgroup. Both G and B are fixed and to avoid trivialities we suppose that $S \neq B, S \neq G$. In order that $\operatorname{Hom}(S, S) \cong \sum_{\lambda}^{*} S$, we must have $\operatorname{Hom}(B, S) \cong$ $\cong \operatorname{Hom}(S, S)$, since $\operatorname{Hom}(B, S)=\operatorname{Hom}\left(\sum_{i}^{i} Z_{i}, S\right) \cong \sum_{i}^{*} \operatorname{Hom}\left(Z_{i}, S\right) \cong \sum_{i}^{*} S$. Therefore the groups S must have the property that every homomorphism of B into S can be extended to an endomorphism of S.

Now Hom $(S / B, S)=0$, since S / B is p-divisible, but S is p-reduced. Since B is p-pure in S, we also have $\operatorname{Ext}(S / B, G)=0$, for G is torsion-free cotorsion (lemma 5).

As S / B is p-divisib'e and G is p-reduced, we get $\operatorname{Hom}(S / B, G)=0$. Then

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}(S / B, S)=0 \rightarrow \operatorname{Hom}(S / B, G)=0 \rightarrow \operatorname{Hom}(S / B, G / S) \rightarrow \operatorname{Ext}(S / B, S) \rightarrow \\
\rightarrow \operatorname{Ext}(S / B, G)=0
\end{gathered}
$$

is exaci. Hence Ext $(S / B, S) \cong \operatorname{Hom}(S / B, G / S)$. Likewise $0=\operatorname{Hom}(S / B, S) \rightarrow$ $\rightarrow \operatorname{Hom}(S, S) \xrightarrow{\varphi} \operatorname{Hom}(B, S) \rightarrow \operatorname{Ext}(S / B, S) \rightarrow \operatorname{Ext}(S, S) \rightarrow \operatorname{Ext}(B, S)=0(B$ is free) is exact. If φ is onto, then we have $\operatorname{Ext}(S / B, S) \cong \operatorname{Ext}(S, S)$. In other words, if every $\alpha \in \operatorname{Hom}(B, S)$ has an extension to an endomorphism of S, then Ext $(S / B, S) \cong$ $\cong \operatorname{Ext}(S, S)$. On the other hand, if $\operatorname{Ext}(S / B, S) \cong \operatorname{Hom}(S / B, G / S)=0$, then every $\alpha \in \operatorname{Hom}(B, S)$ has an extension to an endomorphism of S. It can easily be shown that, if $\alpha \in \operatorname{Hom}(B, S)$ has an extension $\bar{\alpha} \in \operatorname{Hom}(S, S), \bar{\alpha}$ is uniquely determined. We remark also that $\operatorname{Ext}(S / B, S)=0$ always implies that Ext $(S, S) \doteq 0 . G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$ is q-divisib!e for all primes $q \neq p$, hence G / B, as a homomorphic image of G, is q-divisisble for all primes $q \neq p$. But B is a p-basic subgroup of G, so G / B is p-divisible too. Hence G / B is a divisible group: Likewise $G / S \cong G / B / S / B$, as a homomorphic image of G / B, is a divisible group. Assume that G / S is not torsion-frec, then the torsionpart $T \neq 0$ of G / S is a direct summand of G / S, hence $\operatorname{Ext}(G / S, G)=0$ implies Ext $(T, G)=0$. It follows that the p-primary component of T is 0 by Lemma 5 . So G / S cannot contain elements whose orders are powers of the prime p. In the same way we find that if S / B is a torsion-group, then $\operatorname{Ext}(S / B, G)=0$ implies that the p-primary component of S / B is 0 . In particular S / B cannot be a p-group.

Afer these preliminary remarks we now investigate the groups S with

$$
\operatorname{Hom}(S / B, G / S)=0
$$

We shall need the following
Lemma 6. Let T be any group and suppose $T \subseteq D$, where D is a divisible group. Then $\operatorname{Hom}(T, D / T)=0$ implies that T is a divisible group.

Proof. First we reduce the general case for arbitrary T to the case that T is torsion. If $D=T$, the lemma is trivial. So assume $D / T \neq 0$, and let T_{t} be the torsion subgroup of T. From $0 \rightarrow T_{t} \rightarrow T \rightarrow T / T_{t} \rightarrow 0$ is exact it follows that $0 \rightarrow \operatorname{Hom}\left(T / T_{i}, D / T\right) \rightarrow$ $\rightarrow \operatorname{Hom}(T ; D / T)$ is exact. But $\operatorname{Hom}(T, D / T)=0$, hence $\operatorname{Hom}\left(T / T_{i}, D / T\right)=0$. Suppose that $T / T_{t} \neq 0 . T / T_{t}$ is torsion-free, hence $Z \subseteq T / T_{t}$. Now Hom $\left(T / T_{t}, D / T\right)=0 \rightarrow$ $\rightarrow \operatorname{Hom}(Z, D / T) \rightarrow \operatorname{Ext}\left(T / T_{t} / Z, D / T\right)=0$ is exact so $\operatorname{Hom}(Z, D / T) \cong D / T=0$, which is a contradiction. Hence $T / T_{t}=0$ or $T=T_{t}$. From now on T is supposed to be a torsion group. If $T=0$, the lemma is trivial. Let $T \neq 0$, then T is the direct sum of its p-primary components and since $T \neq 0, T$ contains an element of order p_{i} for some prime p_{i}. Then T contains a direct summand of type $C\left(p_{i}^{l}\right)(l \geqq 1$ or $l=\infty)([6]$, p. 80).

Suppose $C\left(p_{i}^{l}\right)$ with finite $l \geqq 1$ is a direct summand of T, then $\operatorname{Hom}\left(C\left(p_{i}^{l}\right), D / T\right)=0$. Since $C\left(p_{i}^{l}\right)$ is a direct summand of $T, C\left(p_{i}^{\infty}\right) / C\left(p_{i}^{l}\right)$ is a direct summand of D / T, hence $\operatorname{Hom}\left(C\left(p_{i}^{l}\right), C\left(p_{i}^{\infty}\right)\right)=0$. This gives a contradiction, since

$$
\operatorname{Hom}\left(C\left(p_{i}^{l}\right), C\left(p_{i}^{\infty}\right)\right) \cong C\left(p_{i}^{l}\right)
$$

as is well known. So, if T contains an element of order p_{i}, T must contain a direct summand of type $C\left(p_{i}^{\infty}\right)$. Hence $T=E \oplus T^{\prime}$, where E is the divisible part $(\neq 0)$ of T and T^{\prime} is the reduced part of T. Suppose T^{\prime} is not 0 . As T^{\prime} is torsion it contains an element of order p_{j} for some prime p_{j}. Then T^{\prime} contains a direct summand of type $C\left(p_{j}^{m}\right)$, where $m \geqq 1$ (finite) or $m=\infty$. But T^{\prime} is reduced, so it cannot contain a direct summand of type $C\left(p_{j}^{\infty}\right)$. Hence $C\left(p_{j}^{\prime m}\right)$ is a direct summand of T^{\prime} for $m \geqq 1$ and finite. But then $C\left(p_{j}^{m}\right)$ is a direct summand of T which is impossible as we have seen. Hence $T^{\prime}=0$ and $T=E$ is divisible.

Next we prove:
Lemma 7. Hom $(S / B, G / S)=0$ implies that G / S is not a torsion-group.
Proof. $G / S \cong G / B / S / B$, so $\operatorname{Hom}(S / B, G / S) \cong \operatorname{Hom}(S / B, G / B / S / B)=0$ implies that S / B is a divisible group by Lemma 6. Now $\operatorname{Hom}(S / B, G / B / S / B)=0$ implies $\operatorname{Hom}\left(S / B /(S / B)_{t}, G / B / S / B\right)=0$ (see the proof of Lemma 6) implies $S / B /(S / B)_{t}=0$ or $S / B=(S / B)_{t}$. It follows that S / B is a divisible torsion-group. Assume now that G / S is a torsion-group. Then S / B torsion and $G / B / S / B \cong G / S$ torsion imply G / B torsion which is a contradiction, since G / B contains $\sum_{\lambda} Z(p)_{\lambda} / \Sigma Z_{\lambda} \cong \Sigma Z(p)_{\lambda} / Z_{\lambda}$ as a direct summand and this is a mixed group. Consequently, G / S is not a torsion-group. This completes the proof of Lemma 7.

For the sake of reference we state the next lemma whose proof is contained in the proof of Lemma 7.

Lemma 8. Hom $(S / B, G / S)=0$ implies that S and B have the same (torsionfree) rank and that S / B is divisible.

Remark. By definitions 1.5 and 1.6 in [4], p. 62 or the remark on p. 45 in [3], the torsion-free groups S with Hom $(S / B, G / S)=0$ are quotient-divisible groups, as S contains a free group B and S / B is a divisible torsion-group.

Now we prove:
Theorem. 5. Let S be a torsion-free group without elements of infinite p-height and with rank $\leqq x_{0}$. Consider S as a \dot{p}-pure subgroup of $G=\sum_{\lambda \in A}^{\prime} Z(p)_{\lambda}$, while S contains $B=\sum_{\lambda \in A} Z_{\lambda}$ as a p-basic subgroup. Then the following are equivalent:
(i) $\operatorname{Ext}(S / B, S)=0$ (or $\operatorname{Hom}(S / B, G / S)=0)$.
(ii) S and B have the same torsion-free rank and $\operatorname{Ext}(S, S)=0$.
(iii) There exists a torsion-free quotient-divisible group S^{\prime} of rank 1 with $S^{\prime} \subseteq Q_{p}$, such that $S \cong \sum_{\lambda \in \Lambda} S_{\lambda}^{\prime} .\left(Q_{p}\right.$ is the group of all rationals with denominators prime to p).

Proof. (i) \rightarrow (ii) is clear from lemma 8 and the preliminary remarks of lemma 6.
(ii) \rightarrow (iii). Since rank $S \leqq \varkappa_{0}$ we can apply lemma 4.2 of J. Hausen in ([10], p. 170) which assures us of the existence of a group S^{\prime} of rank 1 , torsion-free and quotient-divisible, such that $S \cong \sum S^{\prime}$ (direct sum). Since S^{\prime} has rank 1 and S and B have the same rank (by (ii)) we must have $S \cong \sum_{\lambda \in \Lambda} S_{\lambda}^{\prime}(|\Lambda|=\operatorname{rank} S=\operatorname{rank} B$). Now S has no elements of infinite p-height, so S^{\prime} (as a direct summand) has the same property. Then $S^{\prime} \subseteq Q_{p}$.
(iii) \rightarrow (i). From $S \cong \sum_{\lambda} S^{\prime}, B=\sum_{\lambda} Z$ we infer that $S / B \cong \sum_{\lambda} S^{\prime} / Z \cong \sum_{\lambda} \sum_{t \in P} C\left(t^{\infty}\right)$, where P is a set of primes and $p \notin P$, since $S^{\prime} \subseteq Q_{p}$. Now $\operatorname{Ext}(S / B, S) \cong$ $\cong \operatorname{Hom}(S / B, D / S)$, where D is the divisible hull of $S([6]$, p. 244). Since rank $S=$ $=\operatorname{rank} B=|\Lambda|$, we get $D=\sum_{\lambda} Q$. Hence $D / B \cong \sum_{\lambda} Q / Z \cong \sum_{\lambda} \sum_{s} C\left(s^{\infty}\right)$, where the summation \sum_{s} is taken over all primes s. Then $D / S \cong D / B / S / B \cong$ $\cong \sum_{\lambda}\left(\sum_{s} C\left(s^{\infty}\right) \mid \sum_{t \in P}^{s} C\left(t^{\infty}\right)\right) \cong \sum_{\lambda}\left(\sum_{u \in C(P)} C\left(u^{\infty}\right)\right)$, where $\ddot{C}(P)$ is the complement of P in the set of all primes. Then

$$
\operatorname{Hom}(S / B, D / S) \cong \operatorname{Hom}\left(\sum_{\lambda} \sum_{t \in P} C\left(t^{\infty}\right), \sum_{\lambda} \sum_{u \in C(P)} C\left(u^{\infty}\right)\right)=0 .
$$

This completes the proof of theorem 5.
It may be remarked that each of the conditions (i), (ii) and (iii) is sufficient in order that every $\alpha \in \operatorname{Hom}(B, S)$ may be extended uniquely to an endomorphism of S. Now we specialize to the case of finite rank. We recall that a non-nil group of rank 1 is a torsion-free group of rank 1 with characteristic $\left(k_{1}, k_{2}, \ldots, k_{i}, \ldots\right)$ with either $k_{i}=0$ or $k_{i}=\infty$ for all i. The quotient-divisible groups of rank 1 are exactly the non-nil groups of rank 1 .

Theorem 6. Let n be a natural number $\geqq 1$. Let S be a torsion-free group and a proper p-pure subgroup of $G=\sum_{i}^{n} Z(p)$ while S contains $B=\sum_{1}^{n} Z$ as a p-basic subgroup. Then the following are equivalent:
(i) $\operatorname{Hom}(S / B, G / S)=0$ (or Ext $(S / B, S)=0)$.
(ii) S has rank n and $\operatorname{Ext}(S, S)=0$.
(iii) S has rank n and every $\alpha \in \operatorname{Hom}(B, S)$ may be extended to an endomorphism of S.
(iv) S is isomorphic to the direct sum of n isomorphic non-nil groups S^{\prime} of rank 1 with $S^{\prime} \subseteq Q_{p}$, where Q_{p} is the group of all rationals with denominators prime to p.

Clearly (i) \leftrightarrows (ii) (iv) by Theorem 5. That (iii) \leftrightarrow (iv) is a special case of the next result. We now investigate the p-pure subgroups S of $G=\sum_{i}^{n} Z(p)$ containing $B=\sum_{1}^{n} Z$ as a p-basic subgroup and with the property that every $\alpha \in \operatorname{Hom}(B, S)$ may be extended to an endomorphism of S. We do not assume that $\operatorname{Hom}(S / B, G / S)=0$.

Theorem 7. Let S be a p-pure subgroup of $G=\sum_{1}^{n} Z(p)$ containing $B=\sum_{1}^{n} Z$ as a p-basic subgroup. Then the following are equivalent:
(i) Every $\alpha \in \operatorname{Hom}(B, S)$ may be extended to an endomorphism of S.
(ii) S is isomorphic to the direct sum of n isomorphic groups I, such that I is a subgroup of $Z(p)$ which contains 1 and with the property $\pi I \cong I$ for any $\pi \in I$.
Proof. (i) \rightarrow (ii). Since S is p-pure in $G=\sum_{1}^{n} Z(p)$, every $\delta \in$ End S has a unique extension $\bar{\delta} \in$ End G. So each element $\delta \in$ End S is a (left) multiplication endomorphism by an $n \times n$-matrix with entries in $Z(p)$. Since ($1,0, \ldots, 0$), ($0,1, \ldots, 0$), \ldots $\ldots,(0,0, \ldots, 1) \in S$ the columns in the $n \times n$-matrix are elements of S. Now. $\operatorname{Hom}(S, S)=\operatorname{Hom}(B, S) \cong \sum_{1}^{n} S$, so any $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \in \sum_{1}^{n} S\left(\pi_{i} \in S\right)$ may be used as a multiplicator on the left, inducing an endomorphism of S, in other words, $\left(\begin{array}{llll}\pi_{11} & \cdots & \pi_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ \pi_{n 1} & \ldots & \pi_{n n}\end{array}\right) S \leqq S$, whenever the columns are elements of S. Then

$$
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\pi_{1} \\
\pi_{1} \\
\cdot \\
\pi_{n}
\end{array}\right)=\left(\begin{array}{c}
\pi_{1} \\
0 \\
\cdot \\
0
\end{array}\right) \in S \quad \text { if } \quad\left(\begin{array}{c}
\pi_{1} \\
\pi_{2} \\
\cdot \\
\pi_{n}
\end{array}\right) \in S
$$

Similar for other components. Hence in S we have the direct-sum decompositon:

$$
\left(\begin{array}{c}
\pi_{1} \\
\pi_{2} \\
\cdot \\
\pi_{n}
\end{array}\right)=\left(\begin{array}{c}
\pi_{1} \\
0 \\
\cdot \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
\pi_{2} \\
\cdot \\
0
\end{array}\right)+\ldots+\left(\begin{array}{c}
0 \\
\cdot \\
\pi_{n}
\end{array}\right)
$$

The elements of the form $\left(\begin{array}{c}0 \\ \cdot \\ \pi_{j} \\ 0\end{array}\right) \in S$ form the subgroup I_{j} in S. Then $S=I_{1} \oplus \cdots \oplus I_{n}$. If we identify $\left(\begin{array}{c}0 \\ \cdot \\ \pi_{j} \\ 0\end{array}\right) \leftrightarrow \pi_{j}$, then each I_{j} is a subgroup of $Z(p)$. As a direct summand, I_{j} is a pure, hence p-pure, subgroup of S. S is p-pure in $G=\sum_{1}^{n} Z(p)$, so I_{j} is p-pure in $Z(p)$. Hence every map of I_{j} into I_{k} is the restriction of an endomorphism of $Z(p)$ (theorem 4), i.e. every map of I_{j} into I_{k} is a (left) multiplication by an element $\pi \in Z(p)$. Since $1 \in I_{j}, \pi . \quad 1=\pi \in I_{k}$. Then $\operatorname{Hom}(S, S)=\operatorname{Hom}\left(I_{1} \oplus \cdots \oplus I_{n}, I_{1} \oplus \cdots \oplus I_{n}\right) \cong$ $\cong \sum_{j, k} \operatorname{Hom}\left(I_{j}, I_{k}\right)$ and $\operatorname{Hom}(B, S) \cong \sum_{1}^{n} S=\sum_{1}^{n}\left(I_{1} \oplus \cdots \oplus I_{n}\right)$ and every map in $\operatorname{Hom}(B, S)$ is the restriction of a map in $\operatorname{Hom}(S, S)$ imply $\operatorname{Hom}\left(I_{j}, I_{k}\right) \cong I_{k}$ $(j, k=1, \ldots, n)$. Then $I_{k} I_{j} \subseteq I_{k}$, but $\pi .1=\pi \in I_{k}$ for any $\pi \in I_{k}$ implies $I_{k} I_{j}=I_{k}$. Since $I_{k} I_{j}=I_{j} I_{k}$ it follows that $I_{j}=I_{k}(j, k=1, \ldots, n)$. So, if we put $I_{j}=I$, we get $S=I \oplus I \oplus$ $\oplus \cdots \oplus I$ (n summands). Moreover I is a subgroup of $Z(p)$ with $I I=I$ or $\pi I \subseteq I$ for any $\pi \in I$.
(ii) \rightarrow (i). $S=\sum_{1}^{n} I$, where I is a subgroup. of $Z(p)$ with $\pi I \subseteq I$ for any $\pi \in I$. I is p-pure in S, S is p-pure in $\sum_{1}^{n} Z(p)$, so I is p-pure in $\sum_{1}^{n} Z(p)$, hence I is p-pure in $Z(p)$. So each $\alpha \in \operatorname{End} I$ has a unique extension to an endomorphism of $Z(p)$. Then each element of End I is a left multiplication endomorphism by an element $\pi \in Z(p)$. Since $1 \in I, \pi .1=\pi$ is in I. So End $I \subseteq L_{I}$, where L_{I} denotes the set of all left multiplication endomorphism by the elements of I. Then End $I \subseteq L_{I}$ and I, as a ring, is a subring of $Z(p)$ imply End $I=L_{I}$ (Lemma, [1], p. 319), in other words $\operatorname{Hom}(I, I) \cong I$. From $\operatorname{Hom}(S, S) \cong \sum_{i}^{n^{2}} \operatorname{Hom}(I, I)$ and

$$
\operatorname{Hom}(B, S) \cong \sum_{1}^{n^{2}} \operatorname{Hom}(Z, I)
$$

we infer that every map of $\operatorname{Hom}(B, S)$ may be extended to an endomorphism of S. This completes the proof of Theorem 7.

Remark. If S has rank n, then (i) resp. (ii) of Theorem 7 pass into (iii) resp. (iv) of Theorem 6.

References

[1] J. W. Armstrong, On p-pure subgroups of the p-adic integers, Topics in Abelian groups, Scott, Foresman and Company (Chicago, 1963); pp. 315-321.
[2] J. W. Armstrong, On the indecomposability of torsion-free Abelian groups, Proc. Amer. Math. Soc., 16 (1965), 323-325.
[3] R. A. Beaumont, A survey of torsion-free rings, Topics in Abelian groups, Scott, Foresman and Company (Chicago, 1963); pp. 41-50.
[4] R. A. Beaumont and R. S. Pierce, Torsion-free rings, IIl. J. Maih., 5 (1961) 61-98.
[5] D. L. Boyer and A. Mader, A representation theorem for abelian groups with no elements of infinite p-height, Pac. J. Math., 20 (1967), 31-33.
[6] L. Fuchs, Abelian groups (Budapest, 1958).
[7] L. Fuchs, Notes on abelian groups. II, Acta Math. Acad. Sci. Hung., 11 (1960), 117-125.
[8] Ph. Griffith, Purely indecomposable torsion-free groups, Proc. Amer, Math. Soc., 18 (1967), 738-742.
[9] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math:, 69 (1959), 365-391.
[10] J. Hausen, Automorphismengesättigte Klassen abzählbarer Abelscher Gruppen, Studies on abelian groups, B. Charles, Symposium. Montpellier University (1967), pp. 147-181.
[11] L. C. A. van Leeuwen, On torsion-free cotorsion groups, Proc. Ned. Akad. Wet., A 72, №4 (1969), 388-392.
(Received June 19. 1969)
DEPARTMENT OF MATH.
UNIVERSITY OF GRONINGEN
GRONINGEN
HOLLAND

