The Denjoy-Luzin theorem on trigonometric series

By JAMES R. McLAUGHLIN in University Park (PennsyIvania, USA)

Let $\left\{g_{n}\right\}$ be a sequence of transformations from the real line to the real line. Throughout this paper assume that f is periodic with period $p=b-a(>0)$, $f \in L^{1}[a, b]$, and set $f_{n}(x)=f\left(g_{n}(x)\right)$. The sequence $\left\{g_{n}\right\}$ will be called an A-sequence with respect to f if the absolute convergence of $\Sigma c_{n} f_{n}(x)$ in a set of positive measure implies that $\Sigma\left|c_{n}\right|$ converges. The classical Denjoy-Luzin Theorem on trigonometric series states that $g_{n}(x)=n x+B_{n}$ is an A-sequence with respect to $f(x)=\cos x$, where $\left\{B_{n}\right\}$ is any sequence of numbers. The present author generalizes this result by considering the infimum of the averages of a function over sets of constant measure. The following result is a simple corollary. The sequence $g_{n}(x)=A_{n} x+B_{n}$ is an A-sequence for every periodic f that is essentially nonzero (i.e., nonzero almost everywhere) if and only if $\lim \inf \left|A_{n}\right|>0$.

Theorem A (Orlicz[1], p. 327). The sequence $\left\{g_{n}\right\}$ is an A-sequence with respect to a periodic f if and only if

$$
\liminf _{n \rightarrow \infty} \int_{E}\left|f_{n}(x)\right| d x>0
$$

for every set E of positive measure.
Theorem B (FeJér [3], p: 48; [6], p. 49). If $g_{n}(x)=A_{n} x+B_{n}$, where B_{n} are arbitrary real numbers and $\lim \left|A_{n}\right|=\infty$, then

$$
\lim _{n \rightarrow \infty}(\mu(E))^{-1} \int_{E}\left|f_{n}(x)\right| d x=(b-a)^{-1} \int_{a}^{b}|f(x)| d x
$$

for every set E of positive measure.
Theorem 1. The sequence $g_{n}(x)=A_{n} x+B_{n}$ is an A-sequence for every periodic f that is not essentially zero if and only if $\lim \left|A_{n}\right|=\infty$.

Proof. Sufficiency (cf. [4], p. 84). Apply Theorems A and B.

Necessity. Let $f(x)=0$ on $(-1,1), 1$ on $(1,3)$, and $f(x+4)=f(x)$. If $\lim \inf \left|A_{n}\right|<\infty$, then $\lim \inf \left|A_{n} \delta\right|<1$ for some $\delta>0$. Hence

$$
\liminf _{n \rightarrow \infty} \int_{0}^{\delta} f\left(A_{n} x\right) d x=0
$$

Definition 1. If $h \in L^{1}[a, b], A$ is a measurable set, and $0<\delta \leqq \mu(A)$, then we define

$$
m(h, \delta, A)=\inf _{B}\left\{(\mu(B))^{-1} \int_{B}|h(t)| d r\right\}
$$

for measurable subsets B of A with $M(B) \geqq \delta$, and we define

$$
M(h, \delta, A)=\text { supremum of the above set of averages. }
$$

Also if $A=[a, b]$, we simply write $m(h, \delta)$ or $M(h, \delta)$ for any function h under consideration.

Remark 1. From Definition 1, we obtain

$$
\begin{aligned}
& M(h, \delta) \uparrow\|h\|_{\infty} \equiv \operatorname{ess} \sup \cdot|h| \quad \text { as } \quad \delta \downarrow 0, \\
& m(h, \delta) \downarrow\|h\|_{0} \equiv \operatorname{ess} \inf |h| \quad \text { as } \quad \delta \downarrow 0 .
\end{aligned}
$$

Lemma 1. Let $h \in L^{1}[a, b]$. Then h is essentially nonzero if and only if for every measurable set $A m(f, \delta, A)>0$ whenever $0<\delta \leqq \mu(A)<\infty$.

Proof. Assume h is essentially nonzero and $0<\delta \leqq \mu(A)<\infty$. Then for $B \subset A$ and $\mu(B) \geqq \delta$ we set

$$
H_{n}=\left\{x \in B:|h(x)|>n^{-1}\right\}
$$

and choose N such that $\mu\left(H_{N}\right)>\mu(B) / 2$. Then, we obtain

$$
\int_{\boldsymbol{B}}|h(t)| d t \geqq \mu\left(H_{N}\right) / N \geqq \mu(B) / 2 N .
$$

Lemma 2 ([5], p. 315; [2], p. 1245). If g is a strictly monotonic absolutely continuous function on $[a, b]$ with range $[c, d](\{g(x): x \in[a, b]\}=[c, d])$, then for every meastrable set $E \subset[a, b]$
a)

$$
\int_{E} f(g(x))\left|g^{\prime}(x)\right| d x=\int_{g(E)} f(y) d y
$$

and
b) $\quad \delta m\left(g^{\prime}, \delta\right) \leqq \int_{E}\left|g^{\prime}(x)\right| d x=\mu(g E) \leqq \delta M\left(g^{\prime}, \delta\right) \quad$ if $\quad \mu(E)=\delta$.

From Definition 1 we also obtain

Lemma 3. If n is a positive integer and $0<\delta \leqq n p$, then

$$
m(f, \delta,[0, n p])=m(f, \delta / n)
$$

Definition 2. If e is a real number we let e^{*} and e_{*} denote respectively the least integer greater than or equal to e and the greatest integer less than or equal to e.

Theorem 2. Let.g be a strictly monotonic absolutely continuous function with domain $[a, b]$ and range $[c, d]$. If $e=\left\|g^{\prime}\right\|_{1} / p=(d-c) / p$ and $f \circ g$ is the function $f(g(x))$, then

$$
\frac{m\left(g^{\prime}, \delta\right)}{\left\|g^{\prime}\right\|_{\infty}} m\left(f, \frac{\delta m\left(g^{\prime}, \delta\right)}{e^{*}}\right) \leqq m(f \circ g, \delta) \leqq \frac{M\left(g^{\prime}, \delta\right)}{\left\|g^{\prime}\right\|_{0}} m\left(f, \frac{\delta M\left(g^{\prime}, \delta\right)}{e_{*}}\right)
$$

where for the left inequality we assume $\left\|g^{\prime}\right\|_{\infty}$ is finite and $0<\delta \leqq p$, and for the right inequality we assume $\left\|g^{\prime}\right\|_{0}$ and e_{*} are nonzero and $0<\delta M\left(g^{\prime}, \delta\right) / e_{*} \leqq p$.

Proof. By Lemmas 2 and 3

$$
\begin{gathered}
m(f \circ g, \delta)\left\|g^{\prime}\right\|_{\infty} \geqq m\left((f \circ g) g^{\prime}, \delta\right) \geqq m\left(g^{\prime}, \delta\right) m\left(f, \delta m\left(g^{\prime}, \delta\right),[c, d]\right) \geqq \\
\geqq m\left(g^{\prime}, \delta\right) m\left(f, \delta m\left(g^{\prime}, \delta\right),\left[c, c+e^{*} p\right]\right)=m\left(g^{\prime}, \delta\right) m\left(f, \delta m \cdot\left(g^{\prime}, \delta\right) / e^{*}\right) .
\end{gathered}
$$

The proof of the right half is similar.
Corollary 1. If $\left\{g_{n}\right\}$ is a sequence of strictly monotonic absolutely continuous functions with domain $[a, b]$, and also for each g_{n} and each δ such that $0<\delta \leqq p$, we have

$$
\left(\left\|g_{n}^{\prime}\right\|_{\infty}\right)^{*} \leqq K(\delta) m\left(g_{n}^{\prime}, \delta\right)
$$

where $K(\delta)$ is a positive constant dependent only on δ, then $\left\{g_{n}\right\}$ is an A-sequence for every periodic f that is essentially nonzero.

Corollary 2. If $A \neq 0, g(x)=A x+B$, and we set $e=|A|$, then

$$
\begin{equation*}
m\left(f, \delta e / e^{*}\right) \leqq m(f \circ g, \delta) \leqq m\left(f, \delta e / e_{*}\right) \tag{1}
\end{equation*}
$$

where for the left inequality we assume $0<\delta \leqq p$, and for the right inequality we assume. $e \geqq 1$ and $0<\delta e / e_{*} \leqq p$.

Corollary 3. The sequence $g_{n}(x)=A_{n} x+B_{n}$ is an A-sequence for every periodic f that is essentially nonzero if and only if $\lim \inf \left|A_{n}\right|>0$.

Proof. Sufficiency. If $\lim \inf A_{n}>0$, then $\lim \inf A_{n} / A_{n}^{*}>0$. Now, our result follows from Theorem A, Lemma 1, and Corollary 2.

Necessity. If $f(x)=x$ on $[0,1]$, then

$$
\liminf _{n \rightarrow \infty} \int_{0}^{\delta}\left|f\left(A_{n} x\right)\right| d x=\left(\delta^{2} / 2\right) \liminf _{n \rightarrow \infty}\left|A_{n}\right|
$$

and so our result follows by Theorem A.
Remark 2. The use of e^{*} and e_{*} is necessary in Theorem 2 and its corollaries. In fact, Corollary 2 is best possible in a certain sense. For example, if $f(x)=x$ on $[0,1]=[a, b]$ and $g(x)=e x$ for a noninteger $e>0$, then equality is attained in the left side of (1) for $\delta<e^{*}\left(1-e_{*} / e\right)$. Similarly, if $f(x)=1-x$ on $[0,1]=[a, b]$ and $g(x)=e x$ for a noninteger $e>1$, then equality is attained in the right side of (1) for $\delta<e_{*}\left(e^{*} / e-1\right)$.

References

[1] G. Alexits, Convergence problems of orthogonal series (New York, 1961).
[2] J. Brooks and P. V. Reichelderfer, On absolutely continuous transformations, Bull. Amer. Math. Soc., 75(1969), 1243-1246.
[3] R. E. Edwards, Fourier series, Vol. 1 (New York, 1967).
[4] J. P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques (Paris, 1963).
[5] T. Radó and P. V. Reichelderfer, Continuous transformations in analysis (Berlin, 1955).
[6] A. Zygmund, Trigonometric series, Vol. 1 (New York, 1959).

DEPARTMENT OF MATHEMATICS

PENNS YLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA. 16801

