Weighted shifts of class @,

' By G. ECKSTEIN and A. RACZ in Tﬁmisoara (Romania) )

§ 1. Introduction

In this paper we study weighted shifts of class €, and apply the results to obtain
some “‘metric properties” of operators of class %,. We shall include some known
facts for these classes and resume parts of the papers [2] and [3].

We shall consider complex Hilbert spaces only. Operators will be supposed
linear and bounded. For the Hilbert space § we denote by #(9) the algebra of all
operators on 9. - ' :

Definitjon. The operator 7€ Z(9) is said to be of class €, (¢=0) if there
exist a Hilbert space R o $ and a unitary operator U¢ % (&) such that

(i) L Tr=ePgUtly (n1=1,2,..0),

P, =P denoting orthogonal pI'O_]CCthn from & onto ©. The operator U is called
the umtary o-dilation of T.

The classes €, were introduced by B. Sz. -NAGY and C. Foias cf. {1]. Recall the
following facts:
a) ¥, is an increasing function of g, i.e. (60:3.(66 for o>a.
b) %, is the class of contractions (B. Sz.-NAGY).
€) %, is the class of numerical radius contractions (C. A. BERGER).
d) If T¢%,, ‘then |T"|=¢ and v(T)=min {1 0} (v(T) means spectral radius).
e) T¢%, if and only if

Q@ (o— 2)[]zTh||2—2(Q—1)Re(zTh B+elhl? =0 for heH and |z|=1.

We will also use the following obvious corollaries of e):
fy IfTe¥,and HocCHisa closed invariant subspace for T, then T|H, E%
g) The class %, is closed in the strong operator topology

1. 1. PropOSItlon If Té.,?()]) belongs to the class é,, (j—l 2) then
T1®T26(€

Q10"
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Proof. Indeed, if Uj;is a unitary g;-dilation of T; in &; 25 9;, it is easy to verify
that U; ® U, is a unitary g, g,-dilation of 7, ® T, in 8, @ K,.

1.2. Proposition. T€%, if and only if

@ v(@=a=min {1, ¢},
(i) (o=2)IThI2=2]o—1] [(Th, h)| +olH* = O for all he$.
(@) is redundant if 0<0=2.

Proof. The case g=1 is obvious. The necessity part follows from d) and e)
taking |z|=1. Let o1 and suppose that (i) and (ii) are satisfied. Remark that (ii)
may be written in the form: '

(0= |zTh|*—2(c—1) Re (zTh, i)+ ollA2 = 0 for |z|=1 and he$

or, equivalently,
3) lef—(e—1)zTIhl = |zTh| for he$H, |z|=1.

From (i) it follows that ¢|o—1|-! > a; hence

C@) = zTleI—(e—NzTI € £ (),

for |z]<b, where b = glo—1|"*a™*. Since b1, inequality (3) may be written in
the form
IC@I=1 for |z|=1.

C(z) being analytic on the closed unit disk, it follows by the maximum modulus
theorem that .

iC@I=1 for |zl =1,
that is, )
| lloI—(e—DzTIH| = IzTh| for he$, ||=1,

which is equvivalent to (2). The proof is complete.
" 1. 3. Recall now a construction from [2]. Let T a power-bounded operator in

- . : ®
Z(9). PutH = @ 9, where each H, is a copy of H, and denote by {/,}, ., the ele-

v (k=1) ®) (k+1)

ments of H. We shall denote an element of the form {...,0,..., 0, 4, 0, ...,0,...}
(k)

simply by £. Let {p,}, .z be an arbitrary sequence of positive integers. Define T¢.#(H)

@ (k+1) | ‘ ,
as the operator h —TP<h. In [2] it is proved that if T<%,, then T€%,.

We shall use also the following

1.4. Theorem. If T'¢%¥,, the sequence {|T"h||} converges for all he$.
For the proof, see [2] or [7]. :
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§ 2. Weighted bilateral shifts

In this paragraph we shall consider a Hilbert space with an orthonormal basis
{ex}cz and corresponding weighted (bilateral) shifts, i.e. operators which transform
e, into w, e, ., where {w,}, . is a bounded sequence of complex numbers. Such a
weighted shift is unitarily equivalent to the one with weights {|w,[} so we can suppose
that the weights are nonnegative (see [5] or [6]). . »

We shall denote by {...,w_,, ..., w_y, wo, Wy, ..., w,, ...} or briefly by {w}
the weights as well as the operator itself.

2.1. Proposition. If (Wi} <8, and {5} €%, then {w,5}€b,,.
Proof. Aplying 1. 1 we have that {w}® {s;}€%,,. Notice that the subspace
Ho C H®H generated by {e,®e,}, .z is invariant for {w,}® {5} and the restriction

to 9o of this operator is also of class %,,. But this restriction is a weighted shift with .
weights {w;s}.

2.2. Corollary. If {w,}€%, and 0=s,=w,, then {5,}€%,.

Proof. One can find numbers 0=q, =1 such that s, =, w,. Since {a,} is a con-
traction, the conclusion follows.

2.3 Proposition. T= {w,} €%, if and only if

)] : v(T)=a=min {1, g},

(ii) S lo=2w+abd— 3 200~ wrnn =0

k=--oo k=—oo

Jor every sequence of real numbers x, with D] x?<eo.

Proof. Take h=2z,¢ and apply (L.2). If we put x,=|z,] we obtain (jj).

2.4, Lemma. The real infinite quadratic form

2 X~ 2 b X,y [2 Xi<eo; ay, by bounde‘d]
is positive semidefinite if and only if it can be written in the form

2 (exie—Biexis)* (o, BER).
Proof. See [3].

2.5. Theorem. {wk}G(‘é’2 if and only if the weights are of the form wi =
=(—cd(l+eee1)s a€l—1,11, k€Z.
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Proof. As known, %, consists of the operators T with I(Th, B)|=A|)?, that is,
of numerical radius contradictions. Using 2. 3, a necessary and sufficient condition
for {w,} to be of the class ¥, is that '

. co oo . N . co
’ 2 x,f_ Z kakxk+1§0 lf 2 x;%<°°,
o o -

— oo

that is (using 2. 4)
a,%+ﬂ,%_1='1, zakﬁk:Wk, Where ak,ﬁkER, kEZ.

We have w? = 4a? 2 = 242(2—202,,). Put ¢, = 1202, and the conclusion fol-

Tows.

2. 6. Pro‘pc;sition. T={w}€%, (e>2) if and only if

(k) v(T')§ll, (kk) {uk}E(éz,
where

", = 2(e— 1wy .
Vie—2wi+eV(e—2wi i +e

Proof. Take y? = [(e—2)wZ+¢]xZ in (jj) of (2. 3).
2.7 Proposition. If T= {wk}e’g@ then H w, converges (possibly to 0).

Observe that ﬂ w, = lim [[T"e|l < lim || T™ e, ;. the limits i on the right hand

side exist by 1.4.
Observe that [] w, =0 implies we—1 as k-t oo,

2.8. Propbsition. If {w} €%, then [[ w,=1.

Indeed, from 2.5 we have

Iw= V=) (+a = [VI=g =1.

2.9. Definition. Let {w,} be a weighted shift. A compression of {w,} is any
weighted shift obtained by substituting a finite sequence of consecutive weights by their
product. _

For example, {..., w_,, w_ wo, wy,...} and {..., w_,, w_,wow;, wa, ...} are
compressions of the shift {w,}.
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2.10. Propo 51t10n Every compression: of a wezghtea’ shift {w,} of class 6, is '
also of class €,,. '

. Proof. Choose m=n and let {vk} be the weighted shift with
n=w, for k-<m, D, =Wy W, k= Wit nm for‘ k>m.

To prove that {vk}ﬁ’g we shall repeat the constructlon of 1.3 by choosmg

=1 for k;tm and p,, = n—m+1. Let $, be the subspace of H with- base {e,,} for
" k=m, and {e¥, .} for k>m. $, will be invariant for T and Tisjo will be just the
weighted shift with weights {u,}.

2 1 Proposition. Ir {wk}e%e then a=Iw,=1.

.. Proof. For ¢=2, (and then also for ¢<2) this is contained in 2. 8. Denote by
© T, the weighted shift obtained from 7= {w,} by compression of weights from
w_,tow,. By 2.10, T,ie(gg. Ifa=0,then T, - {... »1,a,1,...,1; ...} (strongly).
It follows that {..., 1, a, , }é‘g If a=1, by Coronlary 2. 2 we may suppose

l<a=< —Q—— Using 2.6 we deduce that
[ 1/ 2G=h e, | :
U = {, 1,..,1 e-2aro’ | G—)a+e al,..1€%,.

_ 2(e—-Da e ) L
But lzﬂ U, = m>l [smce a<—~_—2 -which is 1mposs1b1e..

2.12. Theorem. If {w}c%, and ]]wkil, then w}c:l.for everf keZ.

Proof. We may suppose 0=2. Suppose some wk differ from 1. Then we find an

m such that [] wy=as 1. Compressing weights from w,,_, to w,, and taking 1 —o»

— oo

it follows that {..., 1. a, Wy, ...}é‘ée . Compressing weights from w,,.; to Wotn
and passing to limit, we deduce {..., 1, 4,a" ', 1, ...}€%,. Considering, if necessary,
the adjoint shift we may assume that a—<1. Now using 2. 6 we obtain:

| { - V—2(9_1) . 2—Da?
uk= ...,1,... 1, — — .
' (e-2a’+te Vie—2)a*+eV(e—2)+ea

]/ 2(e—1) o
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Using 2.5 we deduce

1 for |k|>1,
5 R
a2—+m for ——1,
y=0-c)(1+c¢4q) = 4a?
k= & k+1 _z_fzz__z_ for k=0,
: (@+1)—e
2
- =1
a*+1+¢ for k=1,

g2
a
where we have put ¢ = 2

-1
we may suppose |¢]<1. We have

. By the fact that €, is an increasing function of ¢

-2 o —2 . ‘
1= [Ju=(+c_y) [[(1—cf); hence c_,;=0.

By the same method, from ]] u,=1 it follows that ¢,=0. Then,
2

‘ 2 - : 4a?
(I=c_)(A+co) = 1trai—¢ (l—co)(l+c1)=m7’
and '
(l—ch)(1+02):—-—2-——. :
‘ 1+a%+¢

From the first equality and from ¢_; =0 we deduce

2a%—2¢

e =
I=¢o= 1+a2—¢’

while from the last one and from ¢, =0 we have

2a%+2¢
1 = .
SR prape s
Hence,
2a°—2¢ 2a*+2¢ . : 4q?
i . = (1 — 1 = ——
1+a2—“8 ‘1+a2+8 = ( CO)( +cl) (1+a2)2_€2

at—1
o—1

and it follows that ¢ = = 0, g=1, a contradiction. The proof is complete.

2.13. Corollary. If T={w,} is invertible and T¢%,, T~ €%,, then T is unitary.

‘Proof. Tt suffices to remark that 7! is also a weighted shift with weights
{w,'}. Using 2. 11 we deduce [Tw,=1 and J](wg")=1 hence [Jw,=1, that is
(from 2.12) w,=1 for every kcZ. :
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§ 3. Invertible operators of class %,
Let $ be a Hilbert space and 7 an invertible operator of class €,.

|7+ )

3.1. Theorem. If0=he$ and w, = T

(k€Z) then {w,} is a weighted
shift of class €,.

Proof. We construct, as in 1. 3, the space H and the operator T with-all p;=1.
Q)

Put hk=ﬁ (keZ). Let H, be the subspace V h:,‘.Then 9, has the orthonormal

k= —co

. h,
basis ¢, = —-.
“ ]
It is easy to see that T leaves 9, invariant, and T, 1s just the desired welghted
shift. Using 1.7 and 1.2 the proof is complete.

3.2 Corollary. If T<%, and T is invertible, ther
hm |[T"Ah| =tim |T-"h| for heD.

Proof Usmg 2.11 and 3.1 we have

~ lim || 7" A
k+1p0 11Tk | CEA
Lz JTUTH T = o
3.3. Corollary. If T€%,, T is incertible, and tim ||T"hl|=lim | T="h||, then
- T RI= Al for n=1,2, ...
" Proof. Obvious from 2. 12 and 3.1.

3.4. Corollary. Ith‘g and lim [T"h||=lim )| T~ "A| for al/ he9, then T is
unitary.

3.5. Corollary. (StampeLi [4]) If T, T~! are both of class €,, then T is
unitary. .

Proof. Obvious from 3.2 and 3. 4.
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