Generalizations of the Hardy-Littlewood inequality. II

By JÓZSEF NÉMETH in Szeged

1. G. H. Hardy and J. E. Littlewood [2] proved the following

Theorem A. Suppose that $a_{n} \geqq 0(n=1,2, \ldots)$ and that c is a real number. Set

$$
A_{m, n}=\sum_{v=m}^{n} a_{y}
$$

If $p>1$ we have

$$
\begin{align*}
& \left.\sum_{n=1}^{\infty} n^{-c} A_{1, n}^{p} \leqq K \sum_{n=1}^{\infty} n^{-c}\left(n \cdot a_{n}\right)^{p} \quad \text { with } \quad c>1, *\right) \tag{1}\\
& \sum_{n=1}^{\infty} n^{-c} A_{n, \infty}^{p} \leqq K \sum_{n=1}^{\infty} n^{-c}\left(n \cdot a_{n}\right)^{p} \quad \text { with } \quad c<1 ;
\end{align*}
$$

and if $0<p<1$ we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-c} A_{1, n}^{p} \geqq K \sum_{n=1}^{\infty} n^{-c}\left(n \cdot a_{n}\right)^{p} \quad \text { with } \quad c>1, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-c} A_{n, \infty}^{p} \supseteq K \sum_{n=1}^{\infty} n^{-c}\left(n \cdot a_{n}\right)^{p} \quad \text { with } \quad c<1 \tag{4}
\end{equation*}
$$

The inequalities (1) and (2) were generalized by H. P. Mulholland [4], moreover (3) and (4) by Chen Yung Ming [1], replacing the function x^{p} in (1)-(4) by more general functions, notably they proved inequalities of the following type

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{-c} \Phi\left(A_{1, n}\right) \leqq K \sum_{n=1}^{\infty} n^{-c} \Phi\left(n a_{n}\right), \tag{5}\\
& \sum_{n=1}^{\infty} n^{-c} \Psi\left(A_{1, n}\right) \geqq K \sum_{n=1}^{\infty} n^{-c} \Psi\left(n a_{n}\right)
\end{align*}
$$

under certain conditions on the functions $\Phi(x), \Psi(x)$ and C.

[^0]Theorem A was generalized in another direction by L. Leindler [3], who replaced in (1)-(4) the sequence $\left\{n^{-c}\right\}$ by an arbitrary sequence $\left\{\lambda_{n}\right\}$; for instance he proved the following inequality:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} A_{1, n}^{p} \leqq p^{p} \sum_{n=1}^{\infty} \lambda_{n}^{1-p}\left(\sum_{m=n}^{\infty} \lambda_{m}\right)^{p} a_{n}^{p} \tag{7}
\end{equation*}
$$

with $p \geqq 1$ and $\lambda_{n}>0$.
In the present paper we prove a theorem which contains all of these results.
2. We use the following notations:
a) $\Phi(x)(x \geqq 0)$ denotes a non-negative function such that $\varphi(x)=\Phi(x) / x$ is increasing and, for some $k>1, f(x)=\Phi(x) / x^{k}$ is decreasing.
b) $\Psi(x)(x \geqq 0)$ denotes a non-negative function increasing to infinity such that $\varrho(x)=\Psi(x) / x$ is decreasing to zero, when x is increasing from zero to infinity.
c) $\Lambda_{m, n}=\sum_{i=m}^{n} \lambda_{i} \quad(1 \leqq m \leqq n \leqq \infty)$.
3. We prove the following

Theorem. If $a_{n} \geqq 0$ and $\lambda_{n}>0(n=1,2, \ldots)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} \Phi\left(A_{1, n}\right) \leqq K_{1} \sum_{n=1}^{\infty} \lambda_{n} \Phi\left(\frac{a_{n}}{\lambda_{n}} \Lambda_{n, \infty}\right), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} \Phi\left(A_{n, \infty}\right) \leqq K_{2} \sum_{n=1}^{\infty} \lambda_{n} \Phi\left(\frac{a_{n}}{\lambda_{n}} \Lambda_{1, n}\right), \tag{9}
\end{equation*}
$$

where K_{1} and K_{2} are constants depending on Φ; furthermore

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} \Psi\left(\frac{a_{n}}{\lambda_{n}} \Lambda_{n, \infty}\right) \leqq C_{1} \sum_{n=1}^{\infty} \lambda_{n} \Psi\left(A_{1, n}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} \Psi\left(\frac{a_{n}}{\lambda_{n}} \Lambda_{1, n}\right) \leqq C_{2} \sum_{n=1}^{\infty} \lambda_{n} \Psi\left(A_{n, \infty}\right) \tag{11}
\end{equation*}
$$

where C_{1} and C_{2} are positive absolute constants.
4. We remark that this theorem implies Leindler's theorem [3] and several results of Chen Yung Ming [1] and H. P. Mulholland [4]; the method of proof of (10) and (11) is similar to that of Leindler's theorem.
5. We require the following lemmas:

Lemma 1. If $\Phi(x)$ and $\varphi(x)$ are the functions defined above and $a_{v} \geqq 0$, then

$$
\Phi\left(A_{1, n}\right) \leqq K \sum_{v=1}^{n} a_{v} \varphi\left(A_{1, v}\right) .
$$

Lemma 2. If $\Phi(x)$ and $\varphi(x)$ are the functions defined above, and $a_{v} \geqq 0$, then for every natural number N

$$
\Phi\left(A_{n, N}\right) \leqq K \sum_{v=n}^{N} a_{v} \varphi\left(A_{v, N}\right)
$$

Lemma 3. If $b_{n}>0, c_{n} \geqq 0, a_{n} \geqq 0(n=1,2, \ldots)$ and if for every natural number N

$$
\sum_{n=1}^{N} b_{n} \Phi\left(A_{n, N}\right) \leqq K \sum_{n=1}^{N} c_{n}
$$

then

$$
\sum_{n=1}^{\infty} b_{n} \Phi\left(A_{n, \infty}\right) \leqq K \sum_{n=1}^{\infty} c_{n} .
$$

6. Proof of Lemma 1 . Let $f(x)$ be the function defined above, in point 2 , and write A_{n} instead of $A_{1, n}$. Then

$$
\Phi\left(A_{n}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)-\Phi\left(A_{1}\right)+\cdots+\Phi\left(A_{n}\right)-\Phi\left(A_{n-1}\right) ;
$$

as

$$
\left.\begin{array}{c}
\Phi\left(A_{m}\right)-\Phi\left(A_{m-1}\right)=f\left(A_{m}\right) A_{m}^{k}-f\left(A_{m-1}\right) A_{m-1}^{k} \leqq \\
\leqq
\end{array}\right)
$$

and $\Phi\left(A_{1}\right) \leqq k \varphi\left(A_{1}\right) \dot{a_{1}}$, we obtain the assertion.
Proof of Lemma 2. Let us write B_{n} for $A_{n, N}(N \geqq n)$. Then

$$
\Phi\left(B_{n}\right)=\Phi\left(B_{n}\right)-\Phi\left(B_{n+1}\right)+\cdots+\Phi\left(B_{N-1}\right)-\Phi\left(B_{N}\right)+\Phi\left(B_{N}\right) ;
$$

using the estimations

$$
\Phi\left(B_{m}\right)-\Phi\left(B_{m+1}\right)=f\left(B_{m}\right) B_{m}^{k}-f\left(B_{m+1}\right) B_{m+1}^{k} \leqq k \varphi\left(B_{m}\right)\left(B_{m}-B_{m+1}\right)=k \varphi\left(B_{m}\right) a_{m},
$$

and

$$
\Phi\left(B_{N}\right) \leqq k \varphi\left(B_{N}\right) a_{N},
$$

we obtain the assertion.
Proof of Lemma 3. This can be done by an easy computation.
7. Proof of the Theorem. Inequality (8). Applying Lemma 1 we obtain that

$$
\sum_{n=1}^{N} \lambda_{n} \Phi\left(A_{1, n}\right) \leqq k \sum_{n=1}^{N} \lambda_{n} \sum_{v=1}^{n} a_{v} \varphi\left(A_{1, v}\right)=\sum_{1}
$$

holds for every natural number N.

Interchanging the order of the summations we have

$$
\sum_{1}=k \sum_{v=1}^{N} a_{v} \varphi\left(A_{1, v}\right) \Lambda_{v, N}=k \sum_{v=1}^{N} t^{-1}\left\{t \frac{a_{v}}{\lambda_{v}} \Lambda_{v, N} \varphi\left(A_{1, v}\right) \lambda_{v}\right\} .
$$

Since

$$
\begin{equation*}
x \varphi(y) \leqq x \varphi(x)+y \varphi(y)=\Phi(x)+\Phi(y) \text { for } x \geqq 0, y \geqq 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(t x)=f(t x) t^{k} x^{k} \leqq t^{k} f(x) x^{k}=t^{k} \Phi(x) \text { for } t \geqq 1, x \geqq 0, \tag{13}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \sum_{1} \leqq k \sum_{v=1}^{N} t^{-1}\left\{\Phi\left(t \frac{a_{v}}{\lambda_{v}} \Lambda_{v, N}\right) \lambda_{v}+\Phi\left(A_{1, v}\right) \lambda_{v}\right\} \leqq \tag{14}\\
& \\
& \leqq k \sum_{v=1}^{N}\left\{t^{k-1} \Phi\left(\frac{a_{v}}{\lambda_{v}} A_{v, N}\right) \lambda_{v}+t^{-1} \Phi\left(A_{1, v}\right) \lambda_{v}\right\} .
\end{align*}
$$

Hence, choosing t such that $1-k t^{-1}$ be positive, we obtain

$$
\sum_{n=1}^{N} \lambda_{n} \Phi\left(A_{1, n}\right) \leqq \frac{k \cdot t^{k-1}}{1-k \cdot t^{-1}} \sum_{n=1}^{N} \lambda_{n} \Phi\left(\frac{a_{n}}{\lambda_{n}} A_{n, N}\right),
$$

which proves (8).
Inequality (9). Applying Lemma 2 we have, for an arbitrary natural number N,

$$
\sum_{n=1}^{N} \lambda_{n} \Phi\left(A_{n, N}\right) \leqq k \sum_{n=1}^{N} \lambda_{n} \sum_{v=n}^{N} a_{v} \varphi\left(A_{v, N}\right)=\sum_{2} .
$$

Interchanging the order of the summations we obtain

$$
\sum_{2}=k \sum_{v=1}^{N} a_{v} \varphi\left(A_{v, N}\right) \Lambda_{1, n}=k \sum_{v=1}^{N} t^{-1}\left\{t \frac{a_{v}}{\lambda_{v}} \Lambda_{1, n} \varphi\left(A_{v, N}\right) \lambda_{v}\right\} .
$$

Using (12) and (13), similarly to (14), we have

$$
\Sigma_{2} \leqq k \sum_{v=1}^{N}\left\{t^{k-1} \Phi\left(\frac{a_{v}}{\lambda_{v}} A_{1, v}\right) \lambda_{v}+t^{-1} \Phi\left(A_{v, N}\right) \lambda_{v}\right\}
$$

Hence, if $1-k t^{-1}>0$ we get

$$
\sum_{n=1}^{N} \lambda_{n} \Phi\left(A_{n, N}\right) \leqq \frac{k t^{k-1}}{1-k t^{-1}} \sum_{n=1}^{N} \lambda_{n} \Phi\left(\frac{a_{n}}{\lambda_{n}} \Lambda_{1, n}\right),
$$

and using Lemma 3, we obtain (9).
Inequality (10). We may suppose that the series on the right-hand side is convergent, and thus we can define a sequence $\left\{m_{n}\right\}$ in the following way:

Let $m_{0}=0$ and for $n \geqq 1$ let m_{n} be the smallest natural number $k\left(>m_{n-1}\right)$ such that $\Lambda_{m_{n-1}+1, k} \geqq \Lambda_{k+1, \infty}$. Then $\Lambda_{m_{n}+1, m_{n+1}} \geqq \Lambda_{m_{n+1}+1, \infty}, \quad$ and

$$
\begin{equation*}
\Lambda_{m_{n}+1, m_{n+1}} \leqq 2 \Lambda_{m_{n+1}, m_{n+2}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{m_{n}+1, \infty} \leqq 2 \Lambda_{m_{n}+1, m_{n+1}} . \tag{16}
\end{equation*}
$$

We first show that

$$
\begin{equation*}
\sum_{v=m_{n}+1}^{m_{n+1}} \lambda_{v} \dot{\Psi}\left(\Lambda_{m_{n}+1, \infty} \cdot \frac{a_{v}}{\lambda_{v}}\right) \leqq 2 \Psi\left(A_{m_{n}+1, m_{n+1}}\right) A_{m_{n}+1, \infty} . \tag{17}
\end{equation*}
$$

We use the following notations:

$$
\tau_{v}^{(n)}=\frac{A_{m_{n}+1, m_{n+1}}}{\lambda_{v}}
$$

Using the properties of the functions $\Psi(x), \varrho(x)$ we get:

$$
\begin{equation*}
\sum_{v=m_{n}+1}^{m_{n+1}} \lambda_{v} \Psi\left(\Lambda_{m_{n}+1, \infty} \cdot \frac{a_{v}^{\prime}}{\lambda_{v}}\right) \leqq \Lambda_{m_{n}+1, \infty} \sum_{v=m_{n}+1}^{m_{n}+1} a_{v} \varrho\left(\tau_{v}^{(n)} a_{v}\right) . \tag{18}
\end{equation*}
$$

Let v_{i}, \bar{v}_{j} denote the subscripts such that $m_{n}+1 \leqq v_{i}, \bar{v}_{j} \leqq m_{n+1}, \quad$ and

$$
\tau_{v_{i}}^{(n)} a_{v_{i}} \leqq A_{m_{n}+1, \dot{m_{n+1}}}, \quad \tau_{\bar{v}_{j}}^{(n)} a_{\bar{v}_{j}}>A_{m_{n}+1, m_{n+1}} .
$$

Then

$$
\begin{gathered}
\sum_{v=m_{n}+1}^{m_{n+1}} a_{v} \varrho\left(\tau_{v}^{(n)} a_{v}\right)=\sum_{v=m_{n}+1}^{m_{n+1}} \frac{a_{v} \tau_{v}^{(n)} \varrho\left(\tau_{v}^{(n)} a_{v}\right)}{\tau_{v}^{(n)} \leqq \sum_{i}^{(1)} \frac{A_{m_{n}+1, m_{n+1}} \varrho\left(A_{m_{n}+1, m_{n+1}}\right)}{\tau_{v_{v}}^{(n)}}+} \begin{array}{c}
+\sum_{j}^{(2)} \varrho\left(A_{m_{n}+1, m_{n+1}}\right) a_{\bar{v}_{j}} \leqq A_{m_{n}+1, m_{n+1}} \varrho\left(A_{m_{n}+1, m_{n+1}}\right) \sum_{i}^{(1)} \frac{1}{\tau_{v_{j}}^{(n)}}+ \\
+\varrho\left(A_{m_{n}+1, m_{n+1}}\right) \sum_{j}^{(2)} a_{\bar{v}_{j}} \leqq 2 \Psi\left(A_{m_{n}+1, m_{n+1}}\right) .
\end{array} .
\end{gathered}
$$

thus, by (18), we get (17). Using (15), (16) and (17) we have:

$$
\begin{gathered}
\sum_{v=m_{n}+1}^{m_{n+1}} \lambda_{v} \Psi\left(\Lambda_{v, \infty} \frac{a_{v}}{\lambda_{v}}\right) \leqq 2 \Lambda_{m_{n}+1, \infty} \Psi\left(A_{m_{n}+1, m_{n+1}}\right) \leqq \\
\leqq 2 \Lambda_{m_{n}+1, \infty} \Psi\left(A_{1, m_{n+1}}\right) \leqq 4 \Lambda_{m_{n}+1, m_{n+1}} \Psi\left(A_{1, m_{n+1}}\right) \leqq 8 \sum_{k=m_{n+1}}^{m_{n+2}} \lambda_{k} \Psi\left(\sum_{v=1}^{k} a_{v}\right) .
\end{gathered}
$$

Hence

$$
\sum_{v=1}^{\infty} \lambda_{v} \Psi\left(\Lambda_{v, \infty} \frac{a_{v}}{\lambda_{v}}\right) \leqq 8 \sum_{n=0}^{\infty} \stackrel{m_{n+2}}{\sum_{v=m_{n+1}} \lambda_{v} \Psi\left(\sum_{k=1}^{v} a_{k}\right) \leqq 16 \sum_{v=1}^{\infty} \lambda_{v} \Psi\left(\sum_{k=1}^{v} a_{k}\right), ~, ~}
$$

which gives (10).
Inequality (11). We distinguish two cases. First we suppose

$$
\Lambda_{1, \infty}<\infty .
$$

We define a sequence of integers μ_{0}, μ_{1}, \ldots. We set $\mu_{0}=0, \mu_{1}=1$ and if μ_{n} has already been defined we choose $\mu_{n+1}^{\prime}=k$, where $k\left(>\mu_{n}\right)$ denotes the smallest integer satisfying

$$
\begin{equation*}
\Lambda_{\mu_{n}+1, k} \geqq 3 \Lambda_{\mu_{n-1}+\dot{1}, \mu_{n}} \tag{19}
\end{equation*}
$$

provided such a k exists. If $\mu_{n+1}^{\prime}>\mu_{n}+1$ then let $\mu_{n+1}=\mu_{n+1}^{\prime}-1$ and if $\mu_{n+1}^{\prime}=$ $=\mu_{n}+1$ then let $\mu_{n+i}=\mu_{n}+1$. If there exists no natural number k with (19) then let $\mu_{n+1}=\infty$. It is clear that this inductive definition always stops at some $n=N_{0}$, that is $\mu_{N_{0}}=\infty$ holds. For in opposite case, by the definition of μ_{n}, the inequality

$$
\begin{equation*}
3 I_{n-2} \leqq I_{n-1}+I_{n} \tag{20}
\end{equation*}
$$

holds for all $2 \leqq n<N_{0}$, where $I_{n}=\Lambda_{\mu_{n}+1}, \mu_{n+1}$ and inequality (20) for infinitely many n would imply $\Sigma \lambda_{k}=\infty$ contrary to the assumption. By (20) we have for $1 \leqq n<$ $<N_{0}-1$

$$
\begin{equation*}
\Lambda_{1, \mu_{n}} \leqq 3 I_{n-1}+I_{n} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{1, \mu_{N_{0}}} \leqq 3 I_{N_{0}-3}+5 I_{N_{0}-2} . \tag{22}
\end{equation*}
$$

Next we remark that

$$
\begin{equation*}
\sum_{v=\mu_{n}+1}^{\mu_{n+1}} \lambda_{v} \Psi\left(\Lambda_{1, v} \frac{a_{v}}{\lambda_{v}}\right) \leqq 2 \Lambda_{1, \mu_{n+1}} \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right) . \tag{23}
\end{equation*}
$$

By the properties of the functions $\Psi(x), \varrho(x)$ we have

$$
\begin{gathered}
\sum_{v=\mu_{n}+1}^{\mu_{n+1}} \lambda_{v} \Psi\left(\dot{\Lambda_{1, v}} \frac{a_{v}}{\lambda_{v}}\right) \leqq \sum_{v=\mu_{n}+1}^{\mu_{n+1}} \lambda_{v} \Psi\left(\Lambda_{1, \mu_{n+1}} \frac{a_{v}}{\lambda_{v}}\right)= \\
=\Lambda_{1, \mu_{n+1}} \sum_{v=\mu_{n}+1}^{\mu_{n+1}} a_{v} \varrho\left(\Lambda_{1, \mu_{n+1}} \frac{a_{v}}{\lambda_{v}}\right) \leqq \Lambda_{1, \mu_{n+1}} \sum_{v=\mu_{n}+1}^{\mu_{n+1}} a_{v} \varrho\left(\dot{\Lambda}_{\mu_{n}+1, \mu_{n+1}} \frac{a_{v}}{\lambda_{v}}\right) .
\end{gathered}
$$

Hence, applying the idea of proof of (17), we obtain (23) immediately.

Using (23) we get

$$
\begin{equation*}
\sum_{n=0}^{N_{0}-1} \sum_{v=\mu_{n}+1}^{\mu_{n+1}} \lambda_{v} \Psi\left(\Lambda_{1, v} \frac{a_{v}}{\lambda_{v}}\right) \leqq 2 \sum_{n=0}^{N_{0}-1} \Lambda_{1, \mu_{n+1}} \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right)=\sum_{3} \tag{24}
\end{equation*}
$$

By the definition of the sequence $\left\{\mu_{n}\right\}$ and by (21) we have

$$
\begin{gather*}
\Sigma_{3} \leqq 2 \sum_{n=0}^{1} \Lambda_{1, \mu_{n+1}} \Psi\left(A_{\mu_{n}+1, \mu_{n}+1}\right)+2 \sum_{n=2}^{N_{0}-2} \Lambda_{1, \mu_{n+1}} \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right)+ \tag{25}\\
+2 \Lambda_{1, \mu_{N_{0}}} \Psi\left(A_{\mu_{N_{0}-1}+1, \infty}\right)=\sum_{4}+\sum_{5}+\sum_{6}
\end{gather*}
$$

Using (19) and (21) we get

$$
\begin{align*}
& \sum_{5} \leqq 2 \tag{26}\\
& \sum_{n=2}^{N_{0}-2}\left(A_{1, \mu_{n-1}}+A_{\mu_{n-1}+1, \mu_{n+1}}\right) \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right) \leqq \\
& \leqq 2 \sum_{n=2}^{N_{0}-2}\left(3 A_{\mu_{n-2}+1, \mu_{n-1}}+2 A_{\mu_{n-1}+1, \mu_{n}}+A_{\mu_{n}+1, \mu_{n+1}}\right) \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right) \leqq \\
& \leqq 2 \sum_{n=2}^{N_{0}-2}\left(3 A_{\mu_{n-2}+1, \mu_{n-1}}+5 A_{\mu_{n-1}+1, \mu_{n}}+\lambda_{\mu_{n}+1}\right) \Psi\left(A_{\mu_{n}+1, \mu_{n+1}}\right) .
\end{align*}
$$

An easy computation gives by (19) and (21) that

$$
\begin{equation*}
\Sigma_{4} \leqq 2\left[5 \lambda_{1} \Psi\left(A_{1, \infty}\right)+\lambda_{2} \Psi\left(A_{2, \infty}\right)\right] \tag{27}
\end{equation*}
$$

By (22) we obtain
(28) $\Lambda_{1, \mu_{N_{0}}} \Psi\left(A_{\mu_{N_{0}-1}+1, \infty}\right) \leqq\left(3 A_{\mu_{N_{0}-3}+1, \mu_{N_{0}-2}}+5 A_{\mu_{N_{0}-2}+1, \mu_{N_{0}-1}}\right) \Psi\left(A_{\mu_{N_{0}-1}+1, \infty}\right)$.

Using (26), (27), (28) we get

$$
\sum_{4}+\sum_{5}+\sum_{6} \leqq 18 \sum_{n=1}^{\infty} \lambda_{n} \Psi\left(\sum_{k=n}^{\infty} a_{k}\right)
$$

which by (24) and (25) gives (11) in case $\Sigma \lambda_{k}<\infty$.
If $\Sigma \lambda_{n}=\infty$ then we define another index-sequence $\left\{m_{n}\right\}$. Let $m_{0}=0$ and $m_{1}=1$. If $m_{0}<m_{1}<\cdots<m_{n}(n \geqq 1)$ have been defined, then let m_{n+1} be the smallest natural number k with

$$
\begin{equation*}
\Lambda_{m_{n}+1, k} \geqq 2 A_{m_{n-1}+1, m_{n}} \tag{29}
\end{equation*}
$$

By the definition of m_{n} we have

$$
\begin{gather*}
\Lambda_{1, m_{n+1}-1} \leqq \Lambda_{m_{n+1}, m_{n+1}-1}+2 \Lambda_{m_{n-1}, m_{n}}, \tag{30}\\
\Lambda_{1, m_{2}-1} \leqq 3 \lambda_{1} \tag{31}\\
\Lambda_{m_{n-1}, m_{n+1}-1} \leqq 3 \Lambda_{m_{n-1}, m_{n}} . \tag{32}
\end{gather*}
$$

First we remark that similarly to the proof of (17) and (23) we obtain the following inequalities

$$
\begin{align*}
& \sum_{k=m_{n}}^{m_{n+1}^{-1}} \lambda_{k} \cdot \Psi\left(\Lambda_{m_{n-1}, m_{n+1}-1} \frac{a_{k}}{\lambda_{k}}\right) \leqq 2 \Lambda_{m_{n-1}, m_{n+1}-1} \Psi\left(A_{m_{n}, m_{n+1}-1}\right) \tag{33}\\
& \sum_{k=1}^{m_{2}-1} \lambda_{k} \Psi\left(\Lambda_{1, m_{2}-1} \frac{a_{k}}{\lambda_{k}}\right) \leqq 2 \Lambda_{1, m_{2}-1} \Psi\left(A_{1, m_{2}-1}\right) \tag{34}
\end{align*}
$$

By the definition of sequence $\left\{m_{n}\right\}$ and by (30) we have

$$
\begin{gathered}
\sum_{k=1}^{\infty} \lambda_{k} \Psi\left(\Lambda_{1, k} \frac{a_{k}}{\lambda_{k}}\right) \leqq \sum_{n=1}^{\infty} \sum_{k=m_{n}}^{m_{n+1}^{-1}} \lambda_{k} \Psi\left(\Lambda_{1, m_{n+1}-1} \frac{a_{k}}{\lambda_{k}}\right) \leqq \\
\leqq \sum_{k=1}^{m_{2}-1} \lambda_{k} \Psi\left(\Lambda_{1, m_{2}-1} \frac{a_{k}}{\lambda_{k}}\right)+\sum_{n=2}^{\infty} \sum_{k=m_{n}}^{m_{n+1}^{-1}} \lambda_{k} \Psi\left[\frac{a_{k}}{\lambda_{k}}\left(\Lambda_{m_{n}+1, m_{n+1}-1}+2 \Lambda_{m_{n-1}, m_{n}}\right)\right]=\sum_{7} .
\end{gathered}
$$

Since $\Psi(2 x) \leqq 2 \Psi(x)$,

$$
\sum_{7} \leqq \sum_{k=1}^{m_{2}-1} \lambda_{k} \Psi\left(\Lambda_{1, m_{2}-1} \frac{a_{k}}{\lambda_{k}}\right)+2 \sum_{n=2}^{\infty} \sum_{k=m_{n}}^{m_{n+1}^{-1}} \lambda_{k} \Psi\left(\Lambda_{m_{n-1}, m_{n+1}-1} \frac{a_{k}}{\lambda_{k}}\right)=\sum_{8}
$$

By (33) and (34),

$$
\sum_{8} \leqq 2 A_{1, m_{2}-1} \Psi\left(A_{1, m_{2-1}}\right)+4 \sum_{n=2}^{\infty} \Lambda_{m_{n-1}, m_{n+1}-1} \Psi\left(A_{m_{n}, m_{n+1}-1}\right)=\sum_{9}
$$

Using (31), (32) we get

$$
\sum_{9} \leqq 6 \lambda_{1} \Psi\left(A_{1, \infty}\right)+12 \sum_{n=2}^{\infty} A_{m_{n-1}, m_{n}} \Psi\left(A_{m_{n}, \infty}\right) \leqq 24 \sum_{n=1}^{\infty} \lambda_{n} \Psi\left(\sum_{v=n}^{\infty} a_{v}\right)
$$

which is the required inequality (11). The proof is complete.

References

[1] Chen Yung-Ming, Some asymptotic propertiés of Fourier constants and integrability theorems, Math. Zeitschr., 68 (1957), 227-244.
[2] G. H. Hardy-J. E. Littlewood, Elementary theorems concerning power series with positive coefficients and moment constants of positive functions, J. reine angew. Math., 157 (1927), 141-158.
[3] L. Leindeer, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31 (1970), 279-285.
[4] H. P. Mulholland, Concerning the generalization of the Young-Hausdorff theorem and the Hardy-Littlewood theorems on Fourier constans, Proc. London Math. Soc., (2) 35 (1933), 257-293.

[^0]: ${ }^{\text {*) }} K$ denotes a positive absolute constant, not necessarily the same at each occurrence.

