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1. Introduction and summary. The centroid of a ring R is defined as the centralizer 
in the ring of all endomorphisms of the additive group of R of the ring generated 
by all left and right multiplications [10]. It reduces essentially to the center of R 
if R has an identity element. We borrow the multiplicative par t of the definition 
of a centroid and apply this not ion to the theory of semigroups. Hence the centroid 
Z(S) of a semigroup S is the semigroup under composit ion of all t ransformat ions 
on S which are simultaneously left and right translations of S (written, say, as left 
operators) . We exploit this concept for two principal purposes. The first one is 
connected with a generalization of inner automorphisms and the second one is a 
consideration of the congruence on the semigroup whose classes are the orbits of 
the group of units of the centroid. We study this congruence in detail for several 
classes of semigroups, but the most frui tful classes turn out to be cancellative and 
commutative cancellative semigroups. Based on this congruence, certain semigroups 
are isomorphic to a Schreier extension of an abelian group and another semigroup 
and can be embedded into a wreath product of these. 

Section 2 is a preliminary one and contains most of the background needed 
throughout the paper . In Section 3 we introduce a generalization of inner auto-
morphisms, and for a wide class of semigroups prove a theorem which in the case 
of groups reduces to the familiar relationship between inner automorphisms and 
the center. In Section 4 we study the congruence AS on a semigroup S whose classes 
are the orbits of the group of units of the centroid GZ(S) of S. We prove tha t a 
semigroups in which GZ(S) acts simply transitively on each <rs-class is isomorphic 
to a Schreier extension of GZ(S) by S/AS. We also establish an isomorphism theorem 
for this representation of S. Fo r such a Schreier extension, we prove in Section 5 
that for a wide class of semigroups, the extension can be embedded (or densely 
embedded) in the wreath product of some related semigroups. For cancellative 
semigroups S, in Section 6 we find an expression fo r <rs in terms of elements of S, 
and for every element of S, find a copy of Z(S) defined on a subset of 5 with a new 
multiplication. We also consider an example exhibiting interesting features in this 
context. Finally, in Section 7 we deal with commutat ive cancellative semigroups. 
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Every such semigroup is isomorphic to a Schreier extension of an abelian g roup 
and a commutat ive cancellative semigroup Q in which aQ=bQ always implies 
a—b, and conversely. We fur ther extablish several properties of this decomposi-
tion of 5 and of .the congruence a s . Fo r the case of the additive semigroups of all 
nonnegative or of all positive integers, we compute all functions figuring in the 
Schreier extension. It should be noted already that what we call a Schreier extension 
is close but not identical with the concept of the Schreier product used in [12]. Fur ther-
more, since we often write funct ions on the left, we apply the "left version" of the 
wreath product and use the notation "H>/" instead of "wr" . 

2. Preliminaries. We begin by recalling the concepts needed throughout the 
paper ; for undefined terms and notat ion the reader is referred to [2]. Let 5 be a 
semigroup and let x, y be arbitrary elements of 5. A function X on 5 written on 
the left is a left translation of 5 if X(xy) = (Xx)y; a funct ion g on S written on the 
right is a right translation if (xy)g = x(yg); X and O are linked and we say that (X, Q) 
is a bitrans/ation of 5" if x(Xy) = (xg)y; X and n are permutable if (Xx)g — X(xg). The 
set /1 (5 ) of all left translations of 5 under the composition (XX')x = X(X' x) is a 
semigroup; the set P(S) of all right translat ions is a semigroup under the composi-
tion x(gg') = (xg)g'. The set ¿2(5) of all bitranslations of 5 with the multiplication 
induced by the direct product A(S)XP(S) is a semigroup called the translational 
hull of 5. For 5, the funct ions Xa and ga defined by X„x = ax xga = xa, are, respec-
tively, the inner left translation and the inner right translation of S induced by a; 
ita — i^a, Qo) is the inner bitranslation of 5 induced by a\ T1(S)= {na\a£ 5 } is the 
inner part of Q(S). 

It is easy to verify that 

(1) (X, Q)NA = N;M, NA(X, G) — NAE (A£S,(X, G)EQ(S)), 

which implies that J 7 ( 5 ) is an ideal of S2(S); one verifies similarly that r(S) — 
= S } is a left ideal of / 1 ( 5 ) and tha t A(S) = {ga\a£ 5 } is a right ideal of P(S). 
The projections 

NA:(X, Q)-~X, TIP:(X, g)-*g ((X,g)£Q(S)) 

are homomorphisms, let 
A(S) = tiaQ(S), P(S) = kpQ(S). 

By C(S) we denote the center of S, and if S has an identity, G(S) denotes 
the group ¿f units (invertible elements of S). As a generalization of the center of a 
semigroup, we borrow the following concept f rom the theory of rings: the centroid 
of 5, denoted by Z(S), is the set of all funct ions ( on S satisfying C(^J;) = (Cx)3' = 
=x((y) (x,y£S). It follows immediately that Z(S) is a subsemigroup of / 1 (5 ) 
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and is the centralizer of the set of all inner left and inner right translations of S 
if both of these are written as left operators (definition in [10], V, § 4). 

If several operators are applied to S, we will retain the parentheses only around 
S, e.g., we write CQ(S) instead of C( i2(S)) , etc. If S has an identity e, then for 
any 1 6 / 1 ( 5 ) and ¡ ?£P(S) , we have X = XXE and Q = Qe t, so F ( S ) = A (5 ) , A (S) = P(S), 
Q(S) = N(S), and Z ( 5 ) can be identified with C ( S ) . 

The t ransformat ion IS written on the left is the identity both of Z ( S ) and A ( 5 ) ; 
the pair (IS, zs), where the second IS is written on the right, is the identity of Q(S). 
The groups C Z ( 5 ) and GQ(S) will play a central role in our investigations. 

3. Generalized inner automorphisms. We will now introduce a class of au tomorph-
isms of an arbitrary semigroup 5 which in the case of groups reduces exactly to the 
set of all inner automorphisms. Another generalization of an inner automorphism 
was introduced by D U B R E I L [4] and was intensively studied by CROISOT [3] for can-
cellative semigroups and by T H I E R R E N [14 ] for reductive semigroups. We will see in 
Section 6 by an example that these two generalizations of inner automorphisms of 
a group are very different. 

3. 1 P r o p o s i t i o n . Let S be any semigroup, (X, q)£GQ(S), and assume that 
X and Q are permutable. Then.X~i £ /1(5) , A - 1 is permutable with E, and the function 

defined by: 

is an automorphism of S. 

P r o o f . Since both X and Q are permutat ions on the set 5, so is <5(y(iC). For any 
x, y £ S, we obtain X[(X~1 x)y] = (XX~1 x)y = xy = (XX~1)(xy) = X[X~1 (xy)] which im-
plies (X~l x)y=X~l(xy). Using this, we compute 

(xy)da¡<!) = [X-1 (xv)] Q = l(X -,x)y]Q = (X-1 x) (yQ) = a -1 x) [(XX ~1 y) Q] = 

= (X-1X) {X [(X -1 y) e]} = [ ( ; . - ' X)e] [ ( A - 1 x) e] = (xóu¡ e)) (y5(Ái a)) 

as required. Further , x)g] = (AX~1x)g=XQ = X[A~x(xQ)] and thus ( X ~ 1 x ) g = 
= X~1(xg). 

In view of 3. 1, we may write X<5(; = without ambiguity. If 5 has an 
identity element, we may define the inner automorphism ea induced by an element 
a £ C ( 5 ) by the usual fo rmula : 

In such a case, <5(A;e) = eec where e is the identity of 5. Conversely, for a£G(S), 
we have dK = e a . It is then natural to introduce the following notion. 

(2) s.su,e) = a-1s)e (ses) 

(3) sea — a 1sa (s £ 5 ) . 
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3. 2 D e f i n i t i o n . With the notation of 3. 1, e ) is the generalized inner auto-
morphism of S induced by (A, Q). 

The group of all automorphisms of a semigroup S will be denoted by si(5), 
the set of all generalized inner automorphisms by . / ( S ) . As we have seen above, in 
the case that 5 has an i den t i t y , . / ( 5 ) coincides with the group of inner automorphisms 
of S. The introduced terminology is further justified by a theorem valid for a large 
class of semigroups, which reduces to the familjar connection between J ( S ) and 
C(S) when 5 is a group. For this we need some preliminaries. Recall that S is weakly 
reductive if the mapping n:a^-na S) is one-to-one (and thus an isomorphism of 
S onto 77(S)); S is globally idempotent if S2 = S. 

3. 3 L e m m a . The following statements concerning a semigroup S which is either 
weakly reductive or globally idempotent are true: 

a) Jf (A, Q), (A', Q') d i3(5), then A and g' are permutable. 
b) CQ(S) = {(A, g ) € / l ( 5 ) X P ( S ) | A i = sg for all s<ES}. 
c) nA\ " on isomorphism of CQ(S) onto Z(S). 

We omit the proof. In a different form, a) is mentioned in CLIFFORD [1]. 

Under the hypotheses of the lemma, the centroid of S can be identified with 
the center of Q(S), and this case is the most interesting one. In particular Z ( S ) 
is then commutative. This represents a slight improvement over ([10], V, § 4, Proposi-
tion 1) where 3 r ( s 2 I ) = 0 o r 3 / W = 0 c a n t>e replaced by vanishing of the double 
annihilator {¿z£ 1 l \ a x = x a = 6 for all ^€21}. Furthermore, part a) shows that S(A e) is 
defined for every element (A, g)£Gi2(S) . 

The proof of the following lemma is a straightforward verification and is 
omitted. 

3. 4. L e m m a . Let 6 be an isomorphism of a semigroup S onto a semigroup T. 
Then the function B defined by: 

(4) B:(A,g)^(I,g) ((A, g) € Q(S)) 

where 

(5) Xt=[A(t0~1)]6, te=[(te-l)e]B (teT) 

is an isomorphism of Q(S) onto Q(T). 
The following is the principal result of this section. Recall the notation (2), (3), 

(4), ( 5 ) , s / { S ) , S ( S ) . 

3. 5 T h e o r e m . Let S be a semigroup which is either weakly reductive or globally 
idempotent. Then the mapping 



The centroid of a semigroup 139 

is a homomorphism of GQ(S) onto J'(S) with kernel GCQ(S) so that 

GQ(S)/GCQ(S)=iJt(S). 

Moreover, nAGCQ(S) = GZ(S) and = for all (A, e)^GQ(S). 

P r o o f . Using part a) of 3. 3, for any (A, Q), (<P, I j / ) £ G Q ( S ) and S, we have 

Ax, e)s («>,*) = <P " 1 ~1 *e) = '1J (Q<P) = sSU9> = sda> e) („, ^ 

and hence X IS a homomorphism. Let (A, q)^GQ(S). Then (A, e ) £ k e r y if and only 
if <5(/.,<,)~('fl(S), 'n(S))> equivalently —s for all s£S, which can be written 
as sg = Xs for all s£S. By part b) of 3. 3, the latter is equivalent to (A, q)£CQ(S). 
Consequently (A, Q) £ ker % if and only if (A, Q) £GS2(S) PI CQ(S) = GCi2(S) as 
required. The equality NA GCQ(S) = CZ(S) follows f rom part c) of 3. 3. For (A, £>)£ 
£GQ(S) and £ i2(S), we have 

where for any s £ S , 

(ps = [(p(sd{x]e))]du^=-?rl[(p(Xse~i)]Q = U-l(pX)s 

and analogously s i p i ipg), which implies 

(<P, IT>)=(*~ L <PIQ~ L IL 'E) = ( * , E Y I ( ( P , </0 (A, E )=(«> , E )• 

Consequently 5 (A>e>=e (A e ) proving the last assertion of the theorem. 
It is clear that for the case when S is a group, the foregoing result reduces to 

the familiar theorem in group theory. If S is weakly reductive, we may identify 
fl(S) and S; the last assertion of the above theorem then states that the generalized 
inner automorphisms are the restrictions of inner automorphisms of S2(S) to S. 
In particular, for the case of 91) and i2(S') = fi(9Jl, 91), with the obvious 
identifications, where 93?, is a pair of dual vector spaces over a (not necessarily 
commutative) field 0 , the set of all "quasi-inner au tomorphisms" of MALCEV forms a 
proper subgroup of J{S) as shown by ROSENBERG ([13], p. 125). 

It should be noted that in general GCQ(S)^CGQ(S). Fo r example, if 
S=J/°(G; I, I; A) is a Brandt semigroup, it can be shown that the equality fails 
to occur only in the case when G is trivial and / has exactly 2 elements (stated by 
HOEHNKE [9], Satz 1), in which case GQ(S) is of order. 2 and GCQ(S) is trivial. 
In section 6 we will discuss a similar example when S is cancellative. Further prop-
erties of the concepts discussed above, as well as the proofs omitted here, can be 
found in [11]. 

4. The congruence <rs. We have seen in the preceding section that for. a semi-
group S with identity, Z(S) can be identified with C(S). If S is also a group, GZ(S) = 
= Z{S) and we may consider 5 as a Schreier extension of Z ( S ) by S/Z(S). The fol-
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lowing will show how this can be generalized to the situation in which S is a semi-
group satisfying relatively weak conditions. 

4. 1 D e f i n i t i o n . For any semigroup S, let as be the equivalence relation on S 
whose classes are the orbits of GZ(S). Hence for any a, b£S, aosb if and only if 
there exists X£GZ(S) such that a—lb. 

It is immediate that as is a congruence relation on S. We will often write a 
instead of as if there is no danger of confusion. If S has an identity element, then 
the classes of as coincide with the orbits of GC(S). In particular, for any semigroup 
S and a, b£S, naaa(S)nb if and only if na — (X, g)nb for some (X, g)£GCQ(S), which 
is in turn equivalent to na = n ; b in view of (1). Consequently, for a weakly reductive 
semigroup S, we have naon^S)nb if and only if aasb. In such a case, if we identify 
77(S) with S, we may write < ^ , ^ = <7,;. 

It follows from the definition of a that GZ(S) acts as a transitive group of 
permutations on each a-class. If GZ(S) acts simply transitively on each cr-class, we 
will show that S can be expressed as a Schreier extension of GZ(S) by S/o in the 
sense of the following (cf. [12]) 

4. 2 D e f i n i t i o n . Let g be a semigroup, <P be an (additively written) abelian 
group, and let [ , ].QXQ be a function satisfying 

(6) [a, b] + [ab, c] = [a, be] + [b, c] (a, b,ciQ). 

Let S = QX<P together with the multiplication 

(a, a) (6, P) = (ab, [a, b] + <x + p). 

(It is easy to verify that (6) is equivalent to associativity.) We call S a Schreier exten-
sion of <P by Q and denote it by (Q, $,,[ , ] ) . ' - ' 

We are now in a position to prove the desired result. It should now be noted 
that a sufficient condition on a semigroup 5 in order that GZ(S) act simply transitively 
on each <r-class is weak cancellation, viz., the conjunction of xa—ya and ax=ay 
implies x=y. For if X^GZ(S) and a = Xb = X'b, then for any x£S, (Xx)a = x(Xa) = 
= x(X'a) = (X'x)a and analogously a(Xx) = a(X'x), which by weak cancellation yields 
X=X'. 

4. 3 T h e o r e m . A semigroup S for which GZ(S) acts simply transitively on each 
a-class is isomorphic to a Schreier extension of GZ(S) by S/cr. 

P r o o f . Let Q — SIa and arbitrarily choose a system {za}agQ of representatives 
of (7-classes. Letting $ = GZ(S), define a function [ , ]:QXQ by the require-
ment: [a, b]f<P for which [a, b]zc = zazb where zcozazb. Next define a function / on 
G X ' ^ B Y : 

Xix— (a, X) if xGf-class a and Xza = x. 
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The hypothesis on $ implies that x is a .bijection of S onto QX<P. For xx = (a, A), 
yx. = (f>,n), {xy)x=(c, v), we obtain 

(A/i [a, b])zc = In {[a, b]zc}=A/i (za zb)=(Az„) (fizh)=xy 

which by simple transitivity implies A/t[a, 6] = v. Writing <P additively, we obtain 

OX)(y/ . ) = (a, A)(b, n) = (ab, [a, b]+l+n) = (xy)y_ 

which shows that x ¡ s a homomorphism. Condition (6) on [ , ] is equivalent to as-
sociativity and hence follows here f rom the associativity in S. Therefore x ¡ s a n 

isomorphism of S onto (Q, <P, [ , ]) as required. 
If S has an identity element 1, then 1 can be chosen as the representative of 

its cr-class e, which then yields [a, e] = [e, a ] = 0 where 0 in additive notation stands 
for the identity function. This is the usual "initial condition" imposed on "Schreier 
extensions" in group, ring, or semigroup theory (see REDEI [12]) . Conversely, if 
S-(Q, [ , ]), e is the identity of Q, and [a, e] = [e, a] = 0 for all a£Q, then (e, 0) 
is the identity of S. In such a case, the mapping a -*(e, a) (a 6 $ ) embeds $ into S in 
a natural way. For the Schreier extensions of semigroups S and S' constructed above, 
we have the following isomorphism criterion. 

4 . 4 T h e o r e m . Let S and S' satisfy the condition in 4 .3 , and let 
T=(Q, <P, [ , ]), T' = (Q', </>', [ , ]') be the isomorphic copies of S and S', respectively, 
as in 4. 3. Then S = S' if and only if there exists an isomorphism 8 of Q onto Q' and for 
each afQ there is a bijection r\a of $ onto <P' such that 

(7) w + ^p+Wbe]'= r,ah([a,b]+u+P) (a,b£Q, «,/*€*). 

P r o o f . Suppose first that S = S". Then there exists an isomorphism i// of T 
onto T'. It is easy to see that (a, a)aT(b, fi) if and only if a—b. It follows f rom 3. 4 
that an isomorphism preserves a-classes. Consequently there exists an isomorphism 0 
of Q onto Q' making the diagram 

<l> 
T T' 

TjaT T'joj. 

b i 
Q Q' 

commutative, where cp and <p' are canonical homomorphisms, and (a,a)£ = a, 
(a', u')tI' = a' for cr-classes (a, a) and (a', a') of T a n d T', respectively. Hence for any 
(a, a ) e r and (a, a)t// = (b, P), we obtain (a, u)(p£0 = (a, a)£0=a9 and (a, a)\j/(p't;' = 
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=(b, P)(pfQ'= (b, P)i' = b, and thus ad = b. N o w writing p in the form we see that 

(8) (a,oi)il/ = (aO,riaa) (a£Q, <*€*)' 

where is a mapping of into <i>' for every a£Q. Thus for any (a, a), (b, P)dT, 
we have 

(a, c#(6, W = (aO, riJ) = ((a0)(M), [«0, + 

[(a, a)(6, / W = [a, = ((aft)0, » U f o 6]+<*+/D) 

which implies (7). For any a^Q and a'£<J>' there exists a£<i> such that (a,a)ip = 
—(a0, a ' ) since both ip and 0 are onto. By (8), we must have rj„a = a proving that rj 
maps $ onto <P'. If rjaix = t]aP, then by (8), we have (a, a)tj/ = (a, ft)*]/ so that a—P 
since \j/ is one-to-one. Thus r]a is a bijection. 

Conversely, if the funct ions 0 and t]a are given as in the theorem, then \j/ given 
by (8) is.easily seen to be an isomorphism of T on to F ' , which in turn implies the 
existence of an isomorphism of S onto S'. 

We have seen in the proof that the converse is valid without Q — S/(Ts, Q' = S'jos,. 
Hence for arbitrary Schreier extensions T=(Q, <£, [ , ]) and T' = (Q', <P',[ , ]'), 
4. 4 furnishes sufficient conditions for their isomorphism. However, they are in 
general not necessary, for it could happen that but Q ^ Q ' . Furthermore, 
in the case of 4. 4, <P and 0 ' are isomorphic which is not explicit in these condi-
tions. 

5. A dense embedding. We will now establish that for a left or. right reductive 
globally idempotent semigroup Q, a Schreier extension of an abelian group 0 by 
Q can be embedded (and in some special way) into several semigroups which are 
wreath products of a semigroup of t ransformat ions on Q and First we recall the 
pertinent definitions. 

If B is an ideal of a semigroup A, then A is an ideal extension of B; if in addi-
tion the equality congruence on A is the only congruence on A whose restriction 
to B is the equality congruence on B, then A is a dense extension of 5 ; if also A is, 
under inclusion, a maximal dense extension of A, then B is a densely embedded ideal 
of A. A subsemigroup C of A is a densely embedded subsemigroup if C is a densely 
embedded ideal of its idealizer iA{C) in A. An isomorphism cp of a semigroup D 
into A is a dense embedding if Dq> is a densely embedded subsemigroup of A, and 
we say that D can be densely embedded in A. Using the concepts of a left ideal, left 
idealizer, etc., one defines analogously an l-densely embedded ideal, subsemigroup, 
embedding etc. For an extensive discussion concerning these concepts, see G L U S K I N 

15], [6]. 
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Let X be a nonempty set, P a semigroup of t ransformat ions on X, written 
on the left, and let G be a group. On S = PXG define a multiplication by 

\ci,(p)(a',(p') = (a.a',(p"-(p') 

where (<pa • cp')x = (<pax)((p'x) (x £ X). Then S is a semigroup called the (left) 
wreath product of P and G and will be denoted by PwlG. 

The following discussion is motivated by ([6], Section 1). 
Let g be a right reductive semigroup, i.e., ax=bx for all x£Q implies a=b, 

let $ be an abelian group, and let S=(Q, <?>,[, ]) be a Schreier extension of 4> 
by Q. 

Let A£A(S); then for any (a, a)^S we have 

(9) A(a, «) = (£(«, a), 6>(a, a)). 

for some functions £ and 0. Hence 

[A(a, a )](è, fi) = [ç{a, a), 0(a, a))(b, /?) = a)b, It (a, a), b] + 0(a, «) + /?), 

X[(a, a ) (b , P)] = l(ab, [a, b]+a+p) = '(Z(ab, [a, b] + a + j S ) , 6(ab, [a, b] + a+P)), 

and thus 

(10) S(a,cc)6 = ^(ab,[a,b) + a + P), 

(11) [ç(a,a),bH6(a,a)+P = 9(ab,[a,b]+a+P). 

We substitute P in (10) by p~[a, b]—a and obtain a)b = Ç(ab, p). Since this is 
t rue for all a ,Pi<P, we also have ç (a, fi)b = ç(ab, P), and thus £ (a, ct)b—£ (a, P)b 
for a l l 0 . By right reductivity of Q, we conclude that £(a, «) — £ (a , P), i.e., £(a, a) 
is independent of a and we may write ça instead of c(a, a). But then (10) yields 
(ça)b = ç(ab) so tha t Ç ç A ( Q ) . 

Now (11) implies 

(12) 0(a,oc) = 0(ab,[a,b]+x+p)-tfa,b]-p 

which for P = — [a, b] — a becomes 

(13) 0 ( a , a ) = e(ab,Q>)-[i;a;b] + [a,b] + a. 

For a = 0 , (11) takes on the fo rm 

(14) 0(a,Q) = 0(ab, 0)-[ça, b] + [a, b\. 

Now let r\a — 6(a, 0) fo r all a £ 0 . Substituting d(ab, 0) f rom (14) into (13) in the new 
notation we have 

(15) 9(a, ot) = qa+a ((a,a)eS). • 
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Further, (15) substituted into (12) yields tia+a. - rj(ab)+[a, b]+a+P~[£a, b]--fi and 
thus rj satisfies the condition 

(16) na-ri(ab) = [a,b]-[Za,b] (a,b£Q), 

Hence (9) becomes 

(17) ,X(a, a). = (la, / / a + a ) ((a, cc) £ 5) . 

5. 1 T h e o r e m . With the notation introduced, define a function t¡/ by: 

(18) ij/:X rj) (X^A(S)) 

where and i] £ GQ satisfy (16), and X satisfies (17). Then ip embeds / 1 (5 ) 
into A.(Q)w/(J>. In addition, if Q is globally idempotent, then A(S)ij/ is the largest 
subsemigroup of A(Q)wl<P containing r(S)ij/ as a left ideal. 

P r o o f . If k\l/=(£,rj) and A'I! /=(£' ,r i ' ) , then for any (a,oc)£S, XX'(a,a) = 
= X(£'a, ri'a+oi) = (^'a,rj^a+r]'a+a) which in the multiplicative notation can 
be .written as XX'(a, a) = a, ( f • rj')a + ct). Hence (XX')\p = (&', if • 17') = 
= (£, t ] ) ( r \ ' ) = (Xij/)(X'il/). Thus ij/ is a homomorphism, aiid is clearly one-to-one. 

If (£, ii)£A(Q)w/4> satisfies (16), then X defined by (17) has the property: 

[X(a, a)](b, p) = (¿a, na+a){b, P) == {^a)b, [ f a ^ + tja+a+p) 

= {^(ab), rj(ab) + [a, b]+a+P) = X(ab, [a, b]+a+p) 

= X[(fl,OL)(b,P)]. 

Thus AG/1(5) and fur thermore AT/> = (£, Consequently 

(19) A(S№ = {(.S,n)\Z and t] satisfy (16)}. 

Next let (a, a) £ S and A(aiC()i/f = (£, t]). Then for any (b,P)dS, 

(20) X(a^b,p) = (a,a)(b,p) = (ab,[a,b] + a + p) 

and on the other hand, 

(21) X(a^(b,p)=\i;b,nb+p). 

Comparing (20) and (21), we obtain £ = Xa, r\b = [a, ¿>] + a for all b£Q. Conversely, 
for the pair (A„, tj) with t]b = [a, b]+a. for all b we obtain 

t]b — rj(bc) == [a, b]+oc-[a, bc\—a = [b, c]—[ab;c) = [b, c]—[Xab, c] 

using (6). Consequently 

F(5)iA = {(Xa, t])\r]b = [a, b]+a for some a€tf>}. 
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Suppose now that Q is globally idempotent. Since r(S) is a left ideal of / l (S ) , 
we have that r(S)I// is a left ideal of A(S)\js. Now suppose that (a, T) £/l(5)W/<F 
has the property 

for all 

It follows that (a, x) induces a left translation on r(S)\p, and thus by the isomorphism 
i¡j, there exists X£A(S) such t ha t Xip and (a, T) have the same effect upon r(S)ij/. 
Writing X\j/ = (^,rj), we then have 

(£, N)(K, 8) = (A, R)(XA, 0) ((AFL) 0 ) £ R ( S № ) . 

Hence = oXa, t]x"-0 = Ta« • 0 so that £,Xax=oXax, rjXax+6x = rXax + 9x and thus 
(¿d)x={<rd)x, rj(ax)=x(ax) (a, x £ 0 . Right reductivity of Q implies £ = <T, and 
Q2 = Q implies t] = r. Thus (£, r\) = (a, r) which proves that (<r, T) £ A{S)\p. There-
fore / 1 ( 5 ) ^ is the largest subsemigroup of A(Q)wl<P containing r(S){// as a left 
ideal. 

5. 2 L e m m a . For a right reductive semigroup S, iA(S)(F(S)) = A(S) and r(S) 
is a densely embedded ideal of /4(5). 

P r o o f . Right reductivity of 5 implies that nA is an isomorphism of i2(S) onto 
A(S) mapping / 7 ( 5 ) onto T ( 5 ) . Since / 7 ( 5 ) is a densely embedded ideal of Q(S) 
by ([6],- 1. 3. 5), T ( S ) must be a densely embedded ideal of ^4(5). In particular,-

If A.£i A ( S ) ( r (S)) , then for every o £ 5 , there exists a ' £ 5 such 
that XaX = Xa., where a ' is unique by right reductivity of 5. Define Q on 5 by the 
requirement XaX = Xae ( a£ 5) . Then 

^lab) Q~Kb^ — K i h = K Kq = K (be)' 

(̂OE) b ~ i^-as) ^b = (K A) Xb = Xa (XXb) = Xa Xxb = Xa 

so that (X, Q)eii(S). Consequently XeA(S) proving that iA{S)(F(S)) g J ( S ) . 

5. 3 C o r o l l a r y . For a right reductive semigroup Q, isomorphism (18) induces an 
embedding of 5 into F(Q)wl<P, and if Q2 = Q, it also induces an l-dense and dense 
embedding of 5 into A(Q)wl<P. 

P r o o f . It suffices to compose the isomorphism tf — Xa with ip and apply 5. 1, 
5. 2 and ([6], 1. 3. 5 and 1. 10. 2). 

5. 4 C o r o l l a r y . Every right reductive semigroup 5 for which GZ(S) acts 
simply transitively on each a-class can be embedded into r(Sjcj)wlGZ(S). If 5 is 
also globally idempotent, then 5 can also be l-densely and densely embedded into 
A(Sja)wlGZ(S). 

P r o o f . Apply 4. 3 and 5. 3. 

10 A 
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6. Cancellative semigroups. Fo r the class of cancellative semigroups, we are able 
to prove much stronger statements concerning <rs than in the general case. Throughout 
this section S denotes an arbitrary cancellative semigroup. 

6. 1 P r o p o s i t i o n . For any a,b^S, we have aab if and only if 

(22) aS—bS, Sa=Sb, axb=bxa for all x£S. 

P r o o f . First let a—lb where Xf,GZ(S). For any we obtain ax=(Xb)x= 
=b(Xx)£bS, xa=x(Xb) = (Xx)b£Sb proving aSQbS and Sa^Sb. By symmetry, 
we also have bSQaS and Sb^Sa. Further , axb=ax(Xa)=(Xa)xa=bxa, and thus the 
pair a, b satisfies (22). 

Conversely, let a,b£S satisfy (22). For every x£S there exists a unique S 
such that ax=by. We then define a function X on S by the requirement ax—b(Xx) 
(x£S). Similarly define X' by bx=a(X'x) ( x £ S ) . Then ax=b(Xx)=a(X'Xx) so that 
x=X'Xx and similarly x=XX'x for all x(i S, which shows that X is invertible. Further-
more, X is obviously a left translation of S. Analogously define g on 5 by xa— 
= (xg)b\ a dual proof shows that g is an invertible right translation on S. For any 
x£S, we also have b{Xx)b=axb=bxa=b{xg)b so tha t XX=XQ. But then par t b) of 
3 . 3 implies that (X, g) 6 CQ(S), and hence X£GZ(S). Finally ax=b(Xx) implies 
ax=(Xb)x so that a=Xb. 

6 . 2 C o r o l l a r y . Let S be a cancellative semigroup without idempotents. 
Then there exists a nontrivial group G and a cancellative semigroup V which is an 
ideal extension of S by G° such that GQC( V) if and only if there exist distinct ele-
ments a and b of S for which aS=bS, Sa= Sb, axb=bxa for all x£S. 

P r o o f . The last condition is equivalent to the statement that c r s i s n o t t h e equality 
relation on S, which is in turn equivalent to the assertion that GZ(S) is nontrivial. 
N o w if V — S U G is an extension of S described above, then V is a dense extension 
of S and the canonical homomorph i sm G-~Q(S) provides an isomorphism of G 
into GCQ(S) (see [7] for a general discussion). Hence if G is nontrivial, so is GCQ(S) 
and thus also GZ(S). Conversely, if GZ(S) is nontrivial, then V = SUGCQ(S) 
with the identification of S and n(S), provides an extension of S of the desired 
form. 

For the case of a commutat ive cancellative 5, this corollary reduces to ([8], 
Theorem 4. 4). The next lemma is also of independent interest. 

6. 3 L e m m a . A dense extension of a left cancellative right reductive semigroup 
is left cancellative and right reductive. 

P r o o f . Let V be a dense extension of a left cancellative right reductive semi-
group S1. Let a,b£V and suppose that as=bs for all s£S. In part icular ( t a ) s= 
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= (tb)s for all t, s£S where ta, tb£ S, so by right reductivity of S we obtain ta=tb. 
Consequently as=bs, sa=sb for all s£ S, which by ([7], Theorem 3. 7) implies a = b 
since V is a dense extension of S. In particular, V is right reductive. Suppose next 
that ca—cb for some a,b,c£V. Then (sc)(at)—(sc)(bt) for all s,t£S, where 
sc, at, bt£S. Hence the left cancellation in S yields at=bt for all S. But then a = b 
as we have seen above. Thus V is left cancellative. 

6 . 4 C o r o l l a r y . If S is cancellative, so is Q(S). 

P r o o f . This follows from 6. 3, its dual, and the fact that Q(S ) is a (maximal) 
dense extension of FI(S)==S by ([6], 1. 3. 5). 

Let S be a cancellative semigroup, and for every a(iS denote by a* the cr-class 
containing a. Let aob and (X, g)£Q(S). Then a = <pb for some <p£GZ(S) which 
implies Xa=Xq>b = q>{Xb) and ag = ((pb)g = cp(bg), so that XaoXb and agabg. This makes 
it possible to define the function d below. 

6. 5 T h e o r e m . For a cancellative semigroup S, define a function 0 by: 

(23) 0: (X, Q)-.(I, Q) ((X,e)£Q(S)) 

where 

(24) la* = ( X d f , a*o = {aQf (a €5) . 

Then 6 is a homomorphism of Q(S) into Q(Sjas) and ker 0 — on(S). Moreover Q(S/os) 
is cancellative. 

P r o o f . The discussion before the theorem shows that both 1 and g are single-. 
valued. For any a,b£S, we obtain 

{la*) b* = (Xaf b* = [(Xa) bf = [X (ab)]* = 1 {abf = 1 (a* b*) 

so I £ A (S/o), and dually g£P(S/o); that I and g are linked is verified in a similar 
manner. Thus 0 maps i2(S) into i2(S/<r). For (X, g), (<p, i¡/) 6 Q(S) and a£S, we have 

(J.{p)a* — I((pa*) = X{(pa)* = {X(pa)* = X(pa* 

so that Xcp=X(p and dually gij/ = gip, showing that 0 is a homomorphism. 
Next let (X, g), (<p, i / /)£ Q(S). Then (X, g)0 = (<p, ip)6 is successively equivalent to 

X—ip, g = and to 
(Xa)* = (cpay, (ao)* = (atjj)* (a£S), 

and to 

(25) ' Xaatpa, agaatjj (a£S). 

Suppose that Xaocpa for all a£S. By 6. 1, we have 

(X a)S=((pa)S, S(Xa)=S(<pa), (Xa)x(<pa) = (<pa)x(Xa) (x£S). 
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For a fixed a6 S, as in the proof of 6. 1, we may define y and 3 by: 

(Xa)x = (<pa)(yx), x(Xa) = (x5)(q>a) (x 6 S). 

It follows as in the proof of 6. 1 that (y, 3)^CGQ(S) and Xa—ytpa. Further (ag)a— 
=a(Xa)=a(y(pa)=(a5ip)a so ag=a5tp. For any b f. S we then have a(Xb) — (ag)b= 
—(a5\p)b—a{y(pb) and thus Xb = ytpb. As in the preceding step, this also implies 
bg—b3ip. Consequently (X, g)—(y, 3)(tp, ip) with (y, 3) £GCQ(S) and hence 

0*. Q)<Ti}(S)(<P, <P)-

Note that we have used only the first half of (25) and for a single a. Hence ker OQ 

Conversely, suppose that (X, e)o-n(S)(<p, ip). Then for some (y, 5)6 GCQ(S), we 
have (X, g) — (y, $)(<p, ip), and thus X—ycp, g=5ip. Thus for every a£S, we obtain 
Xa=y((pa) and aQ = (a3)ip = (ya)ip = y(aip), and hence (25) holds since y^GZ(S). 
We have seen above that this is equivalent to (X, g)0 = (cp, \p)0. Consequently 
QkerO, and the equality prevails. 

Suppose that a*c*—b*c*. Then acabc and thus ac = X(bc) for some XcGZ(S). 
But then ac = (Xb)c so that a=Xb and thus a* = b*. It follows that right cancellation 
in S implies right cancellation in S/'a. By symmetry, we conclude ihat Sja is.car. -
cellative, which by 6. 4 implies that Q(S/cr) is cancellative. 

The next result shows that for every element b of a cancellative semigroup S 
we can define a new multiplication on a subset of S in such a way as to make it a 
semigroup isomorphic with Z(S) and for which b acts as the identity element. 
The group of units of this semigroup, as a set, coincides with the <rs-class of b. 

6. 6 T h e o r e m . Let S be a cancellative semigroup. For any b £ S, let 

Zb={a£S\aS<gbS, Sa£ Sh, axb = bxa for all x€ S}, 

and on Ib define multiplications * and o by the formulae: 

aa' — b(a%-a') = (aoa')b. 

Then Ib is dosed under %, the two multiplications coincide, and the mapping ip defined 
by Ip:X—Xb (X£Z(S)) is an isomorphism of Z(S) onto (Ib, In (Ib, b is the 
identity element and (b*, %) = G(Eb, ^)~GZ(S). 

P r o o f . For X^Z(S) and any x£S, we obtain (Xb)x=b(Xx)£bS, x(Xb) = 
= (Xx)b£Sb, (Xb)xb—bx{Xb) which shows that Xb£Zh. If a£Zb, then similarly as 
in the second part of the proof of 6. 1, we may show that X defined by ax = b{Xx) 
(x£S) has the properties X£Z(S) and a=Xb. Thus ip maps Z(S) onto Ib. Tf X, X'Z 
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€Z(S) and Xb=X'b, then for any x£S, (Xx)b=x(Xb)=x(A'b)=(X'x)b so that X = X' 
and \¡t is one-to-one. For X, X' £Z(S), we further have 

b [(Xb) * (X' b)] = (Xb) (X' 6) = ¿> (XX' b) 

so that ( A t / / ) * ( A ' [¡/) = (XX')\¡/ showing that i// is a homomorphism. Therefore \p is 
an isomorphism of Z(S") onto 2"fc, which in particular implies that I b is closed under 

For any a,a'^Ib, we also have 

b(a^a)b = aa'b = ba'a = b(a'oa)b 

and hence a * a ' = a'oa. But the isomorphism Z(S)^(Ib, shows that a%a' = 
= a' * a, and we conclude that and o coincide. It is immediate that b is the identity 
of ( I h , and a comparison with the definition of a s quickly shows that the last 
assertion of the theorem is correct. 

E x a m p l e . Consider the set S= {(a, 6 ) | 0 < a < l , 6 real} under the multiplication 
(a,b)(c,d) = (ac, bc + d). The mapping 

\a 01 
{a, by 

is easily seen to be an isomorphism of S into the multiplicative group of 2 X 2 non-
singular matrices over reals. Thus S is a cancellative semigroup. A straightfor-
ward calculation shows that the translational hull of S can be identified with the 
semigroup 

T={(a, Z>)|0<a;él, b real} 

with elements of T acting on elements of S and multiplying among themselves by 
the same rule as in S. One further verifies easily that 

(i) G(T) = CG(T)={(\,b)\b real} 

(i i) GZ(S) — Z(S) = GC(T) — C(T)={(\, 0)} . 

In particular, GCQ(S) is trivial while CGQ(S) = GQ(S) = CQ(S) is isomorphic 
to the group of additive real numbers. 

In [4] (Chapitre II, § 4 ) DUBREIL defines an "inner automorphism" of a can-
cellative semigroup S as follows. For a £ S such that aS=Sa, define a„ and by 
the formulae: ax = (y.ax)a, xa~a((lax) (s£S). Then a„ and are called inner auto-
morphisms of the first and second category, respectively. It is easy to see that for any 
cancellative semigroup S and (A, Q)^GQ(S), a£S, we have aS=Sa and <xa = 6(Á e) 

if and only if Xa^C(S). In the above example, 

(iii) (a, b)S— S(a, b) for all (a, b) 6 S, 

(iv) C (S ) = 0. 
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Hence S has inner automorphisms of the first (and thus also of the second) 
category but none is a generalized inner au tomorphism in our sense. In the case of 
groups, however, both of these notions reduce to inner automorphisms. For fur ther 
properties of this type of example, see ([1], § 2. 1, exerc. 9). 

7. Commutative cancellative semigroups. Fo r a semigroup S of this class, we can 
give much more precise and complete information concerning the representation 
of S as a Schreier extension of GZ(S) by S/as. We start with some auxiliary results. 

7. 1 L e m m a . A dense extension V of a commutative reductive semigroup S is 
commutative. 

P r o o f . Let a, bZ V; then for any s, t£S, we have s(ab)t=(sa)(bt)=(bt)(sa) = 
=b(sa)t=bs(at)=(bat)s=s(ba)t which by reductivity in S yields sab=sba. Since 
this holds for all s£ S, ([7], Theorem 3. 7) implies ab—ba by density of the extension. 

In fact, the above V is also reductive, which we will not need here. 

7. 2 C o r o l l a r y . If S is commutative and cancellative, so is Q(S). 

P r o o f . This follows f r o m 7. 1 and ([6], 1. 3. 5). 

7. 3. L e m m a . For any commutative semigroup S we have Z(S) — A(S) — A(S). 

P r o o f . If X£A(S), then letting sg = Xs (s£S), we obtain (X, Q)£Q(S), which 
shows that A ( S ) g /T(S). The inclusion A (S) Q Z(S) follows immediately f r o m com-
mutativity. 

We infer that for a commutat ive reductive semigroup, the projection nA furnishes 
an isomorphism of Q(S) on to A (5 ) , and both of these are commutat ive. In order to 
simplify our statements, we introduce the following concept. 

7 . 4 . D e f i n i t i o n . A semigroup S is basic if S is commutative, cancellative, 
and aS=bS implies a=b. 

In view of commutativity and 6. 1, the last condition is equivalent to crs being 
the equality relation. Note that in general as/<T need not be the equality, relation, it 
suffices to take a group G fo r which G/C(G) has a nontrivial center. For the semi-
groups under consideration, we have 

7. 5. P r o p o s i t i o n . Let S be a commutative cancellative semigroup. Then as 

is the smallest congruence x on S for which Sjx is basic. 

P r o o f . At the end. of the proof of 6. 5, we have seen tha t cancellation in S 
implies cancellation in Sjas. Next suppose that a*as,b* where a-~a* is the canonical 
homomorphism of S onto S/a=S*. By 6. 1, we have a* S*=b* S*. Thus for every 
x£S there exists y£S such that a*x* = b*y*. But then (ax)* = (by)* which' implies 
axS=byS. In particular, there exists for which axy = byz, and thus ax—bz. 
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This shows that aSQbS; by symmetry we conclude that aS=bS, i.e., aosb. We 
have proved that a*as,b* implies a*=b*, and S/<jS is basic. 

Next let x be any congruence on S for which S/x is basic, and let a — <5 be the 
canonical homomorphism of S onto S/x = S. If aasb, then aS=bS so 
and since S is basic, it follows that a = b. Hence axb proving that osQx. 

We come now to the principal theorem of this section. It is the culmination 
of the effort to construct commutative cancellative semigroups out of commuta-
tive cancellative semigroups having some special properties and using GZ(S) and S/o. 

7 . 6 T h e o r e m . Let Q be a basic semigroup, 0 be an abelian group, 
S—(Q, 0, [ , ]) be a Schreier extension of 0 by Q, and suppose that 

(26) [a,b] = [b,a] (a,biQ). 

Then S is a commutative cancellative semigroup for which SJos = Q, and GZ(S) = 0. 
Conversely, every commutative cancellative semigroup S is isomorphic to (Q, 0,[ , ]) 
for some basic semigroup Q, abelian group 0, and a function [ , ] satisfying (6) 

and (26). 

P r o o f . Let S be as in the first part of the theorem. A simple calculation shows 
that 5 is both commutative and cancellative. The mapping i l / : (a ,a )—a for all 
(a, a) £ S, is obviously a homomorphism of 5 onto Q. Let (a, a)as(b, (i). Then 
(a, a)S=(b, P)S and hence for any c£Q there exists (d, y)£S such that (a, a)(c, a) — 
= (b, P)(d, y). But then ac=bd which implies aQQbQ. By symmetry, we also have 
bQQaQ so that aQ — bQ. Since Q is basic, we infer that a=b, which in turn im-
plies that (a, a) i j /=(b, P)ij/. Consequently <r s gker [p. To prove the converse, by sym-
metry, it suffices to show that (a, ot)SQ(a, P)S for any a6Q, a, PZ0. Indeed, for 
any (c, y) £ S, we obtain 

(a, a)(c, y) = (ac, [a, c ] + a + y) = (a, p)(c, a + y-p)e(a, P)S. . 

Thus <rs=keri¡/ and S / a s ^ Q . 
We prove next the second isomorphism. Fix b£_Q and let 0 be the identity 

element of 0. For any A<EGZ(S), X(b, 0) is of the form (b, P) for some for 
as we have proved above, (a, oi)as(b, p) if and only if a=b, i.e., X must preserve 
the first entry. Hence we may define a function x f rom GZ(S) into 0 as follows: 

X(b,0) = (b,XX) (A£GZ(S)) . 

For X, X'£GZ(S), we have 

(b, 0) [XX'(b, 0)] = x (b, 0)X'(b, 0) = (b, ; . / ) (b, x' x) = (b2, [b, b)+xx+x' x), 

(b, 0)[Ar(£, 0)] = (b, 0 ) {b , (XX')x) = (b2, [b, b} + (X?.')x), 
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which implies Xx + X'x = W)x, i-e., x is a homomorphism. If Xx—X'x, then X(b, 0) = 
=X'(b,0), and hence for any (a, a ) £ S , 

[X(a, a)] (6, 0) = [X(b, 0)](a, *) = [X'(b, 0)](a, a ) = [k{a, a)](b, 0) 

which shows that X=X', so x is one-to-one. Next let /?€'<£. From what we have seen 
above, it follows that (b, fi)S={b, 0)S. It then follows easily that the function X 
defined by the formula: 

(b, P) (a, a) = (b, 0) (X(a, a)) ((a, a) e S) 

has the properties X^GZ(S) and X(b, 0) = (b, /?). Hence Xx=P proving that x maps 
GZ(S) onto <Z>. Therefore GZ(S) s <Z>. 

The converse follows immediately f rom 4. 3 and 7. 5, formula (26) follows from 
commutativity of S. 

7. 7 C o r o l l a r y . Let S={Q, <P, [ , ]) and S ' = (f i ' , <*>', [ , ] ') where [ , ] and 
[ , ]' satisfy (26), Q and Q' are basic. Then the conditions in 4. 4 are necessary and 
sufficient for isomorphism of S and S'. 

P r o o f . This follows from 7. 6 and the proof of 4 .4 . 

, 7. 8 C o r o l l a r y . Every commutative cancellative semigroup S can be embedded 
into T(Q)wl 0 and l-densely and densely embedded into A (Q)wl0 for some basic semi-
group Q and an abelian group 0. 

P r o o f . This follows f rom 7. 6 and 5. 4. 

As an example, we compute all functions [ , ] for two very simple basic semi-
groups. 

7. 9 P r o p o s i t i o n . Let N be the additive semigroup of positive integers and <P 
be an abelian group. For a sequence {a„}"=, of elements of define a function [ , ] by: 

n—l 
(27) [m, 1] = <x,„, [m,n] = am+ Z Ow-a.) ( m 1 , «&2). 

'=1 

Then [ , ] satisfies both (6) and (26). Conversely, every function [ , ] from N into 0 
satisfying (6) can be so obtained. 

P r o o f . For a function [ , ] defined by (27), it is routine to verify that it satisfies 
(6) and (26). Conversely, let [ , ] be a function f rom N into <i> satisfying (6). We 
let otm = [m, i] ( m £ N ) , then the second part of (27) can be written as 

[m,n] = [m, \]+"2\[m + i, l ] - [ i , 1]) 
;=i 
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The proof of this relation is by induction on n for a fixed m. The case of n= 1 is trivial. 
Suppos ; the formula correct for n. By (6), we have 

[m, n\ + [m + n, 1] = [m, n +l] + [", 1] 
which implies 

[m, n+ 1] = [m, n] + [m + n, 1]-[n, 1] = 

= [m,\] + "z ([m + i,\]-[i,\]) + [m+n,\]-[n,\] = 

= [m, \]+ 2 ([m + i, 1 ] — [/, 1]) 
/= l 

as required. 

7. 10 P r o p o s i t i o n . Let № be the additive semigroup of nonnegative integers 
and <t> be an abelian group. For any sequence {<x„}™=0 of elements of <t> define a func-
tion [ , ] by: [m, 0] = [0, m] = a() for m S 0 and (27) for the remaining values. Then [ , ]. 
satisfies both (6) and (26). Conversely, every function [ , \from № into <P satisfying 
(6) can be so obtained. 

P r o o f . A proof using 7 . 9 and considering the extra elements of the fo ;m 
[m, 0], [0, m] is straightforward and is omitted. 

7. 11 C o r o l l a r y . If S is a cancel/ative semigroup such that S/as is isomorphic 
to either N or №, then S is commutative. 

P r o o f ' By 4. 3, S is isomorphic to a Schreier extension of the abelian group 
GZ(S) and N or № . N o w 7. 9 and 7. 10 imply that the corresponding funct ion [ , ] 
automatically satisfies (26) which implies the commutativity of the Schreier extension 
and thus also of S. 

Since 7. 9 and 7. 10 yield all funct ions [ , ], we are able to construct all Schreier 
extensions of <P by A' or № . Even though 7. 7 gives necessary and sufficient conditions 
for isomorphism of such extensions, we are unable to tell which sequences will yield 
isomorphic semigroups. 
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