

The Denjoy—Luzin theorem on trigonometric series

By JAMES R. McLAUGHLIN in University Park (Pennsylvania, USA)

Let $\{g_n\}$ be a sequence of transformations from the real line to the real line. Throughout this paper assume that f is periodic with period $p = b - a (> 0)$, $f \in L^1[a, b]$, and set $f_n(x) = f(g_n(x))$. The sequence $\{g_n\}$ will be called an *A-sequence with respect to f* if the absolute convergence of $\sum c_n f_n(x)$ in a set of positive measure implies that $\sum |c_n|$ converges. The classical Denjoy—Luzin Theorem on trigonometric series states that $g_n(x) = nx + B_n$ is an *A-sequence with respect to f(x) = cos x*, where $\{B_n\}$ is any sequence of numbers. The present author generalizes this result by considering the infimum of the averages of a function over sets of constant measure. The following result is a simple corollary. The sequence $g_n(x) = A_n x + B_n$ is an *A-sequence for every periodic f that is essentially nonzero (i.e., nonzero almost everywhere)* if and only if $\liminf |A_n| > 0$.

Theorem A (ORLICZ [1], p. 327). *The sequence $\{g_n\}$ is an *A-sequence with respect to a periodic f* if and only if*

$$\liminf_{n \rightarrow \infty} \int_E |f_n(x)| dx > 0$$

for every set E of positive measure.

Theorem B (FEJÉR [3], p. 48; [6], p. 49). *If $g_n(x) = A_n x + B_n$, where B_n are arbitrary real numbers and $\lim |A_n| = \infty$, then*

$$\lim_{n \rightarrow \infty} (\mu(E))^{-1} \int_E |f_n(x)| dx = (b - a)^{-1} \int_a^b |f(x)| dx$$

for every set E of positive measure.

Theorem 1. *The sequence $g_n(x) = A_n x + B_n$ is an *A-sequence for every periodic f that is not essentially zero* if and only if $\lim |A_n| = \infty$.*

Proof. *Sufficiency* (cf. [4], p. 84). Apply Theorems A and B.

Necessity. Let $f(x)=0$ on $(-1, 1)$, 1 on $(1, 3)$, and $f(x+4)=f(x)$. If $\liminf |A_n|<\infty$, then $\liminf |A_n\delta|<1$ for some $\delta>0$. Hence

$$\liminf_{n \rightarrow \infty} \int_0^\delta f(A_n x) dx = 0.$$

Definition 1. If $h \in L^1[a, b]$, A is a measurable set, and $0<\delta \leq \mu(A)$, then we define

$$m(h, \delta, A) = \inf_B \left\{ (\mu(B))^{-1} \int_B |h(t)| dt \right\}$$

for measurable subsets B of A with $M(B) \geq \delta$, and we define

$$M(h, \delta, A) = \text{supremum of the above set of averages.}$$

Also if $A=[a, b]$, we simply write $m(h, \delta)$ or $M(h, \delta)$ for any function h under consideration.

Remark 1. From Definition 1, we obtain

$$\begin{aligned} M(h, \delta) &\uparrow \|h\|_\infty \equiv \text{ess sup } |h| \quad \text{as } \delta \downarrow 0, \\ m(h, \delta) &\uparrow \|h\|_0 \equiv \text{ess inf } |h| \quad \text{as } \delta \downarrow 0. \end{aligned}$$

Lemma 1. Let $h \in L^1[a, b]$. Then h is essentially nonzero if and only if for every measurable set A $m(h, \delta, A) > 0$ whenever $0 < \delta \leq \mu(A) < \infty$.

Proof. Assume h is essentially nonzero and $0 < \delta \leq \mu(A) < \infty$. Then for $B \subset A$ and $\mu(B) \geq \delta$ we set

$$H_n = \{x \in B : |h(x)| > n^{-1}\}$$

and choose N such that $\mu(H_N) > \mu(B)/2$. Then, we obtain

$$\int_B |h(t)| dt \geq \mu(H_N)/N \geq \mu(B)/2N.$$

Lemma 2 ([5], p. 315; [2], p. 1245). *If g is a strictly monotonic absolutely continuous function on $[a, b]$ with range $[c, d]$ ($\{g(x) : x \in [a, b]\} = [c, d]$), then for every measurable set $E \subset [a, b]$*

$$a) \quad \int_E f(g(x)) |g'(x)| dx = \int_{g(E)} f(y) dy$$

and

$$b) \quad \delta m(g', \delta) \leq \int_E |g'(x)| dx = \mu(gE) \leq \delta M(g', \delta) \quad \text{if } \mu(E) = \delta.$$

From Definition 1 we also obtain

Lemma 3. *If n is a positive integer and $0 < \delta \leq np$, then*

$$m(f, \delta, [0, np]) = m(f, \delta/n).$$

Definition 2. If e is a real number we let e^* and e_* denote respectively the least integer greater than or equal to e and the greatest integer less than or equal to e .

Theorem 2. *Let g be a strictly monotonic absolutely continuous function with domain $[a, b]$ and range $[c, d]$. If $e = \|g'\|_1/p = (d-c)/p$ and $f \circ g$ is the function $f(g(x))$, then*

$$\frac{m(g', \delta)}{\|g'\|_\infty} m\left(f, \frac{\delta m(g', \delta)}{e^*}\right) \leq m(f \circ g, \delta) \leq \frac{M(g', \delta)}{\|g'\|_0} m\left(f, \frac{\delta M(g', \delta)}{e_*}\right)$$

where for the left inequality we assume $\|g'\|_\infty$ is finite and $0 < \delta \leq p$, and for the right inequality we assume $\|g'\|_0$ and e_* are nonzero and $0 < \delta M(g', \delta)/e_* \leq p$.

Proof. By Lemmas 2 and 3

$$\begin{aligned} m(f \circ g, \delta) \|g'\|_\infty &\geq m((f \circ g)g', \delta) \geq m(g', \delta) m(f, \delta m(g', \delta), [c, d]) \geq \\ &\geq m(g', \delta) m(f, \delta m(g', \delta), [c, c + e^* p]) = m(g', \delta) m(f, \delta m(g', \delta)/e^*). \end{aligned}$$

The proof of the right half is similar.

Corollary 1. *If $\{g_n\}$ is a sequence of strictly monotonic absolutely continuous functions with domain $[a, b]$, and also for each g_n and each δ such that $0 < \delta \leq p$, we have*

$$(\|g_n'\|_\infty)^* \leq K(\delta) m(g_n', \delta)$$

where $K(\delta)$ is a positive constant dependent only on δ , then $\{g_n\}$ is an A -sequence for every periodic f that is essentially nonzero.

Corollary 2. *If $A \neq 0$, $g(x) = Ax + B$, and we set $e = |A|$, then*

$$(1) \quad m(f, \delta e/e^*) \leq m(f \circ g, \delta) \leq m(f, \delta e/e_*)$$

where for the left inequality we assume $0 < \delta \leq p$, and for the right inequality we assume $e \geq 1$ and $0 < \delta e/e_* \leq p$.

Corollary 3. *The sequence $g_n(x) = A_n x + B_n$ is an A -sequence for every periodic f that is essentially nonzero if and only if $\liminf |A_n| > 0$.*

Proof. *Sufficiency.* If $\liminf A_n > 0$, then $\liminf A_n/A_n^* > 0$. Now, our result follows from Theorem A, Lemma 1, and Corollary 2.

Necessity. If $f(x)=x$ on $[0, 1]$, then

$$\liminf_{n \rightarrow \infty} \int_0^\delta |f(A_n x)| dx = (\delta^2/2) \liminf_{n \rightarrow \infty} |A_n|$$

and so our result follows by Theorem A.

Remark 2. The use of e^* and e_* is necessary in Theorem 2 and its corollaries. In fact, Corollary 2 is best possible in a certain sense. For example, if $f(x)=x$ on $[0, 1]=[a, b]$ and $g(x)=ex$ for a noninteger $e>0$, then equality is attained in the left side of (1) for $\delta < e^*(1-e_*/e)$. Similarly, if $f(x)=1-x$ on $[0, 1]=[a, b]$ and $g(x)=ex$ for a noninteger $e>1$, then equality is attained in the right side of (1) for $\delta < e_*(e^*/e-1)$.

References

- [1] G. ALEXITS, *Convergence problems of orthogonal series* (New York, 1961).
- [2] J. BROOKS and P. V. REICHELDERFER, On absolutely continuous transformations, *Bull. Amer. Math. Soc.*, 75 (1969), 1243—1246.
- [3] R. E. EDWARDS, *Fourier series*, Vol. 1 (New York, 1967).
- [4] J. P. KAHANE and R. SALEM, *Ensembles parfaits et séries trigonométriques* (Paris, 1963).
- [5] T. RADÓ and P. V. REICHELDERFER, *Continuous transformations in analysis* (Berlin, 1955).
- [6] A. ZYGMUND, *Trigonometric series*, Vol. 1 (New York, 1959).

DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA. 16801

(Received October 26, 1971)