Weighted shifts of class $\mathscr{C}_{\boldsymbol{e}}$

By G. ECKSTEIN and A. RÁCZ in Timişoara (Romania)

§ 1. Introduction

In this paper we study weighted shifts of class \mathscr{C}_{e} and apply the results to obtain some "metric properties" of operators of class $\mathscr{C}_{\boldsymbol{e}}$. We shall include some known facts for these classes and resume parts of the papers [2] and [3].

We shall consider complex Hilbert spaces only. Operators will be supposed linear and bounded. For the Hilbert space \mathfrak{S} we denote by $\mathscr{L}(\mathfrak{G})$ the algebra of all operators on $\mathfrak{5}$.

Definition. The operator $T \in \mathscr{L}(\mathfrak{H})$ is said to be of class $\mathscr{C}_{\varrho}(\varrho>0)$ if there exist a Hilbert space $\Omega \supset \mathfrak{G}$ and a unitary operator $U \in \mathscr{L}(\Omega)$ such that

$$
\begin{equation*}
T^{n}=\left.\varrho P_{55} U^{n}\right|_{5} \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

$P_{5}=P$ denoting orthogonal projection from Ω onto \mathfrak{G}. The operator U is called the unitary ϱ-dilation of T.

The classes \mathscr{C}_{ϱ} were introduced by B. Sz.-Nagy and C. Foiaş cf. [1]. Recall the following facts:
a) \mathscr{C}_{ϱ} is an increasing function of ϱ, i.e. $\mathscr{C}_{\varrho} \supset \mathscr{C}_{\sigma}$ for $\varrho>\sigma$.
b) \mathscr{C}_{1} is the class of contractions (B. Sz.-NAGY).
c) \mathscr{C}_{2} is the class of numerical radius contractions (C. A. Berger).
d) If $T \in \mathscr{C}_{\varrho}$, then $\left\|T^{n}\right\| \leqq \varrho$ and $v(T) \leqq \min \{1, \varrho\}(v(T)$ means spectral radius).
e) $T \in \mathscr{C}_{e}$ if and only if
(2) $(\varrho-2)\|z T h\|^{2}-2(\varrho-1) \operatorname{Re}(z T h, h)+\varrho\|h\|^{2} \geqq 0$ for $h \in \mathcal{G}$ and $|z| \leqq 1$.

We will also use the following obvious corollaries of e):
f) If $T \in \mathscr{C}_{e}$ and $\mathfrak{H}_{0} \subset \mathfrak{H}$ is a closed invariant subspace for T, then $T \mid \mathfrak{S}_{0} \in \mathscr{C}_{e}$.
g) The class \mathscr{C}_{e} is closed in the strong operator topology.

1. 2. Proposition. If $T_{j} \in \mathscr{L}\left(\mathfrak{S}_{j}\right)$ belongs to the class $\mathscr{C}_{e_{j}}(j=1,2)$, then $T_{1} \otimes T_{2} \in \mathscr{C}_{\mathbb{Q}_{1} \mathbb{Q}_{2}}$.

Proof. Indeed, if U_{j} is a unitary ϱ_{j}-dilation of T_{j} in $\Omega_{j} \supset \mathfrak{S}_{j}$, it is easy to verify that $U_{1} \otimes U_{2}$ is a unitary $\varrho_{1} \varrho_{2}$-dilation of $T_{1} \otimes T_{2}$ in $\Omega_{1} \otimes \Omega_{2}$.

1. 2. Proposition. $T \in \mathscr{C}_{Q}$ if and only if

(i) $v(T) \leqq a=\min \{1, \varrho\}$,
(ii) ($\varrho-2)\|T h\|^{2}-2|\varrho-1||(T h, h)|+\varrho\|h\|^{2} \geqq 0$ for all $h \in \mathfrak{5}$.
(i) is redundant if $0<\varrho \leqq 2$.

Proof. The case $\varrho=1$ is obvious. The necessity part follows from d) and e) taking $|z|=1$. Let $\varrho \neq 1$ and suppose that (i) and (ii) are satisfied. Remark that (ii) may be written in the form:

$$
(\varrho-2)\|z T h\|^{2}-2(\varrho-1) \operatorname{Re}(z T h, h)+\varrho\|h\|^{2} \geqq 0 \quad \text { for } \quad|z|=1 \quad \text { and } h \in \mathfrak{S}
$$ or, equivalently,

$$
\begin{equation*}
\|[\varrho I-(\varrho-1) z T] h\| \geqq\|z T h\| \quad \text { for } \quad h \in \mathfrak{S}, \quad|z|=1 \tag{3}
\end{equation*}
$$

From (i) it follows that $\varrho|\varrho-1|^{-1}>a$; hence

$$
\dot{C}(z)=z T[\varrho I-(\varrho-1) z T]^{-1} \in \mathscr{L}(\mathfrak{H})
$$

for $|z|<b$, where $b=\varrho|\varrho-1|^{-1} a^{-1}$. Since $b>1$, inequality (3) may be written in the form

$$
\|C(z)\| \leqq 1 \quad \text { for } \quad|z|=1
$$

$C(z)$ being analytic on the closed unit disk, it follows by the maximum modulus theorem that

$$
\|C(z)\| \leqq 1 \quad \text { for } \quad|z| \leqq 1,
$$

that is,

$$
\|[\varrho I-(\varrho-1) z T] h\| \geqq\|z T h\| \text { for } \quad h \in 母, \quad|z| \leqq 1
$$

which is equivalent to (2). The proof is complete.

1. 3. Recall now a construction from [2]. Let T a power-bounded operator in $\mathscr{L}(\mathfrak{H})$. Put $\boldsymbol{H}=\bigoplus_{-\infty}^{\infty} \mathfrak{S}_{k}$, where each \mathfrak{S}_{k} is a copy of $\mathfrak{5}$, and denote by $\left\{\hat{h}_{k}\right\}_{k \in \mathbb{Z}}$ the elements of \boldsymbol{H}. We shall denote an element of the form $\{\ldots, 0, \ldots, \stackrel{(k-1)}{0,} \stackrel{(k)}{h}, \stackrel{(k+1)}{0}, \ldots, 0, \ldots\}$ (k)
simply by h. Let $\left\{p_{k}\right\}_{k \in \boldsymbol{Z}}$ be an arbitrary sequence of positive integers. Define $\boldsymbol{T} \in \mathscr{P}(\boldsymbol{H})$ as the operator $\stackrel{(k)}{h \rightarrow T^{p_{k}} h}$. In [2] it is proved that if $T E^{\prime} \mathscr{C}_{Q}$, then $T \in \in^{\prime} \mathscr{C}_{\boldsymbol{Q}}$.

We shall use also the following
1.4. Theorem. If $T \in \mathscr{C}_{e}$, the sequence $\left\{\left\|T^{n} h\right\|\right\}$ converges for all $h \in \mathfrak{S}$.

For the proof, see [2] or [7].

§ 2. Weighted bilateral shifts

In this paragraph we shall consider a Hilbert space with an orthonormal basis $\left\{e_{k}\right\}_{k \in \boldsymbol{Z}}$ and corresponding weighted (bilateral) shifts, i.e. operators which transform e_{k} into $w_{k} e_{k+1}$, where $\left\{w_{k}\right\}_{k \in \boldsymbol{Z}}$ is a bounded sequence of complex numbers. Such a weighted shift is unitarily equivalent to the one with weights $\left\{\left|w_{k}\right|\right\}$ so we can suppose that the weights are nonnegative (see [5] or [6]).

We shall denote by. $\left\{\ldots, w_{-n}, \ldots, w_{-1}, w_{0}, w_{1}, \ldots, w_{n}, \ldots\right\}$ or briefly by $\left\{w_{k}\right\}$ the weights as well as the operator itself.
2. 1. Proposition. If $\left\{w_{k}\right\} \in \mathscr{C}_{Q}$ and $\left\{s_{k}\right\} \in \mathscr{C}_{\sigma}$ then $\left\{w_{k} s_{k}\right\} \in \mathscr{C}_{\varrho \sigma}$.

Proof. Aplying 1. 1 we have that $\left\{w_{k}\right\} \otimes\left\{s_{k}\right\} \in \mathscr{C}_{\Omega \sigma}$. Notice that the subspace $\mathfrak{H}_{0} \subset \mathfrak{H} \otimes \mathfrak{H}$ generated by $\left\{e_{k} \otimes e_{k}\right\}_{k \in \boldsymbol{Z}}$ is invariant for $\left\{w_{k}\right\} \otimes\left\{s_{k}\right\}$ and the restriction to \mathscr{H}_{0} of this operator is also of class $\mathscr{C}_{\varrho \sigma}$. But this restriction is a weighted shift with weights $\left\{w_{k} s_{k}\right\}$.
2. 2. Corollary. If $\left\{w_{k}\right\} \in \mathscr{C}_{e}$ and $0 \leqq s_{k} \cong w_{k}$, then $\left\{s_{k}\right\} \in \mathscr{C}_{e}$.

Proof. One can find numbers $0 \leqq \alpha_{k} \leqq 1$ such that $s_{k}=\alpha_{k} w_{k}$. Since $\left\{\alpha_{k}\right\}$ is a contraction, the conclusion follows.
2.3 Proposition. $T=\left\{w_{k}\right\} \in \mathscr{C}_{\boldsymbol{l}}$ if and only if

$$
\begin{equation*}
v(T) \leqq a=\min \{1, \varrho\}, \tag{j}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left[(\varrho-2) w_{k}^{2}+\varrho\right] x_{k}^{2}-\sum_{k=-\infty}^{\infty} 2(\varrho-1) w_{k} x_{k} x_{k+1} \geqq 0 \tag{ij}
\end{equation*}
$$

for every sequence of real numbers x_{k} with $\sum_{-\infty}^{\infty} x_{k}^{2}<\infty$.
Proof. Take $h=\sum z_{k} e_{k}$ and apply (1.2). If we put $x_{k}=\left|z_{k}\right|$ we obtain (ji).
2.4. Lemma. The real infinite quadratic form

$$
\sum_{-\infty}^{\infty} a_{k} x_{k}^{2}-\sum_{-\infty}^{\infty} b_{k} x_{k} x_{k+1} \quad\left(\sum_{-\infty}^{\infty} x_{k}^{2}<\infty ; a_{k}, b_{k} \text { bounded }\right)
$$

is positive semidefinite if and only if it can be written in the form

$$
\sum\left(\alpha_{k} x_{k}-\beta_{k} x_{k+1}\right)^{2} \quad\left(\alpha_{k}, \beta_{k} \in \mathbf{R}\right)
$$

Proof. See [3].
2.5. Theorem. $\left\{w_{k}\right\} \in \mathscr{C} \mathscr{C}_{2}$ if and only if the weights are of the form $w_{k}^{2}=$ $=\left(1-c_{k}\right)\left(1+c_{k+1}\right), c_{k} \in[-1,1], k \in Z$.

Proof. As known, \mathscr{C}_{2} consists of the operators T with $|(T h, h)| \leqq\|h\|^{2}$, that is, of numerical radius contradictions. Using 2. 3, a necessary and sufficient condition for $\left\{w_{k}\right\}$ to be of the class \mathscr{C}_{2} is that

$$
\sum_{-\infty}^{\infty} x_{k}^{2}-\sum_{-\infty}^{\infty} w_{k} x_{k} x_{k+1} \geqq 0 \quad \text { if } \quad \sum_{-\infty}^{\infty} x_{k}^{2}<\infty
$$

that is (using 2.4)

$$
\alpha_{k}^{2}+\beta_{k-1}^{2}=1,2 \alpha_{k} \beta_{k}=w_{k}, \quad \text { where } \quad \alpha_{k}, \beta_{k} \in \mathbf{R}, k \in Z
$$

We have $w_{k}^{2}=4 \alpha_{k}^{2} \beta_{k}^{2}=2 \alpha_{k}^{2}\left(2-2 \alpha_{k+1}^{2}\right)$. Put $c_{k}=1-2 \alpha_{k}^{2}$, and the conclusion follows.
2. 6. Proposition. $T=\left\{w_{k}^{\prime}\right\} \in \mathscr{C}_{e}(\varrho>2)$ if and only if

$$
\text { (k) } \quad v(T) \leqq 1, \quad \text { (kk) } \quad\left\{u_{k}\right\} \in \mathscr{C}_{2},
$$

where

$$
u_{k}=\frac{2(\varrho-1) w_{k}}{\sqrt{(\varrho-2) w_{k}^{2}+\varrho} \sqrt{(\varrho-2) w_{k+1}^{2}+\varrho}}
$$

Proof. Take $y_{k}^{2}=\left[(\varrho-2) w_{k}^{2}+\varrho\right] x_{k}^{2}$ in (ij) of (2.3).
2.7 Proposition. If $T=\left\{w_{k}\right\} \in \mathscr{C}_{e}$ then $\prod_{-\infty}^{\infty} w_{k}$ converges (possibly to 0).

Observe that $\prod_{-\infty}^{\infty} w_{k}=\lim \left\|T^{n} e_{0}\right\| \cdot \lim \left\|T^{*_{n}} e_{0}\right\| ;$ the limits i on the right hand side exist by 1.4.

Observe that $\prod_{-\infty}^{\infty} w_{k} \neq 0$ implies $w_{k} \rightarrow 1$ as $k \rightarrow \pm \infty$.
2.8. Proposition. If $\left\{w_{k}\right\} \in \mathscr{C}_{2}$ then $\prod_{-\infty}^{\infty} w_{k} \leqq 1$.

Indeed, from 2. 5 we have

$$
\Pi w_{k}=\Pi \sqrt{\left(1-c_{k}\right)\left(1+c_{k+1}\right)}=\Pi \sqrt{1-c_{k}^{2}} \leqq 1 .
$$

2. 9. Definition. Let $\left\{w_{k}\right\}$ be a weighted shift. A compression of $\left\{w_{k}\right\}$ is any weighted shift obtained by substituting a finite sequence of consecutive weights by their product.

For example, $\left\{\ldots, w_{-2}, w_{-1} w_{0}, w_{1}, \ldots\right\}$ and $\left\{\ldots, w_{-2}, w_{-1} w_{0} w_{1}, w_{2}, \ldots\right\}$ are compressions of the shift $\left\{w_{k}\right\}$.
2. 10. Proposition. Every compression of a weighted shift $\left\{w_{k}\right\}$ of class \mathscr{C}_{e} is also of class \mathscr{C}_{e}.

Proof. Choose $m \leqq n$ and let $\left\{v_{k}\right\}$ be the weighted shift with
$v_{k}=w_{k}$ for $k<m, \quad v_{m}=w_{m} \ldots w_{n}, \quad v_{k}=w_{k+n-m}$ for $k>m$.
To prove that $\left\{v_{k}\right\} \in \mathscr{C}_{e}$ we shall repeat the construction of 1.3 by choosing $p_{k}=1$ for $k \neq m$ and $p_{m}=n-m+1$. Let \mathfrak{S}_{0} be the subspace of \boldsymbol{H} with base $\left\{e_{k}\right\}$ for $k \leqq m$, and $\left\{e_{k+n-m}^{(k)}\right\}$ for $k>m . \mathfrak{S}_{0}$ will be invariant for \boldsymbol{T} and $\boldsymbol{T} \mid \mathfrak{S}_{0}$ will be just the weighted shift with weights $\left\{v_{k}\right\}$.
2. 11 Proposition. If $\left\{w_{k}\right\} \in \mathscr{C}_{e}$ then $a=\Pi w_{k} \leqq 1$.

Proof. For $\varrho=2$, (and then also for $\varrho<2$) this is contained in 2. 8. Denote by T_{n} the weighted shift obtained from $T=\left\{w_{k}\right\}$ by compression of weights from w_{-n} to w_{n}. By 2. 10, $T_{n} \in \mathscr{C}_{\bullet}$. If $a>0$, then $T_{n} \rightarrow\{\ldots, 1, \ldots, 1, a, 1, \ldots, 1, \ldots\}$ (strongly). It follows that $\{\ldots, 1, a, 1, \ldots\} \in \mathscr{C}_{e}$. If $a>1$, by Corollary 2.2 we may suppose $1<a<\frac{\varrho}{\varrho-2}$. Using 2.6 we deduce that

$$
u_{k}=\left\{\ldots, 1, \ldots, 1, \sqrt{\frac{2(\varrho-1)}{(\varrho-2) a^{2}+\varrho}}, \sqrt{\frac{2(\varrho-1)}{(\varrho-2) a^{2}+\varrho}} \cdot a, 1, \ldots\right\} \in \mathscr{C}_{2}
$$

But $1 \geqq I I u_{k}=\frac{2(\varrho-1) a}{(\varrho-2) a^{2}+\varrho}>1\left(\right.$ since $\left.\mathrm{a}<\frac{\varrho}{\varrho-2}\right)$. which is impossible.
2. 12. Theorem. If $\left\{w_{k}\right\} \in \mathscr{C}_{Q}$ and $\prod_{-\infty}^{\infty} w_{k}=1$, then $w_{k}=1$ for every $k \in \boldsymbol{Z}$.

Proof. We may suppose $\varrho>2$. Suppose some w_{k} differ from 1 . Then we find an m such that $\prod_{-\infty}^{m} w_{k}=a \neq 1$. Compressing weights from w_{m-n} to w_{m} and taking $n \rightarrow \infty$ it follows that $\left\{\ldots, 1, a, w_{m+1}, \ldots\right\} \in \mathscr{C}_{e}$. Compressing weights from w_{m+1} to w_{m+n} and passing to limit, we deduce $\left\{\ldots, 1, \dot{a}, a^{-1}, 1, \ldots\right\} \in \mathscr{C}_{\boldsymbol{e}}$. Considering, if necessary, the adjoint shift we may assume that $a<1$. Now using 2.6 we obtain:

$$
u_{k}=\left\{\ldots, 1, \ldots 1, \sqrt{\frac{2(\varrho-1)}{(\varrho-2) a^{2}+\varrho}}, \frac{2(\varrho-1) a^{2}}{\sqrt{(\varrho-2) a^{2}+\varrho} \sqrt{(\varrho-2)+\varrho a^{2}}},\right.
$$

$$
\left.\sqrt{\frac{2(\varrho-1)}{(\varrho-2)+a^{2}}}, 1, \ldots\right\} \in \mathscr{C}_{2} .
$$

Using 2.5 we deduce

$$
u_{k}=\left(1-c_{k}\right)\left(1+c_{k+1}\right)=\left\{\begin{array}{cl}
1 & \text { for }
\end{array}|k|>1, ~ \begin{array}{cl}
\frac{2}{a^{2}+1-\varepsilon} & \text { for } k=-1, \\
\frac{4 a^{2}}{\left(a^{2}+1\right)^{2}-\varepsilon^{2}} & \text { for } k=0 \\
\frac{2}{a^{2}+1+\varepsilon} & \text { for } \\
k=1
\end{array}\right.
$$

where we have put $\varepsilon=\frac{a^{2}-1}{\varrho-1}$. By the fact that \mathscr{C}_{ϱ} is an increasing function of ϱ we may suppose $|\varepsilon|<1$. We have

$$
1=\prod_{-\infty}^{-2} u_{k}=\left(1+c_{-1}\right) \prod_{-\infty}^{-2}\left(1-c_{k}^{2}\right) ; \quad \text { hence } \quad c_{-1} \geqq 0
$$

By the same method, from $\prod_{2}^{\infty} u_{k}=1$ it follows that $c_{2} \leqq 0$. Then,

$$
\left(1-c_{-1}\right)\left(1+c_{0}\right)=\frac{2}{1+a^{2}-\varepsilon}, \quad\left(1-c_{0}\right)\left(1+c_{1}\right)=\frac{4 a^{2}}{\left(1+a^{2}\right)^{2}-\varepsilon^{2}}
$$

and

$$
\left(1-c_{1}\right)\left(1+c_{2}\right)=\frac{2}{1+a^{2}+\varepsilon}
$$

From the first equality and from $c_{-1} \geqq 0$ we deduce

$$
1-c_{0} \leqq \frac{2 a^{2}-2 \varepsilon}{1+a^{2}-\varepsilon}
$$

while from the last one and from $c_{2} \cong 0$ we have

$$
1+c_{1} \leqq \frac{2 a^{2}+2 \varepsilon}{1+a^{2}+\varepsilon}
$$

Hence,

$$
\frac{2 a^{2}-2 \varepsilon}{1+a^{2}-\varepsilon} \cdot \frac{2 a^{2}+2 \varepsilon}{1+a^{2}+\varepsilon} \geqq\left(1-c_{0}\right)\left(1+c_{1}\right)=\frac{4 a^{2}}{\left(1+\dot{a}^{2}\right)^{2}-\varepsilon^{2}}
$$

and it follows that $\varepsilon=\frac{a^{2}-1}{\varrho-1}=0, a=1$, a contradiction. The proof is complete.
2. 13. Corollary. If $T=\left\{w_{k}\right\}$ is invertible and $T \in \mathscr{C}_{\boldsymbol{e}}, T^{-1} \in \mathscr{C}_{\varrho}$, then T is unitary.

Proof. It suffices to remark that T^{-1} is also a weighted shift with weights $\left\{w_{k}^{-1}\right\}$. Using 2.11 we deduce $\Pi w_{k} \leqq 1$ and $\Pi\left(w_{k}^{-1}\right) \leqq 1$ hence $\Pi w_{k}=1$, that is (from 2.12) $w_{k}=1$ for every $k \in \boldsymbol{Z}$.

§ 3. Invertible operators of class \mathscr{C}_{e}

Let $\mathfrak{5}$ be a Hilbert space and T an invertible operator of class \mathscr{C}_{ϱ}.
3. 1. Theorem. If $0 \neq h \in \mathfrak{S}$ and $w_{k}=\frac{\left\|T^{k+1} h\right\|}{\left\|T^{k} h\right\|}(k \in \boldsymbol{Z})$ then $\left\{w_{k}\right\}$ is a weighted shift of class \mathscr{C}_{e}.

Proof. We construct, as in 1.3, the space \boldsymbol{H} and the operator \boldsymbol{T} with all $p_{i}=1$. Put $\boldsymbol{h}_{k}=\overbrace{T^{k} h}^{(k)}(k \in \boldsymbol{Z})$. Let \mathfrak{S}_{0} be the subspace $\bigvee_{k=-\infty}^{\infty} \boldsymbol{h}_{k}$. Then \mathfrak{S}_{0} has the orthonormal basis $e_{k}=\frac{\boldsymbol{h}_{k}}{\left\|\boldsymbol{h}_{k}\right\|}$.

It is easy to see that \boldsymbol{T} leaves \mathfrak{S}_{0} invariant, and $\left.\boldsymbol{T}\right|_{\mathfrak{S}_{0}}$ is just the desired weighted shift. Using 1.7 and 1.2 the proof is complete.
3.2. Corollary. If $T \in \mathscr{C}_{\boldsymbol{e}}$ and T is invertible, ther.

$$
\lim \left\|T^{n} h\right\| \leqq \lim \left\|T^{-n} h\right\| \quad \text { for } \quad h \in \mathfrak{H}
$$

Proof. Using 2.11 and 3.1 we have

$$
1 \geqq I I\left\|T^{k+1} h\right\| \cdot\left\|T^{k} h\right\|-1=\frac{\lim \left\|T^{n} h\right\|}{\lim \left\|T^{-n} h\right\|}
$$

3. 3. Corollary. If $T \in \mathscr{C}_{e}, T$ is invertible, and $\lim \left\|T^{n} h\right\|=\lim \left\|T^{-n} h\right\|$, then

$$
\left\|T^{n} h\right\|=\|h\| \quad \text { for } \quad n=1,2, \ldots
$$

Proof. Obvious from 2. 12 and 3.1.
3.4. Corollary. If $T \in \mathscr{C}_{\varrho}$ and $\lim \left\|T^{n} h\right\|=\lim \left\|T^{-n} h\right\|$ for all $h \in \mathfrak{G}$, then T is unitary.
3. 5. Corollary. (Stampfle [4].) If T, T^{-1} are both of class $\mathscr{C}_{\boldsymbol{e}}$, then T is unitary.

Proof. Obvious from 3.2 and 3. 4.

References

[1] B. Sz.-Nagy et C. Folaş, Analyse harmonique des opérateurs de l'espace dé Hilbert (BudapestParis, 1967).
[2] G. Eckstein, Sur les opérateurs de classe \mathscr{C}_{e}, Acta Sci. Math., 33 (1972), 349—352.
[3] G. Eckstein, Translations pondérées de classe \mathscr{C}_{2}. Revue Roum. Math. Pur. Appl., to appear.
[4] J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis, 4 (1969), 1-10.
[5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand (Princeton, N. J., 1967).
[6] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887—933.
[7] W. Mḷak, On convergence properties of operators of class \mathscr{C}_{e}, Acta Sci. Math., 33 (1972), 353-354.
(Received June 14, 1972)

