Weighted shifts of class \mathscr{C}_{o}

By G. ECKSTEIN and A. RÁCZ in Timişoara (Romania)

§ 1. Introduction

In this paper we study weighted shifts of class \mathscr{C}_{ϱ} and apply the results to obtain some "metric properties" of operators of class \mathscr{C}_{ϱ} . We shall include some known facts for these classes and resume parts of the papers [2] and [3].

We shall consider complex Hilbert spaces only. Operators will be supposed linear and bounded. For the Hilbert space \mathfrak{H} we denote by $\mathscr{L}(\mathfrak{H})$ the algebra of all operators on \mathfrak{H} .

Definition. The operator $T \in \mathscr{L}(\mathfrak{H})$ is said to be of class \mathscr{C}_{ϱ} ($\varrho > 0$) if there exist a Hilbert space $\mathfrak{R} \supset \mathfrak{H}$ and a unitary operator $U \in \mathscr{L}(\mathfrak{K})$ such that

(1)
$$T^n = \varrho P_5 U^n |_5$$
 $(n = 1, 2, ...)$

 $P_{\mathfrak{H}} = P$ denoting orthogonal projection from \mathfrak{K} onto \mathfrak{H} . The operator U is called the unitary ϱ -dilation of T.

The classes \mathscr{C}_{q} were introduced by B. Sz.-NAGY and C. FOIAS cf. [1]. Recall the following facts:

a) \mathscr{C}_{ϱ} is an increasing function of ϱ , i.e. $\mathscr{C}_{\varrho} \supset \mathscr{C}_{\sigma}$ for $\varrho > \sigma$.

b) \mathscr{C}_1 is the class of contractions (B. Sz.-NAGY).

c) \mathscr{C}_2 is the class of numerical radius contractions (C. A. BERGER).

d) If $T \in \mathscr{C}_{\varrho}$, then $||T^n|| \leq \varrho$ and $v(T) \leq \min\{1, \varrho\}$ (v(T) means spectral radius). e) $T \in \mathscr{C}_{\varrho}$ if and only if

(2) $(\varrho - 2) ||z Th||^2 - 2(\varrho - 1) \operatorname{Re}(z Th, h) + \varrho ||h||^2 \ge 0 \text{ for } h \in \mathfrak{H} \text{ and } |z| \le 1.$

We will also use the following obvious corollaries of e):

- f) If $T \in \mathscr{C}_{\rho}$ and $\mathfrak{H}_0 \subset \mathfrak{H}$ is a closed invariant subspace for T, then $T | \mathfrak{H}_0 \in \mathscr{C}_{\rho}$.
- g) The class \mathscr{C}_{ρ} is closed in the strong operator topology.

1. 1. Proposition. If $T_j \in \mathscr{L}(\mathfrak{H}_j)$ belongs to the class \mathscr{C}_{ϱ_j} (j=1,2), then $T_1 \otimes T_2 \in \mathscr{C}_{\varrho_1 \varrho_2}$.

Proof. Indeed, if U_j is a unitary ϱ_j -dilation of T_j in $\Re_j \supset \mathfrak{H}_j$, it is easy to verify that $U_1 \otimes U_2$ is a unitary $\varrho_1 \varrho_2$ -dilation of $T_1 \otimes T_2$ in $\Re_1 \otimes \Re_2$.

1.2. Proposition. $T \in \mathscr{C}_{\rho}$ if and only if

- (i) $v(T) \leq a = \min\{1, \varrho\},\$
- (ii) $(\varrho 2) ||Th||^2 2|\varrho 1| |(Th, h)| + \varrho ||h||^2 \ge 0$ for all $h \in \mathfrak{H}$. (i) is redundant if $0 < \varrho \le 2$.

Proof. The case $\varrho = 1$ is obvious. The necessity part follows from d) and e) taking |z|=1. Let $\varrho \neq 1$ and suppose that (i) and (ii) are satisfied. Remark that (ii) may be written in the form:

$$(\varrho - 2) ||z Th||^2 - 2(\varrho - 1) \operatorname{Re}(z Th, h) + \varrho ||h||^2 \ge 0 \text{ for } |z| = 1 \text{ and } h \in \mathfrak{H}$$

or, equivalently,

(3)
$$||[\varrho I - (\varrho - 1)zT]h|| \ge ||zTh||$$
 for $h \in \mathfrak{H}, ||z| = 1$.

From (i) it follows that $\varrho |\varrho - 1|^{-1} > a$; hence

$$C(z) = z T[\varrho I - (\varrho - 1)z T]^{-1} \in \mathscr{L}(\mathfrak{H}),$$

for |z| < b, where $b = \rho |\rho - 1|^{-1} a^{-1}$. Since b > 1, inequality (3) may be written in the form

 $||C(z)|| \le 1$ for |z| = 1.

C(z) being analytic on the closed unit disk, it follows by the maximum modulus theorem that

 $\|C(z)\| \leq 1 \quad \text{for} \quad |z| \leq 1,$

that is,

$$\|[\varrho I - (\varrho - 1)zT]h\| \ge \|zTh\| \quad \text{for} \quad h \in \mathfrak{H}, \quad |z| \le 1,$$

which is equivalent to (2). The proof is complete.

1. 3. Recall now a construction from [2]. Let T a power-bounded operator in $\mathscr{L}(\mathfrak{H})$. Put $H = \bigoplus_{k=0}^{\infty} \mathfrak{H}_k$, where each \mathfrak{H}_k is a copy of \mathfrak{H}_k , and denote by $\{h_k\}_{k \in \mathbb{Z}}$ the elements of H. We shall denote an element of the form $\{\dots, 0, \dots, 0, h, 0, \dots, 0, \dots\}$ simply by h. Let $\{p_k\}_{k \in \mathbb{Z}}$ be an arbitrary sequence of positive integers. Define $T \in \mathscr{L}(H)$ as the operator $h \to T^{p_k}h$. In [2] it is proved that if $T \in \mathscr{C}_q$, then $T \in \mathscr{C}_q$. We shall use also the following

1. 4. Theorem. If $T \in \mathscr{C}_{\varrho}$, the sequence $\{||T^nh||\}$ converges for all $h \in \mathfrak{H}$. For the proof, see [2] or [7].

188

Weighted shifts

§ 2. Weighted bilateral shifts

In this paragraph we shall consider a Hilbert space with an orthonormal basis $\{e_k\}_{k \in \mathbb{Z}}$ and corresponding *weighted* (bilateral) *shifts*, i.e. operators which transform e_k into $w_k e_{k+1}$, where $\{w_k\}_{k \in \mathbb{Z}}$ is a bounded sequence of complex numbers. Such a weighted shift is unitarily equivalent to the one with weights $\{|w_k|\}$ so we can suppose that the weights are nonnegative (see [5] or [6]).

We shall denote by $\{\dots, w_{-n}, \dots, w_{-1}, w_0, w_1, \dots, w_n, \dots\}$ or briefly by $\{w_k\}$ the weights as well as the operator itself.

2.1. Proposition. If $\{w_k\} \in \mathscr{C}_{\rho}$ and $\{s_k\} \in \mathscr{C}_{\sigma}$ then $\{w_k s_k\} \in \mathscr{C}_{\rho\sigma}$.

Proof. Aplying 1. 1 we have that $\{w_k\} \otimes \{s_k\} \in \mathscr{C}_{\varrho\sigma}$. Notice that the subspace $\mathfrak{H}_0 \subset \mathfrak{H} \otimes \mathfrak{H}$ generated by $\{e_k \otimes e_k\}_{k \in \mathbb{Z}}$ is invariant for $\{w_k\} \otimes \{s_k\}$ and the restriction to \mathfrak{H}_0 of this operator is also of class $\mathscr{C}_{\varrho\sigma}$. But this restriction is a weighted shift with weights $\{w_k s_k\}$.

2.2. Corollary. If $\{w_k\} \in \mathscr{C}_{\rho}$ and $0 \leq s_k \leq w_k$, then $\{s_k\} \in \mathscr{C}_{\rho}$.

Proof. One can find numbers $0 \le \alpha_k \le 1$ such that $s_k = \alpha_k w_k$. Since $\{\alpha_k\}$ is a contraction, the conclusion follows.

2.3 Proposition.
$$T = \{w_k\} \in \mathscr{C}_{\rho}$$
 if and only if

(j)
$$v(T) \leq a = \min\{1, \varrho\}$$

(jj)
$$\sum_{k=-\infty}^{\infty} [(\varrho-2)w_k^2 + \varrho]x_k^2 - \sum_{k=-\infty}^{\infty} 2(\varrho-1)w_k x_k x_{k+1} \ge 0$$

for every sequence of real numbers x_k with $\sum_{-\infty}^{\infty} x_k^2 < \infty$.

Proof. Take $h = \sum z_k e_k$ and apply (1.2). If we put $x_k = |z_k|$ we obtain (jj). 2.4. Lemma. The real infinite quadratic form

$$\sum_{-\infty}^{\infty} a_k x_k^2 - \sum_{-\infty}^{\infty} b_k x_k x_{k+1} \quad \left(\sum_{-\infty}^{\infty} x_k^2 < \infty; a_k, b_k \text{ bounded}\right)$$

is positive semidefinite if and only if it can be written in the form

 $\sum (\alpha_k x_k - \beta_k x_{k+1})^2 \quad (\alpha_k, \beta_k \in \mathbf{R}).$

Proof. See [3].

2.5. Theorem. $\{w_k\}\in\mathscr{C}_2$ if and only if the weights are of the form $w_k^2 = (1-c_k)(1+c_{k+1}), c_k\in[-1, 1], k\in\mathbb{Z}$.

Proof. As known, \mathscr{C}_2 consists of the operators T with $|(Th, h)| \leq ||h||^2$, that is, of numerical radius contradictions. Using 2. 3, a necessary and sufficient condition for $\{w_k\}$ to be of the class \mathscr{C}_2 is that

$$\sum_{-\infty}^{\infty} x_k^2 - \sum_{-\infty}^{\infty} w_k x_k x_{k+1} \ge 0 \quad \text{if} \quad \sum_{-\infty}^{\infty} x_k^2 < \infty,$$

that is (using 2.4)

$$\alpha_k^2 + \beta_{k-1}^2 = 1$$
, $2\alpha_k \beta_k = w_k$, where $\alpha_k, \beta_k \in \mathbb{R}$, $k \in \mathbb{Z}$.

We have $w_k^2 = 4\alpha_k^2 \beta_k^2 = 2\alpha_k^2 (2-2\alpha_{k+1}^2)$. Put $c_k = 1-2\alpha_k^2$, and the conclusion follows.

2.6. Proposition. $T = \{w_k\} \in \mathscr{C}_{\varrho} \ (\varrho > 2)$ if and only if

(k)
$$v(T) \leq 1$$
, (kk) $\{u_k\} \in \mathscr{C}_2$,

where

$$u_{k} = \frac{2(\varrho-1)w_{k}}{\sqrt{(\varrho-2)w_{k}^{2}+\varrho}\sqrt{(\varrho-2)w_{k+1}^{2}+\varrho}}.$$

Proof. Take $y_k^2 = [(\varrho - 2)w_k^2 + \varrho]x_k^2$ in (jj) of (2.3).

2.7 Proposition. If $T = \{w_k\} \in \mathscr{C}_e$ then $\prod_{-\infty}^{\infty} w_k$ converges (possibly to 0).

Observe that $\prod_{-\infty}^{\infty} w_k = \lim ||T^n e_0|| \cdot \lim ||T^{*n} e_0||$; the limits i on the right hand side exist by 1.4.

Observe that $\prod_{-\infty}^{\infty} w_k \neq 0$ implies $w_k \rightarrow 1$ as $k \rightarrow \pm \infty$.

2.8. Proposition. If $\{w_k\} \in \mathscr{C}_2$ then $\prod_{-\infty}^{\infty} w_k \leq 1$. Indeed, from 2.5 we have

$$\prod w_{k} = \prod \sqrt{(1-c_{k})(1+c_{k+1})} = \prod \sqrt{1-c_{k}^{2}} \leq 1.$$

2.9. Definition. Let $\{w_k\}$ be a weighted shift. A compression of $\{w_k\}$ is any weighted shift obtained by substituting a finite sequence of consecutive weights by their product.

For example, $\{..., w_{-2}, w_{-1}w_0, w_1, ...\}$ and $\{..., w_{-2}, w_{-1}w_0w_1, w_2, ...\}$ are compressions of the shift $\{w_k\}$.

Weighted shifts

2.10. Proposition. Every compression of a weighted shift $\{w_k\}$ of class \mathcal{C}_e is also of class \mathcal{C}_e .

Proof. Choose $m \leq n$ and let $\{v_k\}$ be the weighted shift with

 $v_k = w_k$ for k < m, $v_m = w_m \dots w_n$, $v_k = w_{k+n-m}$ for k > m.

To prove that $\{v_k\} \in \mathscr{C}_{\boldsymbol{\varrho}}$ we shall repeat the construction of 1.3 by choosing $p_k = 1$ for $k \neq m$ and $p_m = n - m + 1$. Let \mathfrak{H}_0 be the subspace of \boldsymbol{H} with base $\{e_k\}$ for $k \leq m$, and $\{e_{k+n-m}^{(k)}\}$ for k > m. \mathfrak{H}_0 will be invariant for \boldsymbol{T} and $\boldsymbol{T}|\mathfrak{H}_0$ will be just the weighted shift with weights $\{v_k\}$.

2. 11 Proposition. If $\{w_k\} \in \mathscr{C}_o$ then $a = \prod w_k \leq 1$.

Proof. For $\varrho = 2$, (and then also for $\varrho < 2$) this is contained in 2.8. Denote by T_n the weighted shift obtained from $T = \{w_k\}$ by compression of weights from w_{-n} to w_n . By 2. 10, $T_n \in \mathscr{C}_{\varrho}$. If a > 0, then $T_n \to \{\dots, 1, \dots, 1, a, 1, \dots, 1, \dots\}$ (strongly). It follows that $\{\dots, 1, a, 1, \dots\} \in \mathscr{C}_{\varrho}$. If a > 1, by Corollary 2.2 we may suppose

 $1 < a < \frac{\rho}{\rho - 2}$. Using 2.6 we deduce that

$$u_{k} = \left\{ \dots, 1, \dots, 1, \sqrt{\frac{2(\varrho-1)}{(\varrho-2)a^{2}+\varrho}}, \sqrt{\frac{2(\varrho-1)}{(\varrho-2)a^{2}+\varrho}} \cdot a, 1, \dots \right\} \in \mathscr{C}_{2}.$$

But $1 \ge \prod u_k = \frac{2(\varrho-1)a}{(\varrho-2)a^2+\varrho} > 1$ (since $a < \frac{\varrho}{\varrho-2}$) which is impossible.

2.12. Theorem. If $\{w_k\} \in \mathscr{C}_{\varrho}$ and $\prod_{-\infty}^{\infty} w_k = 1$, then $w_k = 1$ for every $k \in \mathbb{Z}$.

Proof. We may suppose $\varrho > 2$. Suppose some w_k differ from 1. Then we find an m such that $\prod_{-\infty}^m w_k = a \neq 1$. Compressing weights from w_{m-n} to w_m and taking $n \to \infty$ it follows that $\{\dots, 1, a, w_{m+1}, \dots\} \in \mathscr{C}_{\varrho}$. Compressing weights from w_{m+1} to w_{m+n} and passing to limit, we deduce $\{\dots, 1, a, a^{-1}, 1, \dots\} \in \mathscr{C}_{\varrho}$. Considering, if necessary, the adjoint shift we may assume that a < 1. Now using 2. 6 we obtain:

$$u_{k} = \left\{ \dots, 1, \dots, 1, \sqrt{\frac{2(\varrho-1)}{(\varrho-2)a^{2}+\varrho}}, \frac{2(\varrho-1)a^{2}}{\sqrt{(\varrho-2)a^{2}+\varrho}\sqrt{(\varrho-2)+\varrho}a^{2}}, \sqrt{\frac{2(\varrho-1)}{(\varrho-2)+a^{2}}}, 1, \dots \right\} \in \mathscr{C}_{2}.$$

Using 2.5 we deduce

$$u_{k} = (1 - c_{k})(1 + c_{k+1}) = \begin{cases} 1 & \text{for } |k| > 1, \\ \frac{2}{a^{2} + 1 - \varepsilon} & \text{for } k = -1, \\ \frac{4a^{2}}{(a^{2} + 1)^{2} - \varepsilon^{2}} & \text{for } k = 0, \\ \frac{2}{a^{2} + 1 + \varepsilon} & \text{for } k = 1, \end{cases}$$

where we have put $\varepsilon = \frac{a^2 - 1}{\varrho - 1}$. By the fact that \mathscr{C}_{ϱ} is an increasing function of ϱ we may suppose $|\varepsilon| < 1$. We have

$$1 = \prod_{-\infty}^{-2} u_k = (1 + c_{-1}) \prod_{-\infty}^{-2} (1 - c_k^2); \text{ hence } c_{-1} \ge 0.$$

By the same method, from $\prod_{k=1}^{\infty} u_k = 1$ it follows that $c_2 \leq 0$. Then,

$$(1-c_{-1})(1+c_0) = \frac{2}{1+a^2-\varepsilon}, \quad (1-c_0)(1+c_1) = \frac{4a^2}{(1+a^2)^2-\varepsilon^2},$$

and

$$(1-c_1)(1+c_2) = \frac{2}{1+a^2+\varepsilon}.$$

From the first equality and from $c_{-1} \ge 0$ we deduce

$$1-c_0 \leq \frac{2a^2-2\varepsilon}{1+a^2-\varepsilon},$$

while from the last one and from $c_2 \cong 0$ we have

$$1 + c_1 \le \frac{2a^2 + 2\varepsilon}{1 + a^2 + \varepsilon}$$

Hence,

$$\frac{2a^2 - 2\varepsilon}{1 + a^2 - \varepsilon} \cdot \frac{2a^2 + 2\varepsilon}{1 + a^2 + \varepsilon} \ge (1 - c_0)(1 + c_1) = \frac{4a^2}{(1 + a^2)^2 - \varepsilon^2}$$

and it follows that $\varepsilon = \frac{a^2 - 1}{\rho - 1} = 0$, a = 1, a contradiction. The proof is complete.

2.13. Corollary. If $T = \{w_k\}$ is invertible and $T \in \mathscr{C}_{\varrho}, T^{-1} \in \mathscr{C}_{\varrho}$, then T is unitary.

Proof. It suffices to remark that T^{-1} is also a weighted shift with weights $\{w_k^{-1}\}$. Using 2.11 we deduce $\prod w_k \leq 1$ and $\prod (w_k^{-1}) \leq 1$ hence $\prod w_k = 1$, that is (from 2.12) $w_k = 1$ for every $k \in \mathbb{Z}$.

Weighted shifts

§ 3. Invertible operators of class \mathscr{C}_{a}

Let \mathfrak{H} be a Hilbert space and T an invertible operator of class \mathscr{C}_{ϱ} .

3.1. Theorem. If $0 \neq h \in \mathfrak{H}$ and $w_k = \frac{\|T^{k+1}h\|}{\|T^kh\|}$ $(k \in \mathbb{Z})$ then $\{w_k\}$ is a weighted

shift of class \mathscr{C}_{ϱ} .

Proof. We construct, as in 1.3, the space H and the operator T with all $p_i = 1$. Put $h_k = \overbrace{T^k h}^{(k)} (k \in \mathbb{Z})$. Let \mathfrak{H}_0 be the subspace $\bigvee_{k=-\infty}^{\infty} h_k$. Then \mathfrak{H}_0 has the orthonormal basis $e_k = \frac{h_k}{\|h_k\|}$.

It is easy to see that T leaves \mathfrak{H}_0 invariant, and $T|_{\mathfrak{H}_0}$ is just the desired weighted shift. Using 1.7 and 1.2 the proof is complete.

3.2. Corollary. If $T \in \mathscr{C}_{o}$ and T is invertible, then

$$\lim \|T^n h\| \leq \lim \|T^{-n}h\| \quad for \quad h \in \mathfrak{H}.$$

Proof. Using 2.11 and 3.1 we have

$$1 \ge \prod \|T^{k+1}h\| \cdot \|T^kh\|^{-1} = \frac{\lim \|T^nh\|}{\lim \|T^{-n}h\|}.$$

3.3. Corollary. If $T \in \mathscr{C}_{\varrho}$, T is invertible, and $\lim ||T^nh|| = \lim ||T^{-n}h||$, then

 $||T^nh|| = ||h||$ for n = 1, 2, ...

Proof. Obvious from 2.12 and 3.1.

3.4. Corollary. If $T \in \mathcal{C}_{\varrho}$ and $\lim ||T^nh|| = \lim ||T^{-n}h||$ for all $h \in \mathfrak{H}$, then T is unitary.

3.5. Corollary. (STAMPFLI [4].) If T, T^{-1} are both of class \mathcal{C}_{ϱ} , then T is unitary.

Proof. Obvious from 3.2 and 3.4.

13 A

References

[1] B. SZ.-NAGY et C. FOIAȘ, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest-Paris, 1967).

[2] G. ECKSTEIN, Sur les opérateurs de classe C_e , Acta Sci. Math., 33 (1972), 349–352.

[3] G. ECKSTEIN, Translations pondérées de classe \mathscr{C}_2 . Revue Roum. Math. Pur. Appl., to appear.

[4] J. G. STAMPFLI, A local spectral theory for operators, J. Functional Analysis, 4 (1969), 1-10.

[5] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand (Princeton, N. J., 1967).

[6] P. R. HALMOS, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887-933.

[7] W. MLAK, On convergence properties of operators of class C_e, Acta Sci. Math., 33 (1972), 353-354.

(Received June 14, 1972)