A note on small categories with zero

By ŠTEFAN SCHWARZ in Bratislava (ČSSR)

Let S be a semigroup with zero 0. We say that an idempotent e is a categorical left unit if ex is either x or 0 for any $x \in S$. An idempotent e is a categorical right unit if xe is either x or 0 for any $x \in S$.

A semigroup with zero is called *categorical at zero* if abc=0 implies either ab=0 or bc=0.

In accordance with [1] we define:

Definition. A semigroup with 0 is called a *small category with zero* if it satisfies the following two conditions:

C₁. To any non-zero element $a \in S$ there is a categorical left unit $e_i(a)$ and a categorical right unit $e_r(a)$ such that $e_i(a) \cdot a = a \cdot e_r(a) = a$.

 C_2 . S is categorical at zero.

For brevity we shall denote in the following a small category with zero as a C-semigroup.

The connection between category theory and C-semigroups is well known. C-semigroups have been studied by several authors, in particular by HOEHNKE (see e.g. [2]).

The purpose of this note is to prove a theorem concerning the relation between C-semigroups and a class of semigroups called dual semigroups introduced by the author ([3], [4]).

1

The following is partly presented in [1] in form of Exercises:

Lemma 1. In a semigroup satisfying Condition C_1 we have:

a) $e_r(a)$, $e_l(a)$ are uniquely determined.

b) $a \in Sa$, $a \in aS$, in particular $S^2 = S$.

11 A

c) Any categorical left unit of S is a categorical right unit of S.

With respect to c) we may speak (in a semigroup satisfying C_1) about the set of all non-zero categorical idempotents $\in S$. This set will be denoted by E. E is a

subset of the set of all non-zero idempotents E_0 and simple examples show that E can be a proper subset of E_0 .

Note that if card E=1, i.e. $E=\{e\}$, then e is the two-sided unit element of S. Let $e_1, e_2 \in E$ and $e_1 \neq e_2$. Then $Se_1 \cap Se_2 = 0$. For if there were $0 \neq a \in Se_1 \cap \cap Se_2$ we would have $a=be_1=ce_2$ (b, $c \in S$), hence $a=ae_1=ae_2$, a contradiction to a). Since any $a \in S$ can be written in the form $a=ae, e \in E$, we have

Lemma 2. Any semigroup satisfying Condition C_1 can be written in the form

$$S = \bigcup_{e_{\alpha} \in E} Se_{\alpha} = \bigcup_{e_{\alpha} \in E} e_{\alpha}S,$$

where $Se_{\alpha} \cap Se_{\beta} = e_{\alpha} S \cap e_{\beta} S = 0$ for $e_{\alpha} \neq e_{\beta}$.

Lemma 3. If $e_1, e_2 \in E$ and $e_1 \neq e_2$, then $e_1e_2=0$.

Proof. Suppose that $e_1e_2 \neq 0$. Then since both e_1 and e_2 are categorical units we have $e_1e_2=e_1$ and $e_1e_2=e_2$, hence $e_1=e_2$, contrary to the assumption.

We now use Condition C_2 .

Lemma 4. If S is a C-semigroup, $e \in E$ and $0 \neq a \in Se$, $0 \neq b \in eS$, then $ab \neq 0$.

Proof. ab=aeb=0 implies either ae=0 or eb=0, i.e. either a=0 or b=0.

Remark. There are large classes of semigroups satisfying Condition C_2 . E.g., a 0-simple semigroup containing a 0-minimal left ideal (in particular a completely 0-simple semigroup) is categorical at zero. (For a proof see [1], Lemma 8, 23, p. 86.)

In [3] (see also [1], pp. 29—30) we have introduced the notion of a dual semigroup. If S is a semigroup with zero and A a subset of S, the *left* and *right annihila*tors r(A) and l(A) are defined by $r(A) = \{x \in S | Ax=0\}$, $l(A) = \{x \in S | xA=0\}$.

A semigroup with zero is called *dual* if for any left ideal L of S we have l[r(L)] = L and for any right ideal R of S we have r[l(R)] = R.

Clearly l(A) and r(A) are left and right ideals, respectively.

It has been proved in [4] that in a dual semigroup S any left ideal of S contains a 0-minimal left ideal of S. If L_0 is a 0-minimal left ideal of S, then $r(L_0)$ is a maximal right ideal of S. Analogously for right ideals. Also if for two left ideals we have $L_1 \not\subseteq L_2$, then $r(L_1) \not\supseteq r(L_2)$.

Recall for further purposes: A semigroup S is called a 0-direct union of its twosided ideals M_{α} , $\alpha \in A$, if

$$S = \bigcup_{\alpha \in \Lambda} M_{\alpha}$$
 and $M_{\alpha} M_{\beta} = M_{\alpha} \cap M_{\beta} = 0$ for $\alpha \neq \beta$.

We now prove the following

²

Small categories with zero

Theorem. A small category with zero is a dual semigroup if and only if it is a 0-direct union of completely 0-simple dual semigroups.

Proof. 1. Let S be a C-semigroup. Consider the left ideal Se, $e \in E$. Since $Se \cdot fS = 0$ for every $f \neq e$ $(e, f \in E)$, we have $r(Se) \supset \{\bigcup_{f} fS | f \in E, f \neq e\}$. By Lemma 4 for any $a \in eS$ we have $Se \cdot a \neq 0$. Hence $r(Se) = \{\bigcup_{f} fS | f \in E, f \neq e\}$.

We next prove: If S is moreover dual, then Se is a 0-minimal left ideal of S. Let $L \neq 0$ be a left ideal of S, $L \not\subseteq Se$. By duality we have $r(Se) \not\subseteq r(L)$. Hence $r(L) \not\supseteq$ $\not\supseteq \{ \bigcup fS | f \in E, f \neq e \}$ and $r(L) \cap eS \neq 0$. There exists therefore an element $a \in eS$ such that La=0. This constitutes a contradiction since for any $b \in L$, $b \neq 0$ and $a \in eS$, $a \neq 0$ we have (by Lemma 4) $ba \neq 0$. Hence Se is a 0-minimal left ideal of S.

Call two ideals $A_1 \neq A_2$ of S quasidisjoint if $A_1 \cap A_2 = 0$.

Lemma 2 implies that S is a union of pairwise quasidisjoint 0-minimal left ideals of S. Analogously, S is a union of pairwise quasidisjoint 0-minimal right ideals of S. It is known (see e.g. [1], Theorem 6, 39) that such a semigroup is a 0-direct union of completely 0-simple semigroups. Hence we may write

$$S = \bigcup_{\alpha \in A} M_{\alpha}, \quad M_{\alpha} M_{\beta} = M_{\alpha} \cap M_{\beta} = 0 \quad \text{for} \quad \alpha \neq \beta,$$

where M_{α} ($\alpha \in \Lambda$) runs through all 0-minimal two-sided ideals of S.

Now it is easy to see that a semigroup which is a 0-direct union of its ideals is dual iff each of the ideal components is dual. (For an explicit proof see [4].) Hence each M_{α} ($\alpha \in \Lambda$) is dual.

2. Suppose conversely that S is a 0-direct union of completely 0-simple dual semigroups: $S = \bigcup M_{\alpha}, M_{\alpha}M_{\beta} = M_{\alpha} \cap M_{\beta} = 0$ for $\alpha \neq \beta$.

Recall (see [4]) that a completely 0-simple dual semigroup M_{α} can be written in the form $M_{\alpha} = \bigcup_{e=e^2 \in M_{\alpha}} M_{\alpha}e = \bigcup_{e=e^2 \in M_{\alpha}} eM_{\alpha}$ with $M_{\alpha}e_1 \cap M_{\alpha}e_2 = 0$ and $e_1 M_{\alpha} \cap \bigcap e_2 M_{\alpha} = 0$ for $e_1 \neq e_2$, and any non-zero idempotent $\in M_{\alpha}$ is a categorical unit of M_{α} . This immediately implies that the 0-direct union $S = \bigcup_{\alpha \in A} M_{\alpha}$ satisfies Condition C₁. Since (by the Remark after Lemma 4 above) each M_{α} is categorical at zero, S is clearly also categorical at zero. Hence S satisfies Condition C₂. This proves our Theorem.

Remark 1. In [4] we have proved that any dual semigroup satisfies Condition C_1 and, moreover, in any dual semigroup every non-zero idempotent is a categorical unit. This implies:

Corollary 1. A dual semigroup which is not a 0-direct union of completely 0-simple dual semigroups is not categorical at zero.

St. Schwarz: Small categories with zero

Remark 2. Recall the following notions. An element $a \neq 0$ of a C-semigroup S is called *invertible*, if there is an element $a' \in S$ such that $aa' = e_t(a)$, $a'a = e_r(a)$. Further, a regular semigroup is said to be primitive if each of its non-zero idempotents is primitive. Using the known results mentioned in [1] (p. 79) and the fact proved in [5] (see also [4]) that any 0-simple dual semigroup is completely 0-simple, we have the following

Corollary 2. For a semigroup with zero the following statements are equivalent:

- 1. S is a small category with zero which is a dual semigroup.
- 2. S is a 0-direct union of 0-simple dual semigroups.
- 3. S is a small category with zero every non-zero element of which is invertible.
- 4. S is a primitive inverse semigroup.

References

- A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Mathematical Surveys No 7, Vol. 2, (Providence, R. I., 1967).
- [2] H. J. HOEHNKE, Zur Theorie der Gruppoide I, Math. Nachr., 24 (1962), 137–168; IV, Monatsber. Deutsch. Akad. Wiss. Berlin, 4 (1962), 337–342; V, ibidem 4 (1962), 539–544.
- [3] Š. SCHWARZ, On dual semigroups, Czech. Math. J., 10 (1960), 201-230.
- [4] Š. SCHWARZ, On the structure of dual semigroups, Czech. Math. J., 21 (1971), 461-483.
- [5] Š. SCHWARZ, Any 0-simple dual semigroup is completely 0-simple, Semigroup Forum. 2 (1971), 90-92.

(Received August 31, 1972)